Skip to main content

Methods of Protein Structure Comparison

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 857))

Abstract

Despite its apparent simplicity, the problem of quantifying the differences between two structures of the same protein or complex is nontrivial and continues evolving. In this chapter, we described several methods routinely used to compare computational models to experimental answers in several modeling assessments. The two major classes of measures, positional distance-based and contact-based, are presented, compared, and analyzed. The most popular measure of the first class, the global RMSD, is shown to be the least representative of the degree of structural similarity because it is dominated by the largest error. Several distance-dependent algorithms designed to attenuate the drawbacks of RMSD are described. Measures of the second class, contact-based, are shown to be more robust and relevant. We also illustrate the importance of using combined measures, utility-based measures, and the role of the distributions derived from the pairs of experimental structures in interpreting the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabanyi M, Adams P, Arnold K, Bordoli L, Carter L, Flippen-Andersen J, Gifford L, Haas J, Kouranov A, McLaughlin W, et al. (2011) Journal of Structural and Functional Genomics, 1–10.

    Google Scholar 

  2. Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, et al. (2011) Nucleic Acids Research 39, D392–D401.

    Google Scholar 

  3. Burra PV, Zhang Y, Godzik A, & Stec B (2009) Proceedings of the National Academy of Sciences 106, 10505–10510.

    Article  CAS  Google Scholar 

  4. Kryshtafovych A, Fidelis K, & Moult J (2009) Proteins: Structure, Function, and Bioinformatics 77, 217–228.

    Article  CAS  Google Scholar 

  5. Cozzetto D, Kryshtafovych A, Fidelis K, Moult J, Rost B, & Tramontano A (2009) Proteins: Structure, Function, and Bioinformatics 77, 18–28.

    Article  CAS  Google Scholar 

  6. Wodak SJ (2007) Proteins: Structure, Function, and Bioinformatics 69, 697–698.

    Article  CAS  Google Scholar 

  7. Michino M, Abola E, participants of GPCR Dock 2008, Brooks CL, Dixon JS, Moult J, & Stevens RC (2009) Nat Rev Drug Discov 8, 455–463.

    Google Scholar 

  8. Warren G, Nevins N, & McGaughey G (2011) in 241st ACS National Meeting (Anaheim, CA).

    Google Scholar 

  9. Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, et al. (2005) Journal of Medicinal Chemistry 49, 5912–5931.

    Article  Google Scholar 

  10. Kufareva I, Rueda M, Katritch V, participants of GPCR Dock 2010, Stevens RC, & Abagyan R (2011) Structure 19(8), 1108–1126.

    Google Scholar 

  11. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, et al. (2010) Science 330, 1066–1071.

    Article  PubMed  CAS  Google Scholar 

  12. Chien EYT, Liu W, Zhao Q, Katritch V, WonHan G, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, et al. (2010) Science 330, 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  13. Kryshtafovych A, Venclovas, Fidelis K, & Moult J (2005) Proteins: Structure, Function, and Bioinformatics 61, 225–236.

    Article  CAS  Google Scholar 

  14. Zemla A (2003) Nucleic Acids Research 31, 3370–3374.

    Article  PubMed  CAS  Google Scholar 

  15. Shindyalov IN & Bourne PE (1998) Protein Engineering 11, 739–747.

    Article  PubMed  CAS  Google Scholar 

  16. Holm L & Sander C (1993) Journal of Molecular Biology 233, 123–138.

    Article  PubMed  CAS  Google Scholar 

  17. Kleywegt GJ & Jones AT (1997) in Methods in Enzymology (Academic Press), pp. 525–545.

    Google Scholar 

  18. Ortiz AR, Strauss CEM, & Olmea O (2002) Protein Science 11, 2606–2621.

    Article  PubMed  CAS  Google Scholar 

  19. Levitt M & Gerstein M (1998) Proceedings of the National Academy of Sciences of the United States of America 95, 5913–5920.

    Article  PubMed  CAS  Google Scholar 

  20. Shapiro J & Brutlag D (2004) Nucleic Acids Research 32, W536-W541.

    Article  PubMed  CAS  Google Scholar 

  21. Szustakowski JD & Weng Z (2000) Proteins: Structure, Function, and Bioinformatics 38, 428–440.

    Article  CAS  Google Scholar 

  22. Kleywegt GJ (1996) Acta Crystallogr D Biol Crystallogr 52, 842–857.

    Article  PubMed  CAS  Google Scholar 

  23. Kawabata T & Nishikawa K (2000) Proteins 41, 108–122.

    Article  PubMed  CAS  Google Scholar 

  24. Kawabata T (2003) Nucleic Acids Res 31, 3367–3369.

    Article  PubMed  CAS  Google Scholar 

  25. Yang A-S & Honig B (2000) Journal of Molecular Biology 301, 665–678.

    Article  PubMed  CAS  Google Scholar 

  26. Lackner P, Koppensteiner WA, Sippl MJ, & Domingues FS (2000) Protein Engineering 13, 745–752.

    Article  PubMed  CAS  Google Scholar 

  27. Krissinel E & Henrick K (2004) Acta Crystallographica Section D 60, 2256–2268.

    CAS  Google Scholar 

  28. Zemla A, Venclovas, Moult J, & Fidelis K (2001) Proteins Suppl 5, 13–21.

    Google Scholar 

  29. Zhang Y & Skolnick J (2004) Proteins: Structure, Function, and Bioinformatics 57, 702–710.

    Article  CAS  Google Scholar 

  30. Abagyan R & Kufareva I (2009) Methods Mol Biol 575, 249–279.

    Article  PubMed  CAS  Google Scholar 

  31. McLachlan AD (1979) J Mol Biol 128, 49–79.

    Article  PubMed  CAS  Google Scholar 

  32. Damm KL & Carlson HA (2006) Biophysical journal 90, 4558–4573.

    Article  PubMed  CAS  Google Scholar 

  33. Phillips DC (1970) Biochem Soc Symp 30, 11–28.

    PubMed  CAS  Google Scholar 

  34. Nishikawa K & Ooi T (1974) J.Theor.Biol. 43, 351–274.

    Article  PubMed  CAS  Google Scholar 

  35. Liebman MN (1980) Biophys. J. 32, 213–215.

    Article  PubMed  CAS  Google Scholar 

  36. Sippl MJ (1982) Journal of Molecular Biology 156, 359–388.

    Article  PubMed  CAS  Google Scholar 

  37. Abagyan RA & Totrov MM (1997) J Mol Biol 268, 678–685.

    Article  PubMed  CAS  Google Scholar 

  38. Marsden B & Abagyan R (2004) Bioinformatics 20, 2333–2344.

    Article  PubMed  CAS  Google Scholar 

  39. Lensink MF & Wodak SJ (2010) Proteins: Structure, Function, and Bioinformatics 78, 3085–3095.

    Article  CAS  Google Scholar 

  40. Bottegoni G, Kufareva I, Totrov M, & Abagyan R (2009) J Med Chem 52, 397–406.

    Article  PubMed  CAS  Google Scholar 

  41. Totrov M & Abagyan R (2008) Curr Opin Struct Biol.

    Google Scholar 

  42. Coupez B & Lewis RA (2006) Curr Med Chem 13, 2995–3003.

    Article  PubMed  CAS  Google Scholar 

  43. Katritch V, Rueda M, Lam PC-H, Yeager M, & Abagyan R (2010) Proteins 78, 197–211.

    Article  PubMed  CAS  Google Scholar 

  44. Jaakola V-P, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR, Ijzerman AP, & Stevens RC (2008) Science 322, 1211–1217.

    Article  PubMed  CAS  Google Scholar 

  45. Rueda M, Katritch V, Raush E, & Abagyan R (2010) Bioinformatics 26, 2784–2785.

    Article  PubMed  CAS  Google Scholar 

  46. Stroud RM & Fauman EB (1995) Protein Science 4, 2392–2404.

    Article  PubMed  CAS  Google Scholar 

  47. Eyal E, Gerzon S, Potapov V, Edelman M, & Sobolev V (2005) Journal of Molecular Biology 351, 431–442.

    Article  PubMed  CAS  Google Scholar 

  48. Golomb BA, Erickson LC, Koperski S, Sack D, Enkin M, & Howick J (2010) Annals of Internal Medicine 153, 532–535.

    PubMed  Google Scholar 

  49. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, et al. (2000) Science 289, 739–745.

    Article  PubMed  CAS  Google Scholar 

  50. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krausz N, Choe H-W, Hofmann KP, & Ernst OP (2008) Nature 455, 497–502.

    Article  PubMed  CAS  Google Scholar 

  51. Park JH, Scheerer P, Hofmann KP, Choe H-W, & Ernst OP (2008) Nature 454, 183–187.

    Article  PubMed  CAS  Google Scholar 

  52. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AGW, Tate CG, & Schertler GFX (2008) Nature 454, 486–491.

    Article  PubMed  CAS  Google Scholar 

  53. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Yao X-J, Weis WI, Stevens RC, et al. (2007) Science 318, 1266–1273.

    Article  PubMed  CAS  Google Scholar 

  54. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK, et al. (2007) Science 318, 1258–1265.

    Article  PubMed  CAS  Google Scholar 

  55. Hooft RW, Vriend G, Sander C, & Abola EE (1996) Nature 381, 272–272.

    Article  PubMed  CAS  Google Scholar 

  56. Vriend G (1990) J Mol Graph 8, 52–56.

    Article  PubMed  CAS  Google Scholar 

  57. Laskowski RA, MacArthur MW, Moss DS, & Thornton JM (1993) Journal of Applied Crystallography 26, 283–291.

    Article  CAS  Google Scholar 

  58. Chen VB, Arendall WB, III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, & Richardson DC (2010) Acta Crystallographica Section D 66, 12–21.

    Google Scholar 

  59. Maiorov V & Abagyan R (1998) Fold Des 3, 259–269.

    Article  PubMed  CAS  Google Scholar 

  60. Pawlowski M, Gajda MJ, Matlak R, & Bujnicki JM (2008) BMC Bioinformatics 9, 403–403.

    Article  PubMed  Google Scholar 

  61. Jain A & Nicholls A (2008) Journal of Computer-Aided Molecular Design 22, 133–139.

    Article  PubMed  CAS  Google Scholar 

  62. Clark R & Webster-Clark D (2008) Journal of Computer-Aided Molecular Design 22, 141–146.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank the organizers and the participants of the GPCR Dock 2010 assessment for providing the model statistics, Max Totrov and Eugene Raush for implementing some of the core functions in ICM, Manuel Rueda for helpful discussions and Karie Wright for help with manuscript preparation. We would like to acknowledge financial support by NIH, grants # R01 GM071872, U01 GM094612, and U54 GM094618.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Abagyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Kufareva, I., Abagyan, R. (2011). Methods of Protein Structure Comparison. In: Orry, A., Abagyan, R. (eds) Homology Modeling. Methods in Molecular Biology, vol 857. Humana Press. https://doi.org/10.1007/978-1-61779-588-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-588-6_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-587-9

  • Online ISBN: 978-1-61779-588-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics