Skip to main content

Engineering Small Interfering RNAs by Strategic Chemical Modification

  • Protocol
  • First Online:
siRNA Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 942))

Abstract

Synthetic small interfering RNAs (siRNAs) have revolutionized functional genomics in mammalian cell cultures due to their reliability, efficiency, and ease of use. This success, however, has not fully translated into siRNA applications in vivo and in siRNA therapeutics where initial optimism has been dampened by a lack of efficient delivery strategies and reports of siRNA off-target effects and immunogenicity. Encouragingly, most aspects of siRNA behavior can be addressed by careful engineering of siRNAs incorporating beneficial chemical modifications into discrete nucleotide positions during siRNA synthesis. Here, we review the literature (Subheadings 1 –3) and provide a quick guide (Subheading 4) to how the performance of siRNA can be improved by chemical modification to suit specific applications in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–284

    Article  CAS  Google Scholar 

  2. Stein CA, Krieg AM (1994) Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides. Antisense Res Dev 4:67–69

    CAS  Google Scholar 

  3. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, Abbs S, Garralda ME, Bourke J, Wells DJ et al (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605

    Article  CAS  Google Scholar 

  4. Monia BP, Lesnik EA, Gonzalez C, Lima WF, McGee D, Guinosso CJ, Kawasaki AM, Cook PD, Freier SM (1993) Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 268:14514–14522

    CAS  Google Scholar 

  5. Gupta N, Fisker N, Asselin MC, Lindholm M, Rosenbohm C, Orum H, Elmen J, Seidah NG, Straarup EM (2010) A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One 5:e10682

    Article  CAS  Google Scholar 

  6. Wahlestedt C, Salmi P, Good L, Kela J, Johnsson T, Hokfelt T, Broberger C, Porreca F, Lai J, Ren K et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A 97:5633–5638

    Article  CAS  Google Scholar 

  7. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899

    Article  CAS  Google Scholar 

  8. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  Google Scholar 

  9. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  Google Scholar 

  10. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  Google Scholar 

  11. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    Article  CAS  Google Scholar 

  12. Maniataki E, Mourelatos Z (2005) A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 19:2979–2990

    Article  CAS  Google Scholar 

  13. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  Google Scholar 

  14. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  Google Scholar 

  15. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  Google Scholar 

  16. Martinez J, Tuschl T (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev 18:975–980

    Article  CAS  Google Scholar 

  17. Leuschner PJ, Ameres SL, Kueng S, Martinez J (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7:314–320

    Article  CAS  Google Scholar 

  18. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  CAS  Google Scholar 

  19. Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  CAS  Google Scholar 

  20. Behlke MA (2008) Chemical modification of siRNAs for in vivo use. Oligonucleotides 18:305–319

    Article  CAS  Google Scholar 

  21. Behlke MA (2006) Progress towards in vivo use of siRNAs. Mol Ther 13:644–670

    Article  CAS  Google Scholar 

  22. Lares MR, Rossi JJ, Ouellet DL (2010) RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 28:570–579

    Article  CAS  Google Scholar 

  23. Higuchi Y, Kawakami S, Hashida M (2010) Strategies for in vivo delivery of siRNAs: recent progress. BioDrugs 24:195–205

    Article  CAS  Google Scholar 

  24. http://www.fiercebiotech.com/story/roche-details-rd-cuts-new-buyout-plans-global-restructuring/2010-11-17

  25. http://biopharmconsortium.com/blog/2011/02/15/pfizer-makes-massive-rd-cuts-and-exits-rnai-and-regenerative-medicine-therapeutics/

  26. Meade BR, Dowdy SF (2009) The road to therapeutic RNA interference (RNAi): tackling the 800 pound siRNA delivery gorilla. Discov Med 8:253–256

    Google Scholar 

  27. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  Google Scholar 

  28. Kariko K, Bhuyan P, Capodici J, Weissman D (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172:6545–6549

    CAS  Google Scholar 

  29. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23:457–462

    Article  CAS  Google Scholar 

  30. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  Google Scholar 

  31. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877–6888

    Article  CAS  Google Scholar 

  32. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Article  CAS  Google Scholar 

  33. Reynolds A, Anderson EM, Vermeulen A, Fedorov Y, Robinson K, Leake D, Karpilow J, Marshall WS, Khvorova A (2006) Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 12:988–993

    Article  CAS  Google Scholar 

  34. Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226

    Article  CAS  Google Scholar 

  35. Kariko K, Bhuyan P, Capodici J, Ni H, Lubinski J, Friedman H, Weissman D (2004) Exogenous siRNA mediates sequence-independent gene suppression by signaling through toll-like receptor 3. Cells Tissues Organs 177:132–138

    Article  CAS  Google Scholar 

  36. Siolas D, Lerner C, Burchard J, Ge W, Linsley PS, Paddison PJ, Hannon GJ, Cleary MA (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231

    Article  CAS  Google Scholar 

  37. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJC, Yamasaki S, Itaya M, Pan YZ et al (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597

    Article  CAS  Google Scholar 

  38. Sun X, Rogoff HA, Li CJ (2008) Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol 26:1379–1382

    Article  CAS  Google Scholar 

  39. Bramsen JB, Laursen MB, Damgaard CK, Lena SW, Babu BR, Wengel J, Kjems J (2007) Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res 35:5886–5897

    Article  CAS  Google Scholar 

  40. Hohjoh H (2004) Enhancement of RNAi activity by improved siRNA duplexes. FEBS Lett 557:193–198

    Article  CAS  Google Scholar 

  41. Ohnishi Y, Tokunaga K, Hohjoh H (2005) Influence of assembly of siRNA elements into RNA-induced silencing complex by fork-siRNA duplex carrying nucleotide mismatches at the 3′- or 5′-end of the sense-stranded siRNA element. Biochem Biophys Res Commun 329:516–521

    Article  CAS  Google Scholar 

  42. Petrova Kruglova NS, Meschaninova MI, Venyaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL (2010) 2′-O-methyl-modified anti-MDR1 fork-siRNA duplexes exhibiting high nuclease resistance and prolonged silencing activity. Oligonucleotides 20:297–308

    Article  CAS  Google Scholar 

  43. Ge Q, Ilves H, Dallas A, Kumar P, Shorenstein J, Kazakov SA, Johnston BH (2009) Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA 16(1):106–17

    Article  CAS  Google Scholar 

  44. Ge Q, Dallas A, Ilves H, Shorenstein J, Behlke MA, Johnston BH (2009) Effects of chemical modification on the potency, serum stability, and immunostimulatory properties of short shRNAs. RNA 16:118–130

    Article  CAS  Google Scholar 

  45. Chu CY, Rana TM (2008) Potent RNAi by short RNA triggers. RNA 14:1714–1719

    Article  CAS  Google Scholar 

  46. Prakash TP, Allerson CR, Dande P, Vickers TA, Sioufi N, Jarres R, Baker BF, Swayze EE, Griffey RH, Bhat B (2005) Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem 48:4247–4253

    Article  CAS  Google Scholar 

  47. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, Giese K, Kaufmann J (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31:2705–2716

    Article  CAS  Google Scholar 

  48. Holen T, Amarzguioui M, Babaie E, Prydz H (2003) Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res 31:2401–2407

    Article  CAS  Google Scholar 

  49. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  CAS  Google Scholar 

  50. Hall AH, Wan J, Spesock A, Sergueeva Z, Shaw BR, Alexander KA (2006) High potency silencing by single-stranded boranophosphate siRNA. Nucleic Acids Res 34:2773–2781

    Article  CAS  Google Scholar 

  51. Abe N, Abe H, Nagai C, Harada M, Hatakeyama H, Harashima H, Ohshiro T, Nishihara M, Furukawa K, Maeda M et al (2011) Synthesis, structure, and biological activity of dumbbell-shaped nanocircular rnas for rna interference. Bioconjug Chem 22(10):2082–2092

    Article  CAS  Google Scholar 

  52. Abe N, Abe H, Ito Y (2007) Dumbbell-shaped nanocircular RNAs for RNA interference. J Am Chem Soc 129:15108–15109

    Article  CAS  Google Scholar 

  53. Lapierre J, Salomon W, Cardia J, Bulock K, Lam JT, Stanney WJ, Ford G, Smith-Anzures B, Woolf T, Kamens J et al (2011) Potent and systematic RNAi mediated silencing with single oligonucleotide compounds. RNA 17:1032–1037

    Article  CAS  Google Scholar 

  54. Prakash TP (2011) An overview of sugar-modified oligonucleotides for antisense therapeutics. Chem Biodivers 8:1616–1641

    Article  CAS  Google Scholar 

  55. Bramsen JB, Laursen MB, Nielsen AF, Hansen TB, Bus C, Langkjær N, Babu BR, Højland T, Abramov M, Van Aerschot A et al (2009) A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res 37:2867–2881

    Article  CAS  Google Scholar 

  56. Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048

    Article  CAS  Google Scholar 

  57. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42:7967–7975

    Article  CAS  Google Scholar 

  58. Amarzguioui M, Holen T, Babaie E, Prydz H (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31:589–595

    Article  CAS  Google Scholar 

  59. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, Tuschl T (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 13:83–105

    Article  CAS  Google Scholar 

  60. Hamada M, Ohtsuka T, Kawaida R, Koizumi M, Morita K, Furukawa H, Imanishi T, Miyagishi M, Taira K (2002) Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′-ends of siRNAs. Antisense Nucleic Acid Drug Dev 12:301–309

    Article  CAS  Google Scholar 

  61. Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456:209–213

    Article  CAS  Google Scholar 

  62. Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  CAS  Google Scholar 

  63. Lima WF, Wu H, Nichols JG, Sun H, Murray HM, Crooke ST (2009) Binding and cleavage specificities of human Argonaute2. J Biol Chem 284:26017–26028

    Article  CAS  Google Scholar 

  64. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  CAS  Google Scholar 

  65. Choung S, Kim YJ, Kim S, Park HO, Choi YC (2006) Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun 342:919–927

    Article  CAS  Google Scholar 

  66. Grunweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193

    Article  Google Scholar 

  67. Hall AH, Wan J, Shaughnessy EE, Ramsay Shaw B, Alexander KA (2004) RNA interference using boranophosphate siRNAs: structure–activity relationships. Nucleic Acids Res 32:5991–6000

    Article  CAS  Google Scholar 

  68. Aboul-Fadl T (2005) Antisense oligonucleotides: the state of the art. Curr Med Chem 12:2193–2214

    Article  CAS  Google Scholar 

  69. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  CAS  Google Scholar 

  70. Sheehan D, Lunstad B, Yamada CM, Stell BG, Caruthers MH, Dellinger DJ (2003) Biochemical properties of phosphonoacetate and thiophosphonoacetate oligodeoxyribonucleotides. Nucleic Acids Res 31:4109–4118

    Article  CAS  Google Scholar 

  71. Yamada CM, Dellinger DJ, Caruthers MH (2007) Synthesis and biological activity of phosphonocarboxylate DNA. Nucleosides Nucleotides Nucleic Acids 26:539–546

    Article  CAS  Google Scholar 

  72. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K et al (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12:1197–1205

    Article  CAS  Google Scholar 

  73. Kraynack BA, Baker BF (2006) Small interfering RNAs containing full 2′-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. RNA 12:163–176

    Article  CAS  Google Scholar 

  74. Allerson CR, Sioufi N, Jarres R, Prakash TP, Naik N, Berdeja A, Wanders L, Griffey RH, Swayze EE, Bhat B (2005) Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 48:901–904

    Article  CAS  Google Scholar 

  75. Odadzic D, Bramsen JB, Smicius R, Bus C, Kjems J, Engels JW (2008) Synthesis of 2′-O-modified adenosine building blocks and application for RNA interference. Bioorg Med Chem 16:518–529

    Article  CAS  Google Scholar 

  76. Wengel J, Petersen M, Nielsen KE, Jensen GA, Hakansson AE, Kumar R, Sorensen MD, Rajwanshi VK, Bryld T, Jacobsen JP (2001) LNA (locked nucleic acid) and the diastereoisomeric alpha-L-LNA: conformational tuning and high-affinity recognition of DNA/RNA targets. Nucleosides Nucleotides Nucleic Acids 20:389–396

    Article  CAS  Google Scholar 

  77. Srivastava P, Barman J, Pathmasiri W, Plashkevych O, Wenska M, Chattopadhyaya J (2007) Five- and six-membered conformationally locked 2′,4′-carbocyclic ribo-thymidines: synthesis, structure, and biochemical studies. J Am Chem Soc 129:8362–8379

    Article  CAS  Google Scholar 

  78. Pradeepkumar PI, Amirkhanov NV, Chattopadhyaya J (2003) Antisense oligonuclotides with oxetane-constrained cytidine enhance heteroduplex stability, and elicit satisfactory RNase H response as well as showing improved resistance to both exo and endonucleases. Org Biomol Chem 1:81–92

    Article  CAS  Google Scholar 

  79. Elmén J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Ørum H, Koch T et al (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33:439–447

    Article  CAS  Google Scholar 

  80. Glud SZ, Bramsen JB, Dagnaes-Hansen F, Wengel J, Howard KA, Nyengaard JR, Kjems J (2009) Naked siLNA-mediated gene silencing of lung bronchoepithelium EGFP expression after intravenous administration. Oligonucleotides 19:163–168

    Article  CAS  Google Scholar 

  81. Mook OR, Baas F, de Wissel MB, Fluiter K (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 6:833–843

    Article  CAS  Google Scholar 

  82. Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74–81

    Article  CAS  Google Scholar 

  83. Dowler T, Bergeron D, Tedeschi AL, Paquet L, Ferrari N, Damha MJ (2006) Improvements in siRNA properties mediated by 2′-deoxy-2′-fluoro-beta-d-arabinonucleic acid (FANA). Nucleic Acids Res 34:1669–1675

    Article  CAS  Google Scholar 

  84. Fisher M, Abramov M, Van Aerschot A, Rozenski J, Dixit V, Juliano RL, Herdewijn P (2009) Biological effects of hexitol and altritol-modified siRNAs targeting B-Raf. Eur J Pharmacol 606:38–44

    Article  CAS  Google Scholar 

  85. Watts JK, Choubdar N, Sadalapure K, Robert F, Wahba AS, Pelletier J, Pinto BM, Damha MJ (2007) 2′-Fluoro-4′-thioarabino-modified oligonucleotides: conformational switches linked to siRNA activity. Nucleic Acids Res 35:1441–1451

    Article  CAS  Google Scholar 

  86. Fisher M, Abramov M, Van Aerschot A, Xu D, Juliano RL, Herdewijn P (2007) Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Res 35:1064–1074

    Article  CAS  Google Scholar 

  87. Nauwelaerts K, Fisher M, Froeyen M, Lescrinier E, Aerschot AV, Xu D, DeLong R, Kang H, Juliano RL, Herdewijn P (2007) Structural characterization and biological evaluation of small interfering RNAs containing cyclohexenyl nucleosides. J Am Chem Soc 129:9340–9348

    Article  CAS  Google Scholar 

  88. Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, Swayze EE, Griffey RH, Bhat B (2006) Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem 49:1624–1634

    Article  CAS  Google Scholar 

  89. Hoshika S, Minakawa N, Kamiya H, Harashima H, Matsuda A (2005) RNA interference induced by siRNAs modified with 4′-thioribonucleosides in cultured mammalian cells. FEBS Lett 579:3115–3118

    Article  CAS  Google Scholar 

  90. Hoshika S, Minakawa N, Shionoya A, Imada K, Ogawa N, Matsuda A (2007) Study of modification pattern-RNAi activity relationships by using siRNAs modified with 4′-thioribonucleosides. Chembiochem 8:2133–2138

    Article  CAS  Google Scholar 

  91. Langkjær N, Pasternak A, Wengel J (2009) UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability. Bioorg Med Chem 17:5420–5425

    Article  CAS  Google Scholar 

  92. Laursen MB, Pakula MM, Gao S, Fluiter K, Mook OR, Baas F, Langklaer N, Wengel SL, Wengel J, Kjems J et al (2010) Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol Biosyst 6:862–870

    Article  CAS  Google Scholar 

  93. Vaish N, Chen F, Seth S, Fosnaugh K, Liu Y, Adami R, Brown T, Chen Y, Harvie P, Johns R et al (2011) Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res 39:1823–1832

    Article  CAS  Google Scholar 

  94. Kenski DM, Cooper AJ, Li JJ, Willingham AT, Haringsma HJ, Young TA, Kuklin NA, Jones JJ, Cancilla MT, McMasters DR et al (2009) Analysis of acyclic nucleoside modifications in siRNAs finds sensitivity at position 1 that is restored by 5′-terminal phosphorylation both in vitro and in vivo. Nucleic Acids Res 38:660–671

    Article  CAS  Google Scholar 

  95. Bramsen JB, Pakula MM, Hansen TB, Bus C, Langkjaer N, Odadzic D, Smicius R, Wengel SL, Chattopadhyaya J, Engels JW et al (2010) A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res 38:5761–5773

    Article  CAS  Google Scholar 

  96. Peacock H, Kannan A, Beal PA, Burrows CJ (2011) Chemical modification of siRNA bases to probe and enhance RNA interference. J Org Chem 76:7295–7300

    Article  CAS  Google Scholar 

  97. Sipa K, Sochacka E, Kazmierczak-Baranska J, Maszewska M, Janicka M, Nowak G, Nawrot B (2007) Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. RNA 13:1301–1316

    Article  CAS  Google Scholar 

  98. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    Article  Google Scholar 

  99. Ladunga I (2007) More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature. Nucleic Acids Res 35:433–440

    Article  CAS  Google Scholar 

  100. Huesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, Warner J, Meloon B, Engel S, Rosenberg A, Cohen D et al (2005) Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol 23:995–1001

    Article  CAS  Google Scholar 

  101. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  CAS  Google Scholar 

  102. Shabalina SA, Spiridonov AN, Ogurtsov AY (2006) Computational models with thermodynamic and composition features improve siRNA design. BMC Bioinformatics 7:65

    Article  CAS  Google Scholar 

  103. Jagla B, Aulner N, Kelly PD, Song D, Volchuk A, Zatorski A, Shum D, Mayer T, De Angelis DA, Ouerfelli O et al (2005) Sequence characteristics of functional siRNAs. RNA 11:864–872

    Article  CAS  Google Scholar 

  104. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  CAS  Google Scholar 

  105. Li W, Cha L (2007) Predicting siRNA efficiency. Cell Mol Life Sci 64:1785–1792

    Article  CAS  Google Scholar 

  106. Deleavey GF, Watts JK, Alain T, Robert F, Kalota A, Aishwarya V, Pelletier J, Gewirtz AM, Sonenberg N, Damha MJ (2010) Synergistic effects between analogs of DNA and RNA improve the potency of siRNA-mediated gene silencing. Nucleic Acids Res 38(13):4547–4557

    Article  CAS  Google Scholar 

  107. Koller E, Propp S, Murray H, Lima W, Bhat B, Prakash TP, Allerson CR, Swayze EE, Marcusson EG, Dean NM (2006) Competition for RISC binding predicts in vitro potency of siRNA. Nucleic Acids Res 34:4467–4476

    Article  CAS  Google Scholar 

  108. Brown KM, Chu CY, Rana TM (2005) Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol 12:469–470

    Article  CAS  Google Scholar 

  109. Schubert S, Grunweller A, Erdmann VA, Kurreck J (2005) Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol 348:883–893

    Article  CAS  Google Scholar 

  110. Overhoff M, Alken M, Far RK, Lemaitre M, Lebleu B, Sczakiel G, Robbins I (2005) Local RNA target structure influences siRNA efficacy: a systematic global analysis. J Mol Biol 348:871–881

    Article  CAS  Google Scholar 

  111. Tafer H, Ameres SL, Obernosterer G, Gebeshuber CA, Schroeder R, Martinez J, Hofacker IL (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 26:578–583

    Article  CAS  Google Scholar 

  112. Shao Y, Chan CY, Maliyekkel A, Lawrence CE, Roninson IB, Ding Y (2007) Effect of target secondary structure on RNAi efficiency. RNA 13:1631–1640

    Article  CAS  Google Scholar 

  113. Yuan B, Latek R, Hossbach M, Tuschl T, Lewitter F (2004) siRNA selection server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res 32:W130–W134

    Article  CAS  Google Scholar 

  114. Holen T (2005) Mechanisms of RNAi: mRNA cleavage fragments may indicate stalled RISC. J RNAi Gene Silencing 1:21–25

    CAS  Google Scholar 

  115. Marin RM, Vanicek J (2011) Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res 39:19–29

    Article  CAS  Google Scholar 

  116. Chen PY, Weinmann L, Gaidatzis D, Pei Y, Zavolan M, Tuschl T, Meister G (2008) Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 14:263–274

    Article  CAS  Google Scholar 

  117. Ma JB, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429:318–322

    Article  CAS  Google Scholar 

  118. Ghosh P, Dullea R, Fischer JE, Turi TG, Sarver RW, Zhang C, Basu K, Das SK, Poland BW (2009) Comparing 2-nt 3′ overhangs against blunt-ended siRNAs: a systems biology based study. BMC Genomics 10(Suppl 1):S17

    Article  CAS  Google Scholar 

  119. Sano M, Sierant M, Miyagishi M, Nakanishi M, Takagi Y, Sutou S (2008) Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res 36:5812–5821

    Article  CAS  Google Scholar 

  120. Strapps WR, Pickering V, Muiru GT, Rice J, Orsborn S, Polisky BA, Sachs A, Bartz SR (2010) The siRNA sequence and guide strand overhangs are determinants of in vivo duration of silencing. Nucleic Acids Res 38:4788–4797

    Article  CAS  Google Scholar 

  121. Li ZY, Mao H, Kallick DA, Gorenstein DG (2005) The effects of thiophosphate substitutions on native siRNA gene silencing. Biochem Biophys Res Commun 329:1026–1030

    Article  CAS  Google Scholar 

  122. Petri S, Dueck A, Lehmann G, Putz N, Rudel S, Kremmer E, Meister G (2011) Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. RNA 17:737–749

    Article  CAS  Google Scholar 

  123. Gao S, Dagnaes-Hansen F, Nielsen EJ, Wengel J, Besenbacher F, Howard KA, Kjems J (2009) The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther 17:1225–1233

    Article  CAS  Google Scholar 

  124. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    Article  CAS  Google Scholar 

  125. Bartlett DW, Davis ME (2007) Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnol Bioeng 97:909–921

    Article  CAS  Google Scholar 

  126. Hoerter JA, Krishnan V, Lionberger TA, Walter NG (2011) siRNA-like double-stranded RNAs are specifically protected against degradation in human cell extract. PLoS One 6:e20359

    Article  CAS  Google Scholar 

  127. Song E, Lee SK, Dykxhoorn DM, Novina C, Zhang D, Crawford K, Cerny J, Sharp PA, Lieberman J, Manjunath N et al (2003) Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol 77:7174–7181

    Article  CAS  Google Scholar 

  128. Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA (2004) In vivo activity of nuclease-resistant siRNAs. RNA 10:766–771

    Article  CAS  Google Scholar 

  129. Heidel JD, Hu S, Liu XF, Triche TJ, Davis ME (2004) Lack of interferon response in animals to naked siRNAs. Nat Biotechnol 22:1579–1582

    Article  CAS  Google Scholar 

  130. Blidner RA, Hammer RP, Lopez MJ, Robinson SO, Monroe WT (2007) Fully 2′-deoxy-2′-fluoro substituted nucleic acids induce RNA interference in mammalian cell culture. Chem Biol Drug Des 70:113–122

    Article  CAS  Google Scholar 

  131. Volkov AA, Kruglova NS, Meschaninova MI, Venyaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL (2009) Selective protection of nuclease-sensitive sites in siRNA prolongs silencing effect. Oligonucleotides 19:191–202

    Article  CAS  Google Scholar 

  132. Turner JJ, Jones SW, Moschos SA, Lindsay MA, Gait MJ (2007) MALDI-TOF mass spectral analysis of siRNA degradation in serum confirms an RNAse A-like activity. Mol Biosyst 3:43–50

    Article  CAS  Google Scholar 

  133. Sorrentino S (1998) Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci 54:785–794

    Article  CAS  Google Scholar 

  134. Qiu L, Moreira A, Kaplan G, Levitz R, Wang JY, Xu C, Drlica K (1998) Degradation of hammerhead ribozymes by human ribonucleases. Mol Gen Genet 258:352–362

    Article  CAS  Google Scholar 

  135. Hefner E, Clark K, Whitman C, Behlke MA, Rose SD, Peek AS, Rubio T (2008) Increased potency and longevity of gene silencing using validated Dicer substrates. J Biomol Tech 19:231–237

    CAS  Google Scholar 

  136. Raemdonck K, Remaut K, Lucas B, Sanders NN, Demeester J, De Smedt SC (2006) In situ analysis of single-stranded and duplex siRNA integrity in living cells. Biochemistry 45:10614–10623

    Article  CAS  Google Scholar 

  137. Sioud M, Sorensen DR (2003) Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun 312:1220–1225

    Article  CAS  Google Scholar 

  138. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Article  CAS  Google Scholar 

  139. Sioud M (2006) Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uridines in immune responses. Eur J Immunol 36:1222–1230

    Article  CAS  Google Scholar 

  140. Fedorov Y, Anderson EM, Birmingham A, Reynolds A, Karpilow J, Robinson K, Leake D, Marshall WS, Khvorova A (2006) Off-target effects by siRNA can induce toxic phenotype. RNA 12(7):1188–1196

    Article  CAS  Google Scholar 

  141. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531

    Article  CAS  Google Scholar 

  142. Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, Reis e Sousa C (2006) Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol 36:3256–3267

    Article  CAS  Google Scholar 

  143. Gantier MP, Tong S, Behlke MA, Xu D, Phipps S, Foster PS, Williams BR (2008) TLR7 is involved in sequence-specific sensing of single-stranded RNAs in human macrophages. J Immunol 180:2117–2124

    CAS  Google Scholar 

  144. Judge AD, Bola G, Lee AC, MacLachlan I (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13:494–505

    Article  CAS  Google Scholar 

  145. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270

    Article  CAS  Google Scholar 

  146. Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  CAS  Google Scholar 

  147. Cekaite L, Furset G, Hovig E, Sioud M (2007) Gene expression analysis in blood cells in response to unmodified and 2′-modified siRNAs reveals TLR-dependent and independent effects. J Mol Biol 365:90–108

    Article  CAS  Google Scholar 

  148. Flatekval GF, Sioud M (2009) Modulation of dendritic cell maturation and function with mono- and bifunctional small interfering RNAs targeting indoleamine 2,3-dioxygenase. Immunology 128:e837–e848

    Article  Google Scholar 

  149. Robbins M, Judge A, Liang L, McClintock K, Yaworski E, MacLachlan I (2007) 2′-O-Methyl-modified RNAs act as TLR7 antagonists. Mol Ther 15:1663–1669

    Article  CAS  Google Scholar 

  150. Hamm S, Latz E, Hangel D, Muller T, Yu P, Golenbock D, Sparwasser T, Wagner H, Bauer S (2009) Alternating 2′-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology 215:559–569

    Article  CAS  Google Scholar 

  151. Goodchild A, Nopper N, King A, Doan T, Tanudji M, Arndt GM, Poidinger M, Rivory LP, Passioura T (2009) Sequence determinants of innate immune activation by short interfering RNAs. BMC Immunol 10:40

    Article  CAS  Google Scholar 

  152. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738

    Article  CAS  Google Scholar 

  153. Manche L, Green SR, Schmedt C, Mathews MB (1992) Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol 12:5238–5248

    CAS  Google Scholar 

  154. Zhang Z, Weinschenk T, Guo K, Schluesener HJ (2006) siRNA binding proteins of microglial cells: PKR is an unanticipated ligand. J Cell Biochem 97:1217–1229

    Article  CAS  Google Scholar 

  155. Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, Fujita T, Behlke MA, Williams BR (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 24:559–565

    Article  CAS  Google Scholar 

  156. Puthenveetil S, Whitby L, Ren J, Kelnar K, Krebs JF, Beal PA (2006) Controlling activation of the RNA-dependent protein kinase by siRNAs using site-specific chemical modification. Nucleic Acids Res 34:4900–4911

    Article  CAS  Google Scholar 

  157. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839

    Article  CAS  Google Scholar 

  158. Nallagatla SR, Bevilacqua PC (2008) Nucleoside modifications modulate activation of the protein kinase PKR in an RNA structure-specific manner. RNA 14:1201–1213

    Article  CAS  Google Scholar 

  159. Du Q, Thonberg H, Wang J, Wahlestedt C, Liang Z (2005) A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res 33:1671–1677

    Article  CAS  Google Scholar 

  160. Dahlgren C, Zhang HY, Du Q, Grahn M, Norstedt G, Wahlestedt C, Liang Z (2008) Analysis of siRNA specificity on targets with double-nucleotide mismatches. Nucleic Acids Res 36:e53

    Article  CAS  Google Scholar 

  161. Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J et al (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204

    Article  CAS  Google Scholar 

  162. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  Google Scholar 

  163. Lin X, Ruan X, Anderson MG, McDowell JA, Kroeger PE, Fesik SW, Shen Y (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33:4527–4535

    Article  CAS  Google Scholar 

  164. Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahashi F, Juni A, Saigo K (2008) Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res 36:2136–2151

    Article  CAS  Google Scholar 

  165. Clark PR, Pober JS, Kluger MS (2008) Knockdown of TNFR1 by the sense strand of an ICAM-1 siRNA: dissection of an off-target effect. Nucleic Acids Res 36:1081–1097

    Article  CAS  Google Scholar 

  166. Kretschmer-Kazemi Far R, Sczakiel G (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 31:4417–4424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper B. Bramsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bramsen, J.B., Kjems, J. (2013). Engineering Small Interfering RNAs by Strategic Chemical Modification. In: Taxman, D. (eds) siRNA Design. Methods in Molecular Biology, vol 942. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-119-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-119-6_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-118-9

  • Online ISBN: 978-1-62703-119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics