Skip to main content

RAGE-Mediated Cell Signaling

  • Protocol
  • First Online:
Calcium-Binding Proteins and RAGE

Part of the book series: Methods in Molecular Biology ((MIMB,volume 963))

Abstract

RAGE (receptor for advanced glycation end products) is a multi-ligand receptor that belongs to the immunoglobulin superfamily of transmembrane proteins. RAGE binds AGEs (advanced glycation end products), HMGB1 (high-mobility group box-1; also designated as amphoterin), members of the S100 protein family, glycosaminoglycans and amyloid β peptides. Recent studies using tools of structural biology have started to unravel common molecular patterns in the diverse set of ligands recognized by RAGE. The distal Ig domain (V1 domain) of RAGE has a positively charged patch, the geometry of which fits to anionic surfaces displayed at least in a proportion of RAGE ligands. Association of RAGE to itself, to HSPGs (heparan sulfate proteoglycans), and to Toll-like receptors in the cell membrane plays a key role in cell signaling initiated by RAGE ligation. Ligation of RAGE activates cell signaling pathways that regulate migration of several cell types. Furthermore, RAGE ligation has profound effects on the transcriptional profile of cells. RAGE signaling has been mainly studied as a pathogenetic factor of several diseases, where acute or chronic inflammation plays a role. Recent studies have suggested a physiological role for RAGE in normal lung function and in neuronal signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt AM, Vianna M, Gerlach M et al (1992) Isolation and characterization of 2 binding-proteins for advanced glycosylation end-products from bovine lung which are present on the endothelial-cell surface. J Biol Chem 267:14987–14997

    PubMed  CAS  Google Scholar 

  2. Sugaya K, Fukagawa T, Matsumoto K et al (1994) Three genes in the human MHC class-III region near the junction with the class-II—gene for receptor of advanced glycosylation end-products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary-tumor gene int-3. Genomics 23:408–419

    Article  PubMed  CAS  Google Scholar 

  3. Bowen MA, Patel DD, Li X et al (1995) Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. J Exp Med 181:2213–2220

    Article  PubMed  CAS  Google Scholar 

  4. Koch M, Chitayat S, Dattilo BM et al (2010) Structural basis for ligand recognition and activation of RAGE. Structure 18:1342–1352

    Article  PubMed  CAS  Google Scholar 

  5. Tsuji A, Wakisaka N, Kondo S et al (2008) Induction of receptor for advanced glycation end products by EBV latent membrane protein 1 and its correlation with angiogenesis and cervical lymph node metastasis in nasopharyngeal carcinoma. Clin Cancer Res 14:5368–5375

    Article  PubMed  CAS  Google Scholar 

  6. Pichiule P, Chavez JC, Schmidt AM et al (2007) Hypoxia-inducible factor-1 mediates neuronal expression of the receptor for advanced glycation end products following hypoxia/ischemia. J Biol Chem 282:36330–36340

    Article  PubMed  CAS  Google Scholar 

  7. Li JF, Schmidt AM (1997) Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 272:16498–16506

    Article  PubMed  CAS  Google Scholar 

  8. Reynolds PR, Kasteler SD, Cosio MG et al (2008) RAGE: developmental expression and positive feedback regulation by Egr-1 during cigarette smoke exposure in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 294:L1094–L1101

    Article  PubMed  CAS  Google Scholar 

  9. Tohgi H, Utsugisawa K, Nagane Y et al (1999) Decrease with age in methylcytosines in the promoter region of receptor for advanced glycated end products (RAGE) gene in autopsy human cortex. Brain Res Mol Brain Res 65:124–128

    Article  PubMed  CAS  Google Scholar 

  10. Caballero JJ, Girón MD, Vargas AM et al (2004) AU-rich elements in the mRNA 3’ -untranslated region of the rat receptor for advanced glycation end products and their relevance to mRNA stability. Biochem Biophys Res Commun 319:247–255

    Article  PubMed  CAS  Google Scholar 

  11. Shi SL, Yu LP, Chiu C et al (2008) Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 19:2159–2169

    Article  PubMed  CAS  Google Scholar 

  12. Hudson BI, Carter AM, Harja E et al (2008) Identification, classification, and expression of RAGE gene splice variants. FASEB J 22:1572–1580

    Article  PubMed  CAS  Google Scholar 

  13. Ohe K, Watanabe T, Harada S et al (2010) Regulation of alternative splicing of the receptor for advanced glycation endproducts (RAGE) through G-rich cis-elements and heterogenous nuclear ribonucleoprotein H. J Biochem 147:651–659

    Article  PubMed  CAS  Google Scholar 

  14. Neeper M, Schmidt AM, Brett J et al (1992) Cloning and expression of a cell-surface receptor for advanced glycosylation end-products of proteins. J Biol Chem 267:14998–15004

    PubMed  CAS  Google Scholar 

  15. Galichet A, Weibel M, Heizmann CW (2008) Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem Biophys Res Commun 370:1–5

    Article  PubMed  CAS  Google Scholar 

  16. Raucci A, Cugusi S, Antonelli A et al (2008) A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and ­metalloprotease 10 (ADAM10). FASEB J 22:3716–3727

    Article  PubMed  CAS  Google Scholar 

  17. Zhang L, Bukulin M, Kojro E et al (2008) Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J Biol Chem 283:35507–35516

    Article  PubMed  CAS  Google Scholar 

  18. Srikrishna G, Huttunen HJ, Johansson L et al (2002) N-glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth. J Neurochem 80:998–1008

    Article  PubMed  CAS  Google Scholar 

  19. Srikrishna G, Nayak J, Weigle B et al (2010) Carboxylated N-Glycans on RAGE promote S100A12 binding and signaling. J Cell Biochem 110:645–659

    Article  PubMed  CAS  Google Scholar 

  20. Turovskaya O, Foell D, Sinha P et al (2008) RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 29:2035–2043

    Article  PubMed  CAS  Google Scholar 

  21. Dattilo BM, Fritz G, Leclerc E et al (2007) The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry 46:6957–6970

    Article  PubMed  CAS  Google Scholar 

  22. Matsumoto S, Yoshida T, Murata H et al (2008) Solution structure of the variable-type domain of the receptor for advanced glycation end products: new insight into AGE-RAGE interaction. Biochemistry 47:12299–12311

    Article  PubMed  CAS  Google Scholar 

  23. Park H, Adsit FG, Boyington JC (2011) The 1.5 angstrom crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding (vol 285, pg 40762, 2010). J Biol Chem 286: 19178–19178

    Google Scholar 

  24. Sárkány Z, Ikonen TP, Ferreira-da-Silva F et al (2011) Solution structure of the soluble receptor for advanced glycation end products (sRAGE). J Biol Chem 286:37525–37534

    Article  PubMed  CAS  Google Scholar 

  25. Xie JJ, Reverdatto S, Frolov A et al (2008) Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J Biol Chem 283:27255–27269

    Article  PubMed  CAS  Google Scholar 

  26. Xue J, Rai V, Singer D et al (2011) Advanced glycation end product recognition by the receptor for AGEs. Structure 19:722–732

    Article  PubMed  CAS  Google Scholar 

  27. Fritz G (2011) RAGE: a single receptor fits multiple ligands. Trends Biochem Sci 36:625–632

    Article  PubMed  CAS  Google Scholar 

  28. Leclerc E, Sturchler E, Vetter SW et al (2009) Crosstalk between calcium, amyloid beta and the receptor for advanced glycation endproducts in Alzheimer’s disease. Rev Neurosci 20:95–110

    PubMed  CAS  Google Scholar 

  29. Xie J, Burz DS, He W et al (2007) Hexameric calgranulin C (S100A12) binds to the receptor for advanced glycated end products (RAGE) using symmetric hydrophobic target-binding patches. J Biol Chem 282:4218–4231

    Article  PubMed  CAS  Google Scholar 

  30. Ostendorp T, Leclerc E, Galichet A et al (2007) Structural and functional insights into RAGE activation by multimeric S100B. EMBO J 26:3868–3878

    Article  PubMed  CAS  Google Scholar 

  31. Ramasamy R, Yan SF, Schmidt AM (2009) RAGE: therapeutic target and biomarker of the inflammatory response-the evidence mounts. J Leukoc Biol 86:505–512

    Article  PubMed  CAS  Google Scholar 

  32. Hori O, Brett J, Slattery T et al (1995) The receptor for advanced glycation end-products (RAGE) is a cellular-binding site for amphoterin—mediation of neurite outgrowth and coexpression of rage and amphoterin in the developing nervous-system. J Biol Chem 270:25752–25761

    Article  PubMed  CAS  Google Scholar 

  33. Rauvala H, Pihlaskari R (1987) Isolation and some characteristics of an adhesive factor of brain that enhances neurite outgrowth in central neurons. J Biol Chem 262:16625–16635

    PubMed  CAS  Google Scholar 

  34. Bianchi ME, Beltrame M, Paonessa G (1989) Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243:1056–1059

    Article  PubMed  CAS  Google Scholar 

  35. Merenmies J, Pihlaskari R, Laitinen J et al (1991) 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth: amino acid sequence and localization in the filopodia of the advancing plasma membrane. J Biol Chem 266:16722–16729

    PubMed  CAS  Google Scholar 

  36. Rauvala H, Rouhiainen A (2010) Physiological and pathophysiological outcomes of the interactions of HMGB1 with cell surface receptors. Biochim Biophys Acta 1799:164–170

    Article  PubMed  CAS  Google Scholar 

  37. Rauvala H, Merenmies J, Pihlaskari R et al (1988) The adhesive and neurite-promoting molecule p30: analysis of the amino-terminal sequence and production of antipeptide antibodies that detect p30 at the surface of neuroblastoma cells and of brain neurons. J Cell Biol 107:2293–2305

    Article  PubMed  CAS  Google Scholar 

  38. Sunden-Cullberg J, Norrby-Teglund A, Rouhiainen A et al (2005) Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 33:564–573

    Article  PubMed  CAS  Google Scholar 

  39. Wang HC, Bloom O, Zhang MH et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    Article  PubMed  CAS  Google Scholar 

  40. Rouhiainen A, Kuja-Panula J, Wilkman E et al (2004) Regulation of monocyte migration by amphoterin (HMGB1). Blood 104:1174–1182

    Article  PubMed  CAS  Google Scholar 

  41. Fages C, Nolo R, Huttunen HJ et al (2000) Regulation of cell migration by amphoterin. J Cell Sci 113:611–620

    PubMed  CAS  Google Scholar 

  42. Parkkinen J, Raulo E, Merenmies J et al (1993) Amphoterin, the 30-kDa protein in a family of HMG1-type polypeptides: enhanced expression in transformed cells, leading edge localization and interactions with plasminogen activation. J Biol Chem 268:19726–19738

    PubMed  CAS  Google Scholar 

  43. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  PubMed  CAS  Google Scholar 

  44. Muller S, Ronfani L, Bianchi ME (2004) Regulated expression and subcellular ­localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med 255:332–343

    Article  PubMed  CAS  Google Scholar 

  45. Ulloa L, Messmer D (2006) High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 17:189–201

    Article  PubMed  CAS  Google Scholar 

  46. Bonaldi T, Talamo F, Scaffidi P et al (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22:5551–5560

    Article  PubMed  CAS  Google Scholar 

  47. Youn JH, Shin JS (2006) Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol 177:7889–7897

    PubMed  CAS  Google Scholar 

  48. Ito I, Fukazawa J, Yoshida M (2007) Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem 282:16336–16344

    Article  PubMed  CAS  Google Scholar 

  49. Ditsworth D, Zong WX, Thompson CB (2007) Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J Biol Chem 282:17845–17854

    Article  PubMed  CAS  Google Scholar 

  50. Dupont N, Jiang S, Pilli M et al (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J 30:4701–4711

    Article  PubMed  CAS  Google Scholar 

  51. Huttunen HJ, Fages C, Kuja-Panula J et al (2002) Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 62:4805–4811

    PubMed  CAS  Google Scholar 

  52. Huttunen HJ, Fages C, Rauvala H (1999) Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappa B require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 274:19919–19924

    Article  PubMed  CAS  Google Scholar 

  53. Rong LL, Trojaborg W, Qu W et al (2004) Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J 18:1812–1817

    Article  PubMed  CAS  Google Scholar 

  54. Rong LL, Yan SF, Wendt T et al (2004) RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways. FASEB J 18:1818–1825

    Article  PubMed  CAS  Google Scholar 

  55. Taguchi A, Blood DC, del Toro G et al (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354–360

    Article  PubMed  CAS  Google Scholar 

  56. Chavakis E, Hain A, Vinci M et al (2007) High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 100:204–212

    Article  PubMed  CAS  Google Scholar 

  57. Schlueter C, Weber H, Meyer B et al (2005) Angiogenetic signaling through hypoxia—HMGB1: an angiogenetic switch molecule. Am J Pathol 166:1259–1263

    Article  PubMed  CAS  Google Scholar 

  58. van Beijnum JR, Dings RP, van der Linden E et al (2006) Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108:2339–2348

    Article  PubMed  CAS  Google Scholar 

  59. Orlova VV, Choi EY, Xie CP et al (2007) A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 26:1129–1139

    Article  PubMed  CAS  Google Scholar 

  60. Dumitriu IE, Baruah P, Manfredi AA et al (2005) HMGB1: guiding immunity from within. Trends Immunol 26:381–387

    Article  PubMed  CAS  Google Scholar 

  61. Dumitriu IE, Bianchi ME, Bacci M et al (2007) The secretion of HMGB1 is required for the migration of maturing dendritic cells. J Leukoc Biol 81:84–91

    Article  PubMed  CAS  Google Scholar 

  62. Yang D, Chen Q, Yang H et al (2007) High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol 81:59–66

    Article  PubMed  CAS  Google Scholar 

  63. Porto A, Palumbo R, Pieroni M et al (2006) Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein. FASEB J 20:2565–2566

    Article  PubMed  CAS  Google Scholar 

  64. Germani A, Limana F, Capogrossi MC (2007) Pivotal advance: high-mobility group box 1 protein—a cytokine with a role in cardiac repair. J Leukoc Biol 81:41–45

    Article  PubMed  CAS  Google Scholar 

  65. Limana F, Germani A, Zacheo A et al (2005) Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac c-kit(+) cell proliferation and differentiation. Circ Res 97:E73–E83

    Article  PubMed  CAS  Google Scholar 

  66. Palumbo R, Sampaolesi M, De Marchis F et al (2004) Extracellular HMGB1, a signal of ­tissue damage, induces mesoangioblast ­migration and proliferation. J Cell Biol 164:441–449

    Article  PubMed  CAS  Google Scholar 

  67. Xu D, Young J, Song D et al (2011) Heparan sulfate is essential for high mobility group protein-1 (HMGB1) signaling by the receptor for advanced glycation end products (RAGE). J Biol Chem 268:41736–41744

    Article  CAS  Google Scholar 

  68. Leclerc E, Fritz G, Vetter SW et al (2009) Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 1793:993–1007

    Article  PubMed  CAS  Google Scholar 

  69. Hofmann MA, Drury S, Fu CF et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    Article  PubMed  CAS  Google Scholar 

  70. Leclerc E, Heizmann C (2011) The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine. Front Biosci S3:1232–1262

    Article  CAS  Google Scholar 

  71. Yan SD, Chen X, Fu J et al (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691

    Article  PubMed  CAS  Google Scholar 

  72. Deane R, Yan SD, Submamaryan RK et al (2003) RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 9:907–913

    Article  PubMed  CAS  Google Scholar 

  73. Sturchler E, Galichet A, Weibel M et al (2008) Site-specific blockade of RAGE-V-d prevents amyloid-beta oligomer neurotoxicity. J Neurosci 28:5149–5158

    Article  PubMed  CAS  Google Scholar 

  74. Bopp C, Bierhaus A, Hofer S et al (2008) Bench-to-bedside review: the inflammation-perpetuating pattern-recognition receptor RAGE as a therapeutic target in sepsis. Crit Care 12:201. doi:210.1186/cc6164

    Article  PubMed  Google Scholar 

  75. Banerjee S, Friggeri A, Liu G et al (2010) The C-terminal acidic tail is responsible for the inhibitory effects of HMGB1 on efferocytosis. J Leukoc Biol 88:973–979

    Article  PubMed  CAS  Google Scholar 

  76. Huttunen HJ, Rauvala H (2004) Amphoterin as an extracellular regulator of cell motility: from discovery to disease. J Intern Med 255:351–366

    Article  PubMed  CAS  Google Scholar 

  77. Gospodarska E, Kupniewska-Kozak A, Goch G et al (2011) Binding studies of truncated variants of the A beta peptide to the V-domain of the RAGE receptor reveal A beta residues responsible for binding. Biochim Biophys Acta 1814:592–609

    Article  PubMed  CAS  Google Scholar 

  78. Hudson BI, Kalea AZ, Arriero MD et al (2008) Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283:34457–34468

    Article  PubMed  CAS  Google Scholar 

  79. Ishihara K, Tsutsumi K, Kawane S et al (2003) The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett 550:107–113

    Article  PubMed  CAS  Google Scholar 

  80. Chavakis T, Bierhaus A, Al-Fakhri N et al (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198:1507–1515

    Article  PubMed  CAS  Google Scholar 

  81. Xiong F, Leonov S, Howard AC et al (2011) Receptor for advanced glycation end products (RAGE) prevents endothelial cell membrane resealing and regulates F-actin remodeling in a beta-catenin-dependent manner. J Biol Chem 286:35061–35070

    Article  PubMed  CAS  Google Scholar 

  82. Buckley ST, Medina C, Kasper M et al (2011) Interplay between RAGE, CD44, and focal adhesion molecules in epithelial-mesenchymal transition of alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 300:L548–L559

    Article  PubMed  CAS  Google Scholar 

  83. Lander HM, Tauras JM, Ogiste JS et al (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272:17810–17814

    Article  PubMed  CAS  Google Scholar 

  84. Sakaguchi M, Murata H, Yamamoto K et al (2011) TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS One 6. doi:10.1371/journal.pone.0023132

  85. Perrone L, Devi TS, Hosoya KI et al (2009) Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol 221:262–272

    Article  PubMed  CAS  Google Scholar 

  86. Bierhaus A, Humpert PM, Morcos M et al (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83:876–886

    Article  PubMed  CAS  Google Scholar 

  87. Schmidt AM, Yan SD, Yan SF et al (2000) The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta 1498:99–111

    Article  PubMed  CAS  Google Scholar 

  88. Raulo E, Chernousov MA, Carey DJ et al (1994) Isolation of a neuronal cell surface receptor of heparin binding growth-associated molecule (HB-GAM): identification as N-syndecan (syndecan-3). J Biol Chem 269:12999–13004

    PubMed  CAS  Google Scholar 

  89. Park JS, Svetkauskaite D, He QB et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  PubMed  CAS  Google Scholar 

  90. Rouhiainen A, Tumova S, Valmu L et al (2007) Pivotal advance: analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). J Leukoc Biol 81:49–58

    Article  PubMed  CAS  Google Scholar 

  91. Tian J, Avalos AM, Mao SY et al (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8:487–496

    Article  PubMed  CAS  Google Scholar 

  92. Yang H, Lundbäck P, Ottosson L et al (2011) Redox modification of cysteine residues regulates the cytokine activity of HMGB1. Mol Med. doi:10.2119/molmed.2011.00389, Epub ahead of print

  93. Yang HA, Hreggvidsdottir HS, Palmblad K et al (2010) A critical cysteine is required for HMGB1 binding to toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 107:11942–11947

    Article  PubMed  CAS  Google Scholar 

  94. Robinson MJ, Tessier P, Poulsom R et al (2002) The S100 family heterodimer, MRP-8/14, binds with high affinity to heparin and heparan sulfate glycosaminoglycans on endothelial cells. J Biol Chem 277:3658–3665

    Article  PubMed  CAS  Google Scholar 

  95. Sorci G, Giovannini G, Riuzzi F et al (2011) The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog 7:E1001315. doi:10.1371/journal.ppat.1001315

    Article  PubMed  CAS  Google Scholar 

  96. Stewart CR, Stuart LM, Wilkinson K et al (2010) CD36 ligands promote sterile inflammation through assembly of a toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155–161

    Article  PubMed  CAS  Google Scholar 

  97. Mazarati A, Maroso M, Iori V et al (2011) High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and receptor for advanced glycation end products. Exp Neurol 232:143–148

    Article  PubMed  CAS  Google Scholar 

  98. Yang H, Ochani M, Li JH et al (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A 101:296–301

    Article  PubMed  CAS  Google Scholar 

  99. Liliensiek B, Weigand MA, Bierhaus A et al (2004) Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 113:1641–1650

    PubMed  CAS  Google Scholar 

  100. Kim JB, Choi JS, Yu YM et al (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26:6413–6421

    Article  PubMed  CAS  Google Scholar 

  101. Liu K, Mori S, Takahashi HK et al (2007) Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J 21:3904–3916

    Article  PubMed  CAS  Google Scholar 

  102. Muhammad S, Barakat W, Stoyanov S et al (2008) The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 28:12023–12031

    Article  PubMed  CAS  Google Scholar 

  103. Naka Y, Bucciarelli LG, Wendt T et al (2004) RAGE axis—animal models and novel insights into the vascular complications of diabetes. Arterioscler Thromb Vasc Biol 24:1342–1349

    Article  PubMed  CAS  Google Scholar 

  104. Wautier JL, Schmidt AM (2004) Protein glycation—a firm link to endothelial cell dysfunction. Circ Res 95:233–238

    Article  PubMed  CAS  Google Scholar 

  105. Origlia N, Capsoni S, Cattaneo A et al (2009) A beta-dependent inhibition of LTP in ­different intracortical circuits of the visual cortex: the role of RAGE. J Alzheimers Dis 17:59–68

    PubMed  CAS  Google Scholar 

  106. Yan SS, Wu ZY, Zhang HP et al (2003) Suppression of experimental autoimmune encephalomyelitis by selective blockade of encephalitogenic T-cell infiltration of the central nervous system. Nat Med 9:287–293

    Article  PubMed  CAS  Google Scholar 

  107. Rauvala H, Huttunen HJ, Fages C et al (2000) Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility. Matrix Biol 19:377–387

    Article  PubMed  CAS  Google Scholar 

  108. Vakkila J, Lotze MT (2004) Opinion—inflammation and necrosis promote tumour growth. Nat Rev Immunol 4:641–648

    Article  PubMed  CAS  Google Scholar 

  109. Yonekura H, Yamamoto Y, Sakurai S et al (2005) Roles of the receptor for advanced glycation endproducts in diabetes-induced vascular injury. J Pharmacol Sci 97:305–311

    Article  PubMed  CAS  Google Scholar 

  110. Sakatani S, Yamada K, Homma C et al (2009) Deletion of RAGE causes hyperactivity and increased sensitivity to auditory stimuli in mice. PLoS One 4:E8309. doi:10.1371/journal.pone.0008309

    Article  PubMed  CAS  Google Scholar 

  111. Zhou Z, Immel D, Xi CX et al (2006) Regulation of osteoclast function and bone mass by RAGE. J Exp Med 203:1067–1080

    Article  PubMed  CAS  Google Scholar 

  112. Queisser MA, Kouri FM, Konigshoff M et al (2008) Loss of RAGE in pulmonary fibrosis—molecular relations to functional changes in pulmonary cell types. Am J Respir Cell Mol Biol 39:337–345

    Article  PubMed  CAS  Google Scholar 

  113. Hancock DB, Eijgelsheim M, Wilk JB et al (2010) Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 42:45–52

    Article  PubMed  CAS  Google Scholar 

  114. Repapi E, Sayers I, Wain LV et al (2010) Genome-wide association study identifies five loci associated with lung function. Nat Genet 42:36–44

    Article  PubMed  CAS  Google Scholar 

  115. Hudson BI, Stickland MH, Grant PJ (1998) Identification of polymorphisms in the receptor for advanced glycation end products (RAGE) gene—prevalence in type 2 diabetes and ethnic groups. Diabetes 47:1155–1157

    Article  PubMed  CAS  Google Scholar 

  116. Castaldi P, Cho M, Litonjua A et al (2011) The association of genome-wide significant spirometric loci with chronic obstructive pulmonary disease susceptibility. Am J Respir Cell Mol Biol 45:1147–1153

    Article  PubMed  CAS  Google Scholar 

  117. Schenk S, Schraml P, Bendik I et al (2001) A novel polymorphism in the promoter of the RAGE gene is associated with non-small cell lung cancer. Lung Cancer 32:7–12

    Article  PubMed  CAS  Google Scholar 

  118. Cunha C, Giovannini G, Pierini A et al (2011) Genetically-determined hyperfunction of the S100B/RAGE axis is a risk factor for aspergillosis in stem cell transplant recipients. PLoS One 6:e27962. doi:10.1371/journal.pone.0027962

    Article  PubMed  CAS  Google Scholar 

  119. Hudson BI, Stickland MH, Futers TS et al (2001) Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes 50:1505–1511

    Article  PubMed  CAS  Google Scholar 

  120. Forbes JM, Soderlund J, Yap FYT et al (2011) Receptor for advanced glycation end-products (RAGE) provides a link between genetic ­susceptibility and environmental factors in type 1 diabetes (vol 54, pg 1032, 2011). Diabetologia 54:1586–1587

    Article  Google Scholar 

  121. Kucukhuseyin O, Yilmaz-Aydogan H, Isbir C et al (2011) Is there any association between GLY82 ser polymorphism of rage gene and Turkish diabetic and non diabetic patients with coronary artery disease? Mol Biol Rep 39:4423–4428. doi:1007/s11033-011-1230-3, Epub ahead of print

    Article  PubMed  CAS  Google Scholar 

  122. Kumaramanickavel G, Ramprasad VL, Sripriya S et al (2002) Association of Gly82Ser polymorphism in the RAGE gene with diabetic retinopathy in type II diabetic Asian Indian patients. J Diabetes Complications 16:391–394

    Article  PubMed  Google Scholar 

  123. Laki J, Kiszel P, Vatay A et al (2007) The HLA 8.1 ancestral haplotype is strongly linked to the C allele of -429 T > C promoter polymorphism of receptor of the advanced glycation endproduct (RAGE) gene. Haplotype-independent association of the -429C allele with high hemoglobin(A1C) levels in diabetic patients. Mol Immunol 44:648–655

    Article  PubMed  CAS  Google Scholar 

  124. Prasad P, Tiwari AK, Kumar KMP et al (2010) Association analysis of ADPRT1, AKR1B1, RAGE, GFPT2 and PAI-1 gene polymorphisms with chronic renal insufficiency among Asian Indians with type-2 diabetes. BMC Med Genet 11:52. doi:10.1186/1471-2350-11-52

    Article  PubMed  CAS  Google Scholar 

  125. Prevost G, Fajardy I, Besmond C et al (2005) Polymorphisms of the receptor of advanced glycation endproducts (RAGE) and the development of nephropathy in type 1 diabetic patients. Diabetes Metab 31:35–39

    Article  PubMed  CAS  Google Scholar 

  126. Sullivan C, Futers T, Barrett J et al (2005) RAGE polymorphisms and the heritability of insulin resistance: the Leeds family study. Diab Vasc Dis Res 2:42–44

    Article  PubMed  Google Scholar 

  127. Balasubbu S, Sundaresan P, Rajendran A et al (2010) Association analysis of nine candidate gene polymorphisms in Indian patients with type 2 diabetic retinopathy. BMC Med Genet 11:158. doi:10.1186/1471-2350-11-158

    Article  PubMed  CAS  Google Scholar 

  128. Daborg J, von Otter M, Sjolander A et al (2010) Association of the RAGE G82S polymorphism with Alzheimer’s disease. J Neural Transm 117:861–867

    Article  PubMed  CAS  Google Scholar 

  129. Gao JX, Shao YH, Lai WY et al (2010) Association of polymorphisms in the RAGE gene with serum CRP levels and coronary artery disease in the Chinese Han population. J Hum Genet 55:668–675

    Article  PubMed  CAS  Google Scholar 

  130. Hofmann MA, Drury S, Hudson BI et al (2002) RAGE and arthritis: the G82S polymorphism amplifies the inflammatory response. Genes Immun 3:123–135

    Article  PubMed  CAS  Google Scholar 

  131. Kanková K, Záhejský J, Márová I et al (2001) Polymorphisms in the RAGE gene influence susceptibility to diabetes-associated microvascular dermatoses in NIDDM. J Diabetes Complications 15:185–192

    Article  PubMed  Google Scholar 

  132. Li K, Dai D, Zhao B et al (2010) Association between the RAGE G82S polymorphism and Alzheimer’s disease. J Neural Transm 117:97–104

    Article  PubMed  CAS  Google Scholar 

  133. Li KS, Zhao B, Dai DW et al (2011) A ­functional p. 82G > S polymorphism in the RAGE gene is associated with multiple sclerosis in the Chinese population. Mult Scler 17:914–921

    Article  PubMed  CAS  Google Scholar 

  134. Jang Y, Kim JY, Kang SM et al (2007) Association of the Gly82Ser polymorphism in the receptor for advanced glycation end products (RAGE) gene with circulating levels of soluble RAGE and inflammatory markers in nondiabetic and nonobese Koreans. Metabolism 56:199–205

    Article  PubMed  CAS  Google Scholar 

  135. Kim OY, Jo SH, Jang Y et al (2009) G allele at RAGE SNP82 is associated with proinflammatory markers in obese subjects. Nutr Res 29:106–113

    Article  PubMed  CAS  Google Scholar 

  136. Mokbel A, Rashid L, Al-Harizy R (2011) Decreased level of soluble receptors of advanced glycated end products (sRAGE) and glycine82serine (G82S) polymorphism in Egyptian patients with RA. The Egyptian Rheumatologist 33:53–60

    Article  CAS  Google Scholar 

  137. Boor P, Celec P, Klenovicsova K et al (2010) Association of biochemical parameters and RAGE gene polymorphisms in healthy infants and their mothers. Clin Chim Acta 411:1034–1040

    Article  PubMed  CAS  Google Scholar 

  138. Gaens KHJ, Ferreira I, van der Kallen CJH et al (2009) Association of polymorphism in the receptor for advanced glycation end ­products (RAGE) gene with circulating RAGE levels. J Clin Endocrinol Metab 94:5174–5180

    Article  PubMed  CAS  Google Scholar 

  139. Peng WH, Lu L, Wang LJ et al (2009) RAGE gene polymorphisms are associated with circulating levels of endogenous secretory RAGE but not with coronary artery disease in Chinese patients with type 2 diabetes mellitus. Arch Med Res 40:393–398

    Article  PubMed  CAS  Google Scholar 

  140. Lindström O, Tukiainen E, Kylänpää L et al (2009) Circulating levels of a soluble form of receptor for advanced glycation end products, and high-mobility group box chromosomal protein 1 in patients with acute pancreatitis. Pancreas 38:E215–E220

    Article  PubMed  CAS  Google Scholar 

  141. Caillier SJ, Briggs F, Cree BAC et al (2008) Uncoupling the roles of HLA-DRB1 and HLA-DRB5 genes in multiple sclerosis. J Immunol 181:5473–5480

    PubMed  CAS  Google Scholar 

  142. Kalea AZ, Schmidt AM, Hudson BI (2009) RAGE: a novel biological and genetic marker for vascular disease. Clin Sci 116:621–637

    Article  PubMed  CAS  Google Scholar 

  143. Lindholm E, Bakhtadze E, Cilio C et al (2008) Association between LTA. TNF and AGER polymorphisms and late diabetic complications. PLoS One 3:e2546. doi:10.1371/journal.pone.0002546

    Article  PubMed  CAS  Google Scholar 

  144. Zhao X, Kuja-Panula J, Rouhiainen A et al (2011) High mobility group box-1 (HMGB1; amphoterin) is required for zebrafish brain development. J Biol Chem 286:23200–23213

    Article  PubMed  CAS  Google Scholar 

  145. Suchankova P, Klang J, Cavanna C et al (2011) Is the Gly82Ser polymorphism in the RAGE gene relevant to schizophrenia and the personality trait psychoticism? J Psychiatry Neurosci 36. doi:10.1503/jpn.110024, Epub ahead of print

  146. Lu W, Feng B (2010) The -374A allele of the RAGE gene as a potential protective factor for vascular complications in type 2 diabetes: a meta-analysis. Tohoku J Exp Med 220:291–297

    Article  PubMed  CAS  Google Scholar 

  147. Raulo E, Tumova S, Pavlov I et al (2005) The two thrombospondin type I repeat domains of the heparin-binding growth-associated molecule bind to heparin/heparan sulfate and ­regulate neurite extension and plasticity in hippocampal neurons. J Biol Chem 280:41576–41583

    Article  PubMed  CAS  Google Scholar 

  148. Salmivirta M, Rauvala H, Elenius K et al (1992) Neurite growth-promoting protein (amphoterin, p30) binds syndecan. Exp Cell Res 200:444–451

    Article  PubMed  CAS  Google Scholar 

  149. Milev P, Chiba A, Häring M et al (1998) High affinity binding and overlapping localization of neurocan and phosphacan protein-tyrosine phosphatase-zeta/beta with tenascin-R, amphoterin, and the heparin-binding growth-associated molecule. J Biol Chem 273:6998–7005

    Article  PubMed  CAS  Google Scholar 

  150. Narindrasorasak S, Lowery D, Gonzalezdewhitt P et al (1991) High-affinity interactions between the alzheimers beta-amyloid precursor proteins and the basement-membrane form of heparan-sulfate proteoglycan. J Biol Chem 266:12878–12883

    PubMed  CAS  Google Scholar 

  151. Kanekiyo T, Zhang JA, Liu QA et al (2011) Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-beta uptake. J Neurosci 31:1644–1651

    Article  PubMed  CAS  Google Scholar 

  152. Johnson GB, Brunn GJ, Kodaira Y et al (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by toll-like receptor 4. J Immunol 168:5233–5239

    PubMed  CAS  Google Scholar 

  153. Schaefer L, Babelova A, Kiss E et al (2005) The matrix component biglycan is proinflammatory and signals through toll-like receptors 4 and 2 in macrophages. J Clin Invest 115:2223–2233

    Article  PubMed  CAS  Google Scholar 

  154. Popovic PJ, DeMarco R, Lotze MT et al (2006) High mobility group B1 protein suppresses the human plasmacytoid dendritic cell response to TLR9 agonists. J Immunol 177:8701–8707

    PubMed  CAS  Google Scholar 

  155. Iwami K, Matsuguchi T, Masuda A et al (2000) Cutting edge: naturally occurring soluble form of mouse toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol 165:6682–6686

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Rouhiainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rouhiainen, A., Kuja-Panula, J., Tumova, S., Rauvala, H. (2013). RAGE-Mediated Cell Signaling. In: Heizmann, C. (eds) Calcium-Binding Proteins and RAGE. Methods in Molecular Biology, vol 963. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-230-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-230-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-229-2

  • Online ISBN: 978-1-62703-230-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics