Skip to main content

Vascular Connexins in Restenosis After Balloon Injury

  • Protocol
  • First Online:
Wound Regeneration and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1037))

Abstract

Atherosclerosis is an arterial progressive disease characterized by accumulation of lipids, macrophages, T lymphocytes, and smooth muscle cells in large- and medium-sized arteries. Erosion and rupture of the atherosclerotic plaque may induce myocardial infarction and cerebrovascular accidents that are responsible for a large percentage of sudden death. Atherosclerosis is often treated by angioplasty generally followed by stent implantation. Although angioplasty and stent implantation are necessary for the survival of the patient, they induce a trauma in the vessel wall that favors a vascular reaction called restenosis and the associated de-endothelialization increases the risk of thrombosis. To study mechanisms involved in restenosis and thrombus formation, animal models have been developed. In this chapter, we describe the experimental model of balloon injury adapted for mice and apply it to study the role of Cx43 in this process. Connexins are members of a large family of transmembrane proteins that allow exchange of ions and small metabolites between cytosol and extracellular space or between neighboring cells. Connexins are important in vascular physiology, they support radial and longitudinal cell-to-cell communication in the vascular wall, and have been shown to modulate vascular pathologies such as atherosclerosis and hypertension. We also describe the various connexin-specific tools, for example, transgenic mice, blocking peptides, antisense, and siRNA, and their value in obtaining insight into the role of Cx43 in restenosis and thrombus formation after vascular injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolodgie FD, Narula J, Yuan C, Burke AP, Finn AV, Virmani R (2007) Elimination of neoangiogenesis for plaque stabilization: is there a role for local drug therapy? J Am Coll Cardiol 49:2093–2101

    Article  CAS  PubMed  Google Scholar 

  2. Yla-Herttuala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, Hoefer I, Jukema JW, Krams R, Kwak BR, Marx N, Naruszewicz M, Newby A, Pasterkamp G, Serruys PW, Waltenberger J, Weber C, Tokgozoglu L (2011) Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost 106:1–19

    Article  CAS  PubMed  Google Scholar 

  3. Ross R (1995) Cell biology of atherosclerosis. Annu Rev Physiol 57:791–804

    Article  CAS  PubMed  Google Scholar 

  4. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422

    Article  CAS  PubMed  Google Scholar 

  5. Libby P, Ridker PM, Hansson GK (2009) Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 54:2129–2138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  CAS  PubMed  Google Scholar 

  7. Libby P (2009) Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis. J Lipid Res 50:S352–S357

    Article  PubMed Central  PubMed  Google Scholar 

  8. Jackson SP (2011) Arterial thrombosis-insidious, unpredictable and deadly. Nat Med 17:1423–1436

    Article  CAS  PubMed  Google Scholar 

  9. Libby P (2008) The molecular mechanisms of the thrombotic complications of atherosclerosis. J Intern Med 263:517–527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dangas G, Kuepper F (2002) Cardiology patient page. Restenosis: repeat narrowing of a coronary artery: prevention and treatment. Circulation 105:2586–2587

    Article  PubMed  Google Scholar 

  11. Serruys PW, Luijten HE, Beatt KJ, Geuskens R, de Feyter PJ, van den Brand M, Reiber JH, ten Katen HJ, van Es GA, Hugenholtz PG (1988) Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 77:361–371

    Article  CAS  PubMed  Google Scholar 

  12. Newsome LT, Kutcher MA, Royster RL (2008) Coronary artery stents: Part I. Evolution of percutaneous coronary intervention. Anesth Analg 107:552–569

    Article  CAS  PubMed  Google Scholar 

  13. Matter CM, Ma L, von Lukowicz T, Meier P, Lohmann C, Zhang D, Kilic U, Hofmann E, Ha SW, Hersberger M, Hermann DM, Luscher TF (2006) Increased balloon-induced inflammation, proliferation, and neointima formation in apolipoprotein E (ApoE) knockout mice. Stroke 37:2625–2632

    Article  CAS  PubMed  Google Scholar 

  14. Chadjichristos CE, Matter CM, Roth I, Sutter E, Pelli G, Luscher TF, Chanson M, Kwak BR (2006) Reduced connexin43 expression limits neointima formation after balloon distension injury in hypercholesterolemic mice. Circulation 113:2835–2843

    Article  CAS  PubMed  Google Scholar 

  15. Morel S, Kwak BR (2012) Roles of connexins in atherosclerosis and ischemia-reperfusion injury. Curr Pharm Biotechnol 13(1):17–26

    Article  CAS  PubMed  Google Scholar 

  16. John S, Cesario D, Weiss JN (2003) Gap junctional hemichannels in the heart. Acta Physiol Scand 179:23–31

    Article  CAS  PubMed  Google Scholar 

  17. Derouette JP, Desplantez T, Wong CW, Roth I, Kwak BR, Weingart R (2009) Functional differences between human Cx37 polymorphic hemichannels. J Mol Cell Cardiol 46(4):499–507

    Article  CAS  PubMed  Google Scholar 

  18. Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294

    Article  CAS  PubMed  Google Scholar 

  19. Brisset AC, Isakson BE, Kwak BR (2009) Connexins in vascular physiology and pathology. Antioxid Redox Signal 11:267–282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Little TL, Beyer EC, Duling BR (1995) Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol 268:H729–H739

    CAS  PubMed  Google Scholar 

  21. Haefliger JA, Polikar R, Schnyder G, Burdet M, Sutter E, Pexieder T, Nicod P, Meda P (2000) Connexin37 in normal and pathological development of mouse heart and great arteries. Dev Dyn 218:331–344

    Article  CAS  PubMed  Google Scholar 

  22. Gabriels JE, Paul DL (1998) Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circ Res 83:636–643

    Article  CAS  PubMed  Google Scholar 

  23. Villar IC, Francis S, Webb A, Hobbs AJ, Ahluwalia A (2006) Novel aspects of endothelium-dependent regulation of vascular tone. Kidney Int 70:840–853

    Article  CAS  PubMed  Google Scholar 

  24. Bellien J, Thuillez C, Joannides R (2008) Contribution of endothelium-derived hyperpolarizing factors to the regulation of vascular tone in humans. Fundam Clin Pharmacol 22:363–377

    Article  CAS  PubMed  Google Scholar 

  25. de Wit C, Boettcher M, Schmidt VJ (2008) Signaling across myoendothelial gap junctions–fact or fiction? Cell Commun Adhes 15:231–245

    Article  PubMed  Google Scholar 

  26. Sandow SL, Haddock RE, Hill CE, Chadha PS, Kerr PM, Welsh DG, Plane F (2009) What’s where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp Pharmacol Physiol 36:67–76

    Article  CAS  PubMed  Google Scholar 

  27. Haefliger JA, Nicod P, Meda P (2004) Contribution of connexins to the function of the vascular wall. Cardiovasc Res 62:345–356

    Article  CAS  PubMed  Google Scholar 

  28. de Wit C, Hoepfl B, Wolfle SE (2006) Endothelial mediators and communication through vascular gap junctions. Biol Chem 387:3–9

    PubMed  Google Scholar 

  29. De Wit C (2004) Connexins pave the way for vascular communication. News Physiol Sci 19:148–153

    PubMed  Google Scholar 

  30. Segal SS (2005) Regulation of blood flow in the microcirculation. Microcirculation 12:33–45

    Article  PubMed  Google Scholar 

  31. Yeh HI, Lupu F, Dupont E, Severs NJ (1997) Upregulation of connexin43 gap junctions between smooth muscle cells after balloon catheter injury in the rat carotid artery. Arterioscler Thromb Vasc Biol 17:3174–3184

    Article  CAS  PubMed  Google Scholar 

  32. Polacek D, Bech F, McKinsey JF, Davies PF (1997) Connexin43 gene expression in the rabbit arterial wall: effects of hypercholesterolemia, balloon injury and their combination. J Vasc Res 34:19–30

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Chen J, Sun Y, Zhang F, Zhu J, Hu S, Wang DH (2005) Regulation of connexin expression after balloon injury: possible mechanisms for antiproliferative effect of statins. Am J Hypertens 18:1146–1153

    Article  PubMed  Google Scholar 

  34. Liao Y, Regan CP, Manabe I, Owens GK, Day KH, Damon DN, Duling BR (2007) Smooth muscle-targeted knockout of connexin43 enhances neointimal formation in response to vascular injury. Arterioscler Thromb Vasc Biol 27:1037–1042

    Article  CAS  PubMed  Google Scholar 

  35. Hao H, Ropraz P, Verin V, Camenzind E, Geinoz A, Pepper MS, Gabbiani G, Bochaton-Piallat ML (2002) Heterogeneity of smooth muscle cell populations cultured from pig coronary artery. Arterioscler Thromb Vasc Biol 22:1093–1099

    Article  CAS  PubMed  Google Scholar 

  36. Bochaton-Piallat ML, Ropraz P, Gabbiani F, Gabbiani G (1996) Phenotypic heterogeneity of rat arterial smooth muscle cell clones. Implications for the development of experimental intimal thickening. Arterioscler Thromb Vasc Biol 16:815–820

    Article  CAS  PubMed  Google Scholar 

  37. Chadjichristos CE, Morel S, Derouette JP, Sutter E, Roth I, Brisset AC, Bochaton-Piallat ML, Kwak BR (2008) Targeting connexin 43 prevents platelet-derived growth factor-BB-induced phenotypic change in porcine coronary artery smooth muscle cells. Circ Res 102:653–660

    Article  CAS  PubMed  Google Scholar 

  38. Song M, Yu X, Cui X, Zhu G, Zhao G, Chen J, Huang L (2009) Blockade of connexin 43 hemichannels reduces neointima formation after vascular injury by inhibiting proliferation and phenotypic modulation of smooth muscle cells. Exp Biol Med (Maywood) 234:1192–1200

    Article  CAS  Google Scholar 

  39. Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS (2009) Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 7:4

    Article  PubMed Central  PubMed  Google Scholar 

  40. Vinken M, Decrock E, De Vuyst E, Ponsaerts R, D’Hondt C, Bultynck G, Ceelen L, Vanhaecke T, Leybaert L, Rogiers V (2011) Connexins: sensors and regulators of cell cycling. Biochim Biophys Acta 1815:13–25

    CAS  PubMed  Google Scholar 

  41. Angelillo-Scherrer A, Fontana P, Burnier L, Roth I, Sugamele R, Brisset A, Morel S, Nolli S, Sutter E, Chassot A, Capron C, Borgel D, Saller F, Chanson M, Kwak BR (2011) Connexin 37 limits thrombus propensity by downregulating platelet reactivity. Circulation 124:930–939

    Article  CAS  PubMed  Google Scholar 

  42. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    Article  CAS  PubMed  Google Scholar 

  43. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 92:883–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Suo J, Ferrara DE, Sorescu D, Guldberg RE, Taylor WR, Giddens DP (2007) Hemodynamic shear stresses in mouse aortas: implications for atherogenesis. Arterioscler Thromb Vasc Biol 27:346–351

    Article  CAS  PubMed  Google Scholar 

  45. Hu W, Polinsky P, Sadoun E, Rosenfeld ME, Schwartz SM (2005) Atherosclerotic lesions in the common coronary arteries of ApoE knockout mice. Cardiovasc Pathol 14:120–125

    Article  CAS  PubMed  Google Scholar 

  46. Dobrowolski R, Willecke K (2009) Connexin-caused genetic diseases and corresponding mouse models. Antioxid Redox Signal 11:283–295

    Article  CAS  PubMed  Google Scholar 

  47. Simon AM, Goodenough DA, Paul DL (1998) Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block. Curr Biol 8:295–298

    Article  CAS  PubMed  Google Scholar 

  48. Kirchhoff S, Nelles E, Hagendorff A, Kruger O, Traub O, Willecke K (1998) Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Curr Biol 8:299–302

    Article  CAS  PubMed  Google Scholar 

  49. de Wit C, Roos F, Bolz SS, Pohl U (2003) Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genomics 13:169–177

    PubMed  Google Scholar 

  50. Simon AM, Goodenough DA, Li E, Paul DL (1997) Female infertility in mice lacking connexin 37. Nature 385:525–529

    Article  CAS  PubMed  Google Scholar 

  51. Fang JS, Angelov SN, Simon AM, Burt JM (2011) Cx37 deletion enhances vascular growth and facilitates ischemic limb recovery. Am J Physiol Heart Circ Physiol 301:H1872–H1881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Guerrero PA, Schuessler RB, Davis LM, Beyer EC, Johnson CM, Yamada KA, Saffitz JE (1997) Slow ventricular conduction in mice heterozygous for a connexin43 null mutation. J Clin Invest 99:1991–1998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kwak BR, Veillard N, Pelli G, Mulhaupt F, James RW, Chanson M, Mach F (2003) Reduced connexin43 expression inhibits atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice. Circulation 107:1033–1039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Maass K, Ghanem A, Kim JS, Saathoff M, Urschel S, Kirfel G, Grummer R, Kretz M, Lewalter T, Tiemann K, Winterhager E, Herzog V, Willecke K (2004) Defective epidermal barrier in neonatal mice lacking the C-terminal region of connexin43. Mol Biol Cell 15:4597–4608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Maass K, Chase SE, Lin X, Delmar M (2009) Cx43 CT domain influences infarct size and susceptibility to ventricular tachyarrhythmias in acute myocardial infarction. Cardiovasc Res 84:361–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Maass K, Shibayama J, Chase SE, Willecke K, Delmar M (2007) C-terminal truncation of connexin43 changes number, size, and localization of cardiac gap junction plaques. Circ Res 101:1283–1291

    Article  CAS  PubMed  Google Scholar 

  57. Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419:261–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Remo BF, Qu J, Volpicelli FM, Giovannone S, Shin D, Lader J, Liu FY, Zhang J, Lent DS, Morley GE, Fishman GI (2011) Phosphatase-resistant gap junctions inhibit pathological remodeling and prevent arrhythmias. Circ Res 108:1459–1466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Theis M, de Wit C, Schlaeger TM, Eckardt D, Kruger O, Doring B, Risau W, Deutsch U, Pohl U, Willecke K (2001) Endothelium-specific replacement of the connexin43 coding region by a lacZ reporter gene. Genesis 29:1–13

    Article  CAS  PubMed  Google Scholar 

  60. Chadjichristos CE, Scheckenbach KE, van Veen TA, Richani Sarieddine MZ, de Wit C, Yang Z, Roth I, Bacchetta M, Viswambharan H, Foglia B, Dudez T, van Kempen MJ, Coenjaerts FE, Miquerol L, Deutsch U, Jongsma HJ, Chanson M, Kwak BR (2010) Endothelial-specific deletion of connexin40 promotes atherosclerosis by increasing CD73-dependent leukocyte adhesion. Circulation 121:123–131

    Article  CAS  PubMed  Google Scholar 

  61. Regan CP, Manabe I, Owens GK (2000) Development of a smooth muscle-targeted cre recombinase mouse reveals novel insights regarding smooth muscle myosin heavy chain promoter regulation. Circ Res 87:363–369

    Article  CAS  PubMed  Google Scholar 

  62. Nguyen TD, Taffet SM (2009) A model system to study Connexin 43 in the immune system. Mol Immunol 46:2938–2946

    Article  CAS  PubMed  Google Scholar 

  63. Matter CM, Chadjichristos CE, Meier P, von Lukowicz T, Lohmann C, Schuler PK, Zhang D, Odermatt B, Hofmann E, Brunner T, Kwak BR, Luscher TF (2006) Role of endogenous Fas (CD95/Apo-1) ligand in balloon-induced apoptosis, inflammation, and neointima formation. Circulation 113:1879–1887

    Article  CAS  PubMed  Google Scholar 

  64. Takens-Kwak BR, Jongsma HJ, Rook MB, Van Ginneken AC (1992) Mechanism of heptanol-induced uncoupling of cardiac gap junctions: a perforated patch-clamp study. Am J Physiol 262:C1531–C1538

    CAS  PubMed  Google Scholar 

  65. Guan X, Cravatt BF, Ehring GR, Hall JE, Boger DL, Lerner RA, Gilula NB (1997) The sleep-inducing lipid oleamide deconvolutes gap junction communication and calcium wave transmission in glial cells. J Cell Biol 139:1785–1792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Guo Y, Martinez-Williams C, Gilbert KA, Rannels DE (1999) Inhibition of gap junction communication in alveolar epithelial cells by 18alpha-glycyrrhetinic acid. Am J Physiol 276:L1018–L1026

    CAS  PubMed  Google Scholar 

  67. Kwak BR, Jongsma HJ (1999) Selective inhibition of gap junction channel activity by synthetic peptides. J Physiol 516(3):679–685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Warner A, Clements DK, Parikh S, Evans WH, DeHaan RL (1995) Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. J Physiol 488(3):721–728

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Chaytor AT, Evans WH, Griffith TM (1997) Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J Physiol 503(1):99–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Griffith TM (2004) Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? Br J Pharmacol 141:881–903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Zahler S, Hoffmann A, Gloe T, Pohl U (2003) Gap-junctional coupling between neutrophils and endothelial cells: a novel modulator of transendothelial migration. J Leukoc Biol 73:118–126

    Article  CAS  PubMed  Google Scholar 

  72. Isakson BE, Duling BR (2005) Heterocellular contact at the myoendothelial junction influences gap junction organization. Circ Res 97:44–51

    Article  CAS  PubMed  Google Scholar 

  73. Evans WH, Leybaert L (2007) Mimetic peptides as blockers of connexin channel-facilitated intercellular communication. Cell Commun Adhes 14:265–273

    Article  CAS  PubMed  Google Scholar 

  74. Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR (2006) Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nat Med 12:950–954

    Article  CAS  PubMed  Google Scholar 

  75. Sarieddine MZ, Scheckenbach KL, Foglia B, Maass K, GarciaI KBR, Chanson M (2009) Connexin43 modulates neutrophil recruitment to the lung. J Cell Mol Med 13:4560–4570

    Article  CAS  PubMed  Google Scholar 

  76. Hunter AW, Barker RJ, Zhu C, Gourdie RG (2005) Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Mol Biol Cell 16:5686–5698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Gourdie RG, Ghatnekar GS, O’Quinn M, Rhett MJ, Barker RJ, Zhu C, Jourdan J, Hunter AW (2006) The unstoppable connexin43 carboxyl-terminus: new roles in gap junction organization and wound healing. Ann N Y Acad Sci 1080:49–62

    Article  CAS  PubMed  Google Scholar 

  78. Ghatnekar GS, O’Quinn MP, Jourdan LJ, Gurjarpadhye AA, Draughn RL, Gourdie RG (2009) Connexin43 carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding. Regen Med 4:205–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. O’Quinn MP, Palatinus JA, Harris BS, Hewett KW, Gourdie RG (2011) A peptide mimetic of the connexin43 carboxyl terminus reduces gap junction remodeling and induced arrhythmia following ventricular injury. Circ Res 108:704–715

    Article  PubMed Central  PubMed  Google Scholar 

  80. Qiu C, Coutinho P, Frank S, Franke S, Law LY, Martin P, Green CR, Becker DL (2003) Targeting connexin43 expression accelerates the rate of wound repair. Curr Biol 13:1697–1703

    Article  CAS  PubMed  Google Scholar 

  81. Coutinho P, Qiu C, Frank S, Wang CM, Brown T, Green CR, Becker DL (2005) Limiting burn extension by transient inhibition of Connexin43 expression at the site of injury. Br J Plast Surg 58:658–667

    Article  CAS  PubMed  Google Scholar 

  82. Mori R, Power KT, Wang CM, Martin P, Becker DL (2006) Acute downregulation of connexin43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration. J Cell Sci 119:5193–5203

    Article  CAS  PubMed  Google Scholar 

  83. Cronin M, Anderson PN, Cook JE, Green CR, Becker DL (2008) Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. Mol Cell Neurosci 39:152–160

    Article  CAS  PubMed  Google Scholar 

  84. Shao PL, Chiu CC, Yuen CM, Chua S, Chang LT, Sheu JJ, Sun CK, Wu CJ, Wang CJ, Yip HK (2010) Shock wave therapy effectively attenuates inflammation in rat carotid artery following endothelial denudation by balloon catheter. Cardiology 115:130–144

    Article  PubMed  Google Scholar 

  85. Nakano Y, Oyamada M, Dai P, Nakagami T, Kinoshita S, Takamatsu T (2008) Connexin43 knockdown accelerates wound healing but inhibits mesenchymal transition after corneal endothelial injury in vivo. Invest Ophthalmol Vis Sci 49:93–104

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Christos Chadjichristos, Marie-Luce Bochaton-Piallat, and Christian Matter for their valuable help with preparing the data shown in Figs. 1 and 3, as well as for helpful discussions. This work was supported by the Swiss National Science Foundation (310030–143343 to B.R.K.), the Foundations Novartis (to B.R.K.), Prevot (to S.M.), and Bangerter-Rhyner (to S.M.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Morel, S., Kwak, B.R. (2013). Vascular Connexins in Restenosis After Balloon Injury. In: Gourdie, R., Myers, T. (eds) Wound Regeneration and Repair. Methods in Molecular Biology, vol 1037. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-505-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-505-7_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-504-0

  • Online ISBN: 978-1-62703-505-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics