Skip to main content

Understanding Microglia–Neuron Cross Talk: Relevance of the Microglia–Neuron Cocultures

  • Protocol
  • First Online:
Microglia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1041))

Abstract

Microglia–neuron interaction is a complex process involving a plethora of ligands and receptors. The outcome of this intricate process will depend on the prevailing signals (i.e., whether the microglial cells will produce pro-inflammatory cytokines and/or phagocyte a dying neuron or whether it will produce neurotrophic factors and support neuronal growth, among other possible scenarios).

In order to study this complex process, several tools have been developed, ranging from in vivo models (knockout and knock-in mice, conditional transgenic mice, imaging techniques) to in vitro models (microglia–neuron cocultures, transwell cell cultures). Here we describe a protocol for primary microglia–neuron coculture. this coculture allows to combine neurons and microglial cells coming from wild-type and KO mice, making this coculture a useful method to study in vitro the interaction of different sets of ligand–receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang I, Han SJ, Kaur G, Crane C, Parsa AT (2010) The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 17:6–10

    Article  PubMed  Google Scholar 

  2. del Río-Hortega P (1919) El tercer elemento de los centros nerviosos. I La microglia en estado normal. II Intervención de la microglia en los procesos patológicos. III Naturaleza probable de la microglia. Bol de la Soc esp de biol 9:69–120

    Google Scholar 

  3. Graeber MB (2010) Changing face of microglia. Science 330:783–788

    Article  PubMed  CAS  Google Scholar 

  4. Ling EA, Wong WC (1993) The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 7:9–18

    Article  PubMed  CAS  Google Scholar 

  5. Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787

    Article  PubMed  CAS  Google Scholar 

  6. Barnham KJ, Cappai R, Beyreuther K, Masters CL, Hill AF (2006) Delineating common molecular mechanisms in Alzheimer’s and prion diseases. Trends Biochem Sci 31:465–472

    Article  PubMed  CAS  Google Scholar 

  7. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  PubMed  CAS  Google Scholar 

  8. Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101:249–255

    PubMed  CAS  Google Scholar 

  9. Olah M, Biber K, Vinet J, Boddeke HW (2011) Microglia phenotype diversity. CNS Neurol Disord Drug Targets 10:108–118

    Article  PubMed  CAS  Google Scholar 

  10. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  11. Kraft AD, McPherson CA, Harry GJ (2009) Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. Neurotoxicology 30:785–793

    Article  PubMed  CAS  Google Scholar 

  12. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  13. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  PubMed  CAS  Google Scholar 

  14. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  15. Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP (2000) Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 49:171–186

    Article  PubMed  CAS  Google Scholar 

  16. Barnum SR (2002) Complement in central nervous system inflammation. Immunol Res 26:7–13

    Article  PubMed  CAS  Google Scholar 

  17. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease–a double-edged sword. Neuron 35:419–432

    Article  PubMed  CAS  Google Scholar 

  18. Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300

    Article  PubMed  CAS  Google Scholar 

  19. Elward K, Gasque P (2003) “Eat me” and “don’t eat me” signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system. Mol Immunol 40:85–94

    Article  PubMed  CAS  Google Scholar 

  20. Matzinger P (2007) Friendly and dangerous signals: is the tissue in control? Nat Immunol 8:11–13

    Article  PubMed  CAS  Google Scholar 

  21. Franc NC, White K, Ezekowitz RA (1999) Phagocytosis and development: back to the future. Curr Opin Immunol 11:47–52

    Article  PubMed  CAS  Google Scholar 

  22. Gregory CD (2000) CD14-dependent clearance of apoptotic cells: relevance to the immune system. Curr Opin Immunol 12:27–34

    Article  PubMed  CAS  Google Scholar 

  23. Imler JL, Hoffmann JA (2002) Toll receptors in Drosophila: a family of molecules regulating development and immunity. Curr Top Microbiol Immunol 270:63–79

    Article  PubMed  CAS  Google Scholar 

  24. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    Article  PubMed  CAS  Google Scholar 

  25. Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169

    Article  PubMed  CAS  Google Scholar 

  26. Parnaik R, Raff MC, Scholes J (2000) Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 10:857–860

    Article  PubMed  CAS  Google Scholar 

  27. Griffiths M, Neal JW, Gasque P (2007) Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int Rev Neurobiol 82:29–55

    Article  PubMed  CAS  Google Scholar 

  28. Neumann H, Boucraut J, Hahnel C, Misgeld T, Wekerle H (1996) Neuronal control of MHC class II inducibility in rat astrocytes and microglia. Eur J Neurosci 8(12):2582–2590

    Article  PubMed  CAS  Google Scholar 

  29. McCluskey LP, Lampson LA (2000) Local neurochemicals and site-specific immune regulation in the CNS. J Neuropathol Exp Neurol 59:177–187

    PubMed  CAS  Google Scholar 

  30. Neumann H, Wekerle H (1998) Neuronal control of the immune response in the central nervous system: linking brain immunity to neurodegeneration. J Neuropathol Exp Neurol 57:1–9

    Article  PubMed  CAS  Google Scholar 

  31. Grimsley C, Ravichandran KS (2003) Cues for apoptotic cell engulfment: eat-me, don’t eat-me and come-get-me signals. Trends Cell Biol 13:648–656

    Article  PubMed  CAS  Google Scholar 

  32. Meri S, Pangburn MK (1990) Discrimination between activators and nonactivators of the alternative pathway of complement: regulation via a sialic acid/polyanion binding site on factor H. Proc Natl Acad Sci USA 87:3982–3986

    Article  PubMed  CAS  Google Scholar 

  33. Crocker PR (2005) Siglecs in innate immunity. Curr Opin Pharmacol 5:431–437

    Article  PubMed  CAS  Google Scholar 

  34. Angata T, Kerr SC, Greaves DR, Varki NM, Crocker PR, Varki A (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277:24466–24474

    Article  PubMed  CAS  Google Scholar 

  35. Linnartz B, Wang Y, Neumann H (2010) Microglial immunoreceptor tyrosine-based activation and inhibition motif signaling in neuroinflammation. Int J Alzheimers Dis 2010

    Google Scholar 

  36. Wang Y, Neumann H (2010) Alleviation of neurotoxicity by microglial human Siglec-11. J Neurosci 30:3482–3488

    Article  PubMed  CAS  Google Scholar 

  37. Barclay AN, Wright GJ, Brooke G, Brown MH (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23:285–290

    Article  PubMed  CAS  Google Scholar 

  38. Wright GJ, Jones M, Puklavec MJ, Brown MH, Barclay AN (2001) The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 102:173–179

    Article  PubMed  CAS  Google Scholar 

  39. Koning N, Swaab DF, Hoek RM, Huitinga I (2009) Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J Neuropathol Exp Neurol 68:159–167

    Article  PubMed  CAS  Google Scholar 

  40. Hernangómez M, Mestre L, Correa FG, Loría F, Mecha M, Íñigo PM, Docagne F, Williams RO, Borrell J, Guaza C (2012) CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia 60:1437–1450

    Article  PubMed  Google Scholar 

  41. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771

    Article  PubMed  CAS  Google Scholar 

  42. Gorczynski RM, Chen Z, Yu K, Hu J (2001) CD200 immunoadhesin suppresses collagen-induced arthritis in mice. Clin Immunol 101:328–334

    Article  PubMed  CAS  Google Scholar 

  43. de Vries HE, Hendriks JJ, Honing H, De Lavalette CR, van der Pol SM, Hooijberg E, Dijkstra CD, van den Berg TK (2002) Signal-regulatory protein alpha-CD47 interactions are required for the transmigration of monocytes across cerebral endothelium. J Immunol 168:5832–5839

    PubMed  Google Scholar 

  44. Brown EJ, Frazier WA (2001) Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11:130–135

    Article  PubMed  CAS  Google Scholar 

  45. Lyons A, Lynch AM, Downer EJ, Hanley R, O’Sullivan JB, Smith A, Lynch MA (2009) Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attenuates microglial activation in vivo and in vitro. J Neurochem 110(5):1547–1556

    Article  PubMed  CAS  Google Scholar 

  46. Schmid CD, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hilbush BS, Sutcliffe JG, Carson MJ. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem 83(6):1309–1320.

    Google Scholar 

  47. Bouchon A, Hernandez-Munain C, Cella M, Colonna M (2001) A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J Exp Med 194:1111–1122

    Article  PubMed  CAS  Google Scholar 

  48. Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH (1998) Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391:703–707

    Article  PubMed  CAS  Google Scholar 

  49. Ford JW, McVicar DW (2009) TREM and TREM-like receptors in inflammation and disease. Curr Opin Immunol 21:38–46

    Article  PubMed  CAS  Google Scholar 

  50. Colonna M (2003) DAP12 signaling: from immune cells to bone modeling and brain myelination. J Clin Invest 111:313–314

    PubMed  CAS  Google Scholar 

  51. Chouery E, Delague V, Bergougnoux A, Koussa S, Serre JL, Megarbane A (2008) Mutations in TREM2 lead to pure early-onset dementia without bone cysts. Hum Mutat 29:E194–E204

    Article  PubMed  Google Scholar 

  52. Paloneva J, Kestila M, Wu J, Salminen A, Bohling T, Ruotsalainen V, Hakola P, Bakker AB, Phillips JH, Pekkarinen P, Lanier LL, Timonen T, Peltonen L (2000) Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet 25:357–361

    Article  PubMed  CAS  Google Scholar 

  53. Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P (2007) Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 37:1290–1301

    Article  PubMed  CAS  Google Scholar 

  54. Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, Rinker J, Naismith RT, Panina-Bordignon P, Passini N, Galimberti D, Scarpini E, Colonna M, Cross AH (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131:3081–3091

    Article  PubMed  Google Scholar 

  55. Hsieh CL, Koike M, Spusta SC, Niemi EC, Yenari M, Nakamura MC, Seaman WE (2009) A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem 109:1144–1156

    Article  PubMed  CAS  Google Scholar 

  56. Barrow AD, Trowsdale J (2006) You say ITAM and I say ITIM, let’s call the whole thing off: the ambiguity of immunoreceptor signalling. Eur J Immunol 36:1646–1653

    Article  PubMed  CAS  Google Scholar 

  57. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and microglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902

    Article  PubMed  CAS  Google Scholar 

  58. Mecha M, Íñigo PM, Mestre L, Hernangómez M, Borrell J, Guaza C (2011) An easy and fast way to obtain a high number of glial cells from rat cerebral tissue: a beginners approach. Protocol Exchange. doi:10.1038/protex.2011.218

    Google Scholar 

  59. Rose K, Goldberg MP, Choi DW (1993) Cytotoxicity in murine neocortical cell culture. In: Tyson CA, Frazier JM (eds) Methods in neurotoxicology. Academic, San Diego, pp 46–60

    Google Scholar 

  60. Loría F, Petrosino S, Hernangómez M, Mestre L, Spagnolo A, Correa F, Di Marzo V, Docagne F, Guaza C (2010) An endocannabinoid tone limits excitotoxicity in vitro and in a model of multiple sclerosis. Neurobiol Dis 37(1):166–176

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank to REEM (Red Española de Esclerosis Múltiple) RD07/0060/0010, Instituto de Salud Carlos III, and Plan Nacional, SAF 2010/17501, Ministerio de Economía y Competitividad for financial support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Correa, F.G., Hernangómez, M., Guaza, C. (2013). Understanding Microglia–Neuron Cross Talk: Relevance of the Microglia–Neuron Cocultures. In: Joseph, B., Venero, J. (eds) Microglia. Methods in Molecular Biology, vol 1041. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-520-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-520-0_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-519-4

  • Online ISBN: 978-1-62703-520-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics