Skip to main content

Protocols for Lysine Conjugation

  • Protocol
  • First Online:
Book cover Antibody-Drug Conjugates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1045))

Abstract

Currently, the most widely used chemical methodology for the conjugation of drugs to monoclonal antibodies involves either lysine or cysteine residues. In this chapter, several methods for the preparation of antibody–drug conjugates (ADCs) through conjugation of drugs to solvent-exposed ε-amino groups of lysine residues are described. These methods apply to various cytotoxic agents, both tubulin binders and DNA-targeting agents and different types of linkers, cleavable or not, peptidic or disulfide-based, for example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Traut RR, Bollen A, Sun T-T, Hershey WB, Sundberg J, Pierce LR (1973) Methyl 4-mercaptobutyrimidate as a cleavable cross-linking reagent and its application to Escherichia coli 30S ribosome. Biochemistry 12:3266–3273

    Article  PubMed  CAS  Google Scholar 

  2. Wilbur DS (1992) Radiohalogenation of proteins: an overview of radionuclides, labeling methods, and reagents for conjugate labeling. Bioconjugate Chem 3:433–470

    Article  CAS  Google Scholar 

  3. Wang L, Amphlett G, Blättler WA, Lambert JM, Zhang W (2005) Structural characterization of the maytansinoid-monoclonal antibody conjugate, huN901-DM1, by mass spectroscopy. Protein Sci 14:2436–2446

    Article  PubMed  CAS  Google Scholar 

  4. Jobbagy A, Kiraly K (1966) Chemical characterization of fluorescein isothiocyanate–protein conjugates. Biochim Biophys Acta 124:166

    Article  PubMed  CAS  Google Scholar 

  5. Chen Q, Sowa D, Gabathuler R (2004) The use of isocyanate linkers to make hydrolyzable active agent biopolymer conjugates. WO2004/008101

    Google Scholar 

  6. Wilbur DS, Chyan M-K, Nakamae H, Chen Y, Hamlin DK, Santos EB, Kornblit BT, Sandmaier BM (2012) Reagents for astatination of biomolecules. 6. An intact antibody conjugated with a maleimido-closo-decaborate(2-) reagent via sulfhydryl groups had considerably higher kidney concentrations than the same antibody conjugated with an isothiocyanato-closo-decaborate(2-) reagent via lysine amines. Bioconjugate Chem 23:409–420

    Article  CAS  Google Scholar 

  7. Gavrilyuk JI, Wuellner U, Barbas CF III (2009) β-Lactam-based approach for the chemical programming of aldolase antibody 38C2. Bioorg Med Chem Lett 19:1421–1424

    Article  PubMed  CAS  Google Scholar 

  8. Gavrilyuk JI, Wuellner U, Salahuddin S, Goswami RK, Sinha SC, Barbas CF III (2009) An efficient chemical approach to bispecific antibodies and antibodies of high valency. Bioorg Med Chem Lett 19:3716–3720

    Article  PubMed  CAS  Google Scholar 

  9. Tietze LF, Goerlach A, Beller M (1988) Glycosidation, X. Synthesis of glycoconjugates of acetal-glycosides with lysine and tripeptides for selective cancer therapy. Liebigs Ann Chem 565–577

    Google Scholar 

  10. Mier W, Hoffend J, Krämer S, Schuhmacher J, Hull WE, Eisenhut M, Haberkorn U (2005) Conjugation of DOTA using isolated phenolic active esters: the labeling and biodistribution of albumin as blood pool marker. Bioconjugate Chem 16:237–240

    Article  CAS  Google Scholar 

  11. Singh R, Kovtun Y, Wilhelm SD, Chari R (2010) Potent conjugates and hydrophilic linkers. WO2010/126551

    Google Scholar 

  12. Bouchard H, Commerçon A, Fromond C, Mikol V, Parker F, Sassoon I, Tavares D (2011) New maytansinoids and the use of said maytansinoids to prepare conjugates with an antibody. WO2011/039721

    Google Scholar 

  13. Bouchard H, Chari RVJ, Commerçon A, Deng Y (2009) Cytotoxic agents comprising new tomaymycin derivatives and their therapeutic use. WO2009/016516

    Google Scholar 

  14. Li W, Fishkin NE, Zhao RY, Miller ML, Chari RVJ (2010) Novel benzodiazepine derivatives. WO2010/091150

    Google Scholar 

  15. Commerçon A, Gauzy-Lazo L (2011) Conjugates of pyrrolo[1,4]benzodiazepine dimers as anticancer agents. WO2011/023883

    Google Scholar 

  16. Hinman LM, Hamann PR, Wallace R, Menendez AT, Durr FE, Upeslacis J (1993) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53:3336–3342

    PubMed  CAS  Google Scholar 

  17. Hamann PR, Hinman LM, Beyer CF, Lindh D, Upeslacis J, Flowers DA, Bernstein I (2002) An anti-CD33 antibody−calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjugate Chem 13:40–46

    Article  CAS  Google Scholar 

  18. Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W, Tsou H-R, Upeslacis J, Shochat D, Mountain A, Flowers DA, Bernstein I (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjugate Chem 13:47–58

    Article  CAS  Google Scholar 

  19. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Elaine Mai E, Blättler WA, Lambert JM, Chari RVJ, Lutz RJ, Wong WLT, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX (2008) Targeting HER2-positive breast cancer with Trastuzumab-DM1, an antibody–cytotoxic drug conjugate. Cancer Res 68:9280–9290

    Google Scholar 

  20. Gauzy L, Zhao R, Deng Y, Li W, Bouchard H, Chari RVJ, Commerçon A (2007) Cytotoxic agents comprising new tomaymycin derivatives and their therapeutic use. WO2007/085930

    Google Scholar 

  21. Chari RVJ, Zhao RY, Kovtun Y, Singh R, Widdison WC (2009) Cross-linkers and their uses. WO2009/134977

    Google Scholar 

  22. Singh R, Kovtun Y, Wilhelm SD, Chari RVJ (2009) Potent conjugates and hydrophilic linkers. WO2009/134976

    Google Scholar 

  23. Zhao RY, Wilhelm SD, Audette C, Jones G, Leece BA, Lazar AC, Goldmacher VS, Singh R, Kovtun Y, Widdison WC, Lambert JM, Chari RVJ (2011) Synthesis and evaluation of hydrophilic linkers for antibody maytansinoid conjugates. J Med Chem 54:3606–3623

    Article  PubMed  CAS  Google Scholar 

  24. Steeves R, Lutz R, Chari R, Xie H, Kovtun Y (2005) Method of targeting specific cell populations using cell-binding agent maytansinoids conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates. WO2005/037992

    Google Scholar 

  25. Chari RVJ, Widdison WC (2004) Cytotoxic agents comprising new maytansinoids. US2004/0235840

    Google Scholar 

  26. Widdison WC, Wilhelm SD, Cavanagh EE, Whiteman KR, Leece BA, Kovtun Y, Goldmacher VS, Xie H, Steeves RM, Lutz RJ, Zhao R, Wang L, Blättler WA, Chari RVJ (2006) Semisynthetic maytansine analogues for the targeted treatment of cancer. J Med Chem 49:4392–4408

    Article  PubMed  CAS  Google Scholar 

  27. Lambert JM (2010) Antibody-maytansinoid conjugates: a new strategy for the treatment of cancer. Drugs Future 35:471–480

    CAS  Google Scholar 

  28. Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JL (2011) SAR3419: an anti-CD19-maytansinoid immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res 17:6448–6458

    Article  PubMed  CAS  Google Scholar 

  29. Bouchard H, Brun M-P, Commerçon A, Zhang J (2011) Novel conjugates, preparation thereof, and therapeutic use thereof. WO2011/001052

    Google Scholar 

  30. Widdison WC (2004) Cross-linkers with high reactivity and solubility and their use in the preparation of conjugates for targeted delivery of small molecule drugs. WO2004/016801

    Google Scholar 

  31. Kellogg BA, Garrett L, Kovtun Y, Lai KC, Leece B, Miller M, Payne G, Steeves R, Whiteman KR, Widdison W, Xie H, Singh R, Chari RVJ, Lambert JM, Lutz RJ (2011) Disulfide-linked antibody−maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bionconjugate Chem 22:717–727

    Article  CAS  Google Scholar 

  32. Carroll SF, Goff DA (1990) Hindered linking agents and methods. WO1990/06774

    Google Scholar 

  33. King DJ, Terrett JA, Gangwar S, Cardarelli JM, Raonaik C, Pan C (2009) Conjugates of anti-RG1 antibodies. WO2009/073524

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brun, MP., Gauzy-Lazo, L. (2013). Protocols for Lysine Conjugation. In: Ducry, L. (eds) Antibody-Drug Conjugates. Methods in Molecular Biology, vol 1045. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-541-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-541-5_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-540-8

  • Online ISBN: 978-1-62703-541-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics