Skip to main content

Virtual Pulmonary Valve Replacement Interventions with a Personalised Cardiac Electromechanical Model

  • Chapter
  • First Online:
Recent Advances in the 3D Physiological Human

Abstract

Pulmonary valve replacement (PVR) is a pivotal treatment for patients who suffer from chronic pulmonary valve regurgitation s. Two PVR techniques are becoming prevalent: a minimally invasive approach and an open-heart surgery with direct right ventricle volume reduction. However, there is no common agreement about the postoperative outcomes of these PVR techniques and choosing the right therapy for a specific patient remains a clinical challenge. We explore in this chapter how image processing algorithms, electromechanical models of the heart and real-time surgical simulation platforms can be adapted and combined together to perform patient-specific simulations of these two PVR therapies. We propose a framework where (1) an electromechanical model of the heart is personalised from clinical MR images and used to simulate the effects of PVR upon the cardiac function and (2) volume reduction surgery is simulated in real time by interactively cutting, moving and joining parts of the anatomical model. The framework is tested on a young patient. The results are promising and suggest that such advanced biomedical technologies may help in decision support and surgery planning for PVR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. CGAL. http://www.cgal.org

  2. GHS3D. http://www-c.inria.fr/gamma/ghs3d/ghs.php

  3. SOFA. http://www.sofa-framework.org

  4. Allard J, Cotin S, Faure F, Bensoussan PJ, Poyer F, Duriez C, Delingette H, Grisoni L (2007) SOFA – An Open Source Framework for Medical Simulation. In: Medicine Meets Virtual Reality (MMVR’15)

    Google Scholar 

  5. André B, Delingette H (2008) Versatile design of changing mesh topologies for surgery simulation. In: International Symposium on Computational Models for Biomedical Simulation – (ISBMS08), pp. 147–156, Springer

    Google Scholar 

  6. Arts T, Costa KD, Covell JW, McCulloch AD (2001) Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am J Physiol Heart Circ Physiol 280(5):2222–2229

    Google Scholar 

  7. Bestel J, Clément F, Sorine M (2001) A biomechanical model of muscle contraction. In: Proc. MICCAI 2001, pp. 1159–1161, Springer

    Google Scholar 

  8. Hunter PJ, Pullan AJ, Smaill BH (2003) Modeling total heart function. Annu Rev Biomed Eng 5:147–177

    Article  Google Scholar 

  9. Kaus MR, von Berg J, Weese J, Niessen W, Pekar V (2004) Automated segmentation of the left ventricle in cardiac MRI. Med Image Anal 8(3):245–254

    Article  Google Scholar 

  10. Keener J, Sneyd J (1998) Mathematical Physiology. Springer-Verlag

    Google Scholar 

  11. Khambadkone S, Coats L, Taylor A, Boudjemline Y, Derrick G, Tsang V, Cooper J, Muthurangu V, Hegde SR, Razavi RS, Pellerin D, Deanfield J, Bonhoeffer P (2005) Percutaneous pulmonary valve implantation in humans: Results in 59 consecutive patients. Circulation 112(8):1189–1197

    Article  Google Scholar 

  12. Lorenzo-Valdes M, Sanchez-Ortiz GI, Elkington AG, Mohiaddin RH, Rueckert D (2004) Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Med Image Anal 8(3):255–265

    Article  Google Scholar 

  13. McCulloch A, Bassingthwaighte J, Hunter P, Noble D (1998) Computational biology of the heart: from structure to function. Prog Biophys Mol Biol 69(2–3):153–5

    Google Scholar 

  14. Montagnat J, Delingette H (2005) 4D deformable models with temporal constraints: application to 4D cardiac image segmentation. Med Image Anal 9(1):87–100

    Article  Google Scholar 

  15. Nesme M, Payan Y, Faure F (2005) Efficient, physically plausible finite elements. In: J Dingliana, F Ganovelli (eds.) Eurographics (short papers), pp. 77–80

    Google Scholar 

  16. del Nido PJ (2006) Surgical management of right ventricular dysfunction late after repair of tetralogy of Fallot: Right ventricular remodeling surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 9(1):29–34

    Article  Google Scholar 

  17. Redington AN, Rigby ML, Shinebourne EA, Oldershaw PJ (1990) Changes in the pressure–volume relation of the right ventricle when its loading conditions are modified. Br Heart J 63(1):45–49

    Article  Google Scholar 

  18. Sermesant M, Delingette H, Ayache N (2006) An electromechanical model of the heart for image analysis and simulation. IEEE TMI 25(5):612–625

    Google Scholar 

  19. Sermesant M, Konukoglu E, Delingette H, Coudière Y, Chinchapatnam P, Rhode K, Razavi R, Ayache N (2007) An anisotropic multi-front fast marching method for real-time simulation of cardiac electrophysiology. In: Proc. FIMH 2007, pp. 160–169, Springer

    Google Scholar 

  20. Stergiopulos N, Westerhof BE, Westerhof N (1999) Total arterial inertance as the fourth element of the windkessel model. Am J Phys Heart Circ Phys 276(1):81–88

    Google Scholar 

  21. Tang D, Yang C, Geva, T, del Nido PJ (2007) Patient-specific virtual surgery for right ventricle volume reduction and patch design using MRI-based 3D FSI RV/LV/patch models. In: Proc. CME 2007, pp. 157–162

    Google Scholar 

  22. Turk G, O’Brien J (1999) Variational implicit surfaces. Tech. rep., Georgia Institute of Technology

    Google Scholar 

  23. Vercauteren T, Pennec X, Perchant A, Ayache N (2007) Non-parametric diffeomorphic image registration with the demons algorithm. In: Proc. MICCAI 2007, pp. 319–326, Springer

    Google Scholar 

  24. Wong KCL, Wang L, Zhang H, Liu H, Shi P (2007) Integrating functional and structural images for simultaneous cardiac segmentation and deformation recovery. In: Proc. MICCAI 2007, vol. 4791, pp. 270–277, Springer, Berlin/Heidelberg

    Google Scholar 

  25. Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2007) Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features. In: Proc. ICCV 2007, pp. 1–8

    Google Scholar 

Download references

Acknowledgments

This work has been partly funded by the European Commission through the IST-2004-027749 Health-e-Child Integrated Project (http://www.health-e-child.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Mansi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Mansi, T. et al. (2009). Virtual Pulmonary Valve Replacement Interventions with a Personalised Cardiac Electromechanical Model. In: Magnenat-Thalmann, N., Zhang, J., Feng, D. (eds) Recent Advances in the 3D Physiological Human. Springer, London. https://doi.org/10.1007/978-1-84882-565-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-565-9_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-564-2

  • Online ISBN: 978-1-84882-565-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics