Skip to main content

Lipid Metabolism and Signaling in Platelet Function

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1127))

Abstract

Modern society has changed its diet composition, transitioning to a higher intake of saturated fat with a 50% increase of cardiovascular risk (CVD). Within the context of increased CVD, there is an induction of a prothrombotic phenotype mainly due to increased platelet reactivity as well as decreased platelet response to inhibitors. Platelets maintain haemostasis through both blood components and endothelial cells that secrete inhibitory or stimulatory molecules to regulate thrombus formation. There exist a correlation between platelets’ polyunsaturated fatty acid (PUFA) and the increase in platelet reactivity. The aim of this chapter is to review the metabolism of the main PUFAs involved in platelet function associated with the role that their enzyme-derived oxidized metabolites exert in platelet function and fate. Finally, how lipid metabolism in the organism affect platelet aggregation and activation and the pharmacological modulation of these processes will also be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Popkin BM, Adair LS, Ng SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70(1):3–21

    Article  PubMed  Google Scholar 

  2. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645

    Article  CAS  PubMed  Google Scholar 

  3. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874

    Article  CAS  PubMed  Google Scholar 

  4. Berger S, Raman G, Vishwanathan R, Jacques PF, Johnson EJ (2015) Dietary cholesterol and cardiovascular disease: a systematic review and meta-analysis. Am J Clin Nutr 102(2):276–294

    Article  CAS  PubMed  Google Scholar 

  5. Berger M, Wraith K, Woodward C, Aburima A, Raslan Z, Hindle MS et al (2018) Dyslipidemia-associated atherogenic oxidized lipids induce platelet hyperactivity through phospholipase Cgamma2-dependent reactive oxygen species generation. Platelets:1–6

    Google Scholar 

  6. Carvalho AC, Colman RW, Lees RS (1974) Platelet function in hyperlipoproteinemia. N Engl J Med 290(8):434–438

    Article  CAS  PubMed  Google Scholar 

  7. Podrez EA, Byzova TV, Febbraio M, Salomon RG, Ma Y, Valiyaveettil M et al (2007) Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 13(9):1086–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Colas R, Sassolas A, Guichardant M, Cugnet-Anceau C, Moret M, Moulin P et al (2011) LDL from obese patients with the metabolic syndrome show increased lipid peroxidation and activate platelets. Diabetologia 54(11):2931–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Massberg S, Gawaz M, Gruner S, Schulte V, Konrad I, Zohlnhofer D et al (2003) A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J Exp Med 197(1):41–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Savage B, Saldivar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84(2):289–297

    Article  CAS  PubMed  Google Scholar 

  11. Mancuso ME, Santagostino E (2017) Platelets: much more than bricks in a breached wall. Br J Haematol 178(2):209–219

    Article  PubMed  Google Scholar 

  12. Akkerman JW (2008) From low-density lipoprotein to platelet activation. Int J Biochem Cell Biol 40(11):2374–2378

    Article  CAS  PubMed  Google Scholar 

  13. Coller BS (2011) Historical perspective and future directions in platelet research. J Thromb Haemost 9(Suppl 1):374–395

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brash AR (2001) Arachidonic acid as a bioactive molecule. J Clin Invest 107(11):1339–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Das UN (2018) Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: a review. J Adv Res 11:43–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Das UN (2018) Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: a review. J Adv Res 11:57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanna VS, Hafez EAA (2018) Synopsis of arachidonic acid metabolism: a review. J Adv Res 11:23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsai IJ, Croft KD, Puddey IB, Beilin LJ, Barden A (2011) 20-Hydroxyeicosatetraenoic acid synthesis is increased in human neutrophils and platelets by angiotensin II and endothelin-1. Am J Physiol Heart Circ Physiol 300(4):H1194–H1200

    Article  CAS  PubMed  Google Scholar 

  19. Neufeld EJ, Majerus PW (1983) Arachidonate release and phosphatidic acid turnover in stimulated human platelets. J Biol Chem 258(4):2461–2467

    CAS  PubMed  Google Scholar 

  20. Davi G, Patrono C (2007) Platelet activation and Atherothrombosis. N Engl J Med 357(24):2482–2494

    Article  CAS  PubMed  Google Scholar 

  21. Holinstat M, Boutaud O, Apopa PL, Vesci J, Bala M, Oates JA et al (2011) Protease-activated receptor signaling in platelets activates cytosolic phospholipase A2alpha differently for cyclooxygenase-1 and 12-lipoxygenase catalysis. Arterioscler Thromb Vasc Biol 31(2):435–442

    Article  CAS  PubMed  Google Scholar 

  22. Maskrey BH, Bermudez-Fajardo A, Morgan AH, Stewart-Jones E, Dioszeghy V, Taylor GW et al (2007) Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. J Biol Chem 282(28):20151–20163

    Article  CAS  PubMed  Google Scholar 

  23. Thomas CP, Morgan LT, Maskrey BH, Murphy RC, Kuhn H, Hazen SL et al (2010) Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem 285(10):6891–6903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dana R, Leto TL, Malech HL, Levy R (1998) Essential requirement of cytosolic phospholipase A2 for activation of the phagocyte NADPH oxidase. J Biol Chem 273(1):441–445

    Article  CAS  PubMed  Google Scholar 

  25. Han C, Demetris AJ, Michalopoulos G, Shelhamer JH, Wu T (2002) 85-kDa cPLA(2) plays a critical role in PPAR-mediated gene transcription in human hepatoma cells. Am J Physiol Gastrointest Liver Physiol 282(4):586–597

    Article  Google Scholar 

  26. Hurt-Camejo E, Camejo G, Peilot H, Oorni K, Kovanen P (2001) Phospholipase A(2) in vascular disease. CircRes 89(4):298–304

    CAS  Google Scholar 

  27. Das UN (2018) Ageing: is there a role for arachidonic acid and other bioactive lipids? A review. J Adv Res 11:67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baldassare JJ, Henderson PA, Burns D, Loomis C, Fisher GJ (1992) Translocation of protein kinase C isozymes in thrombin-stimulated human platelets. Correlation with 1,2-diacylglycerol levels. J Biol Chem 267(22):15585–15590

    CAS  PubMed  Google Scholar 

  29. Kolesnick RN, Hemer MR (1990) Physiologic 1,2-diacylglycerol levels induce protein kinase C- independent translocation of a regulatory enzyme. J Biol Chem 265(19):10900–10904

    CAS  PubMed  Google Scholar 

  30. Yamamoto Y, Kambayashi Y, Ito T, Watanabe K, Nakano M (1997) 1,2-diacylglycerol hydroperoxides induce the generation and release of superoxide anion from human polymorphonuclear leukocytes. FEBS Lett 412(3):461–464

    Article  PubMed  Google Scholar 

  31. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    Article  CAS  PubMed  Google Scholar 

  32. Ikei KN, Yeung J, Apopa PL, Ceja J, Vesci J, Holman TR et al (2012) Investigations of human platelet-type 12-lipoxygenase: role of lipoxygenase products in platelet activation. J Lipid Res 53(12):2546–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS, Lanzo CA (1999) Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J Biol Chem 274(33):22903–22906

    Article  CAS  PubMed  Google Scholar 

  34. Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D (2005) Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev 57(2):217–252

    Article  CAS  PubMed  Google Scholar 

  35. Murphy RC, Gijon MA (2007) Biosynthesis and metabolism of leukotrienes. Biochem J 405(3):379–395

    Article  CAS  PubMed  Google Scholar 

  36. Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, Villela CG, Fierro IM (2005) Novel lipid mediator aspirin-triggered lipoxin A4 induces heme oxygenase-1 in endothelial cells. Am J Physiol Cell Physiol 289(3):C557–C563

    Article  CAS  PubMed  Google Scholar 

  37. O’Donnell VB, Maskrey B, Taylor GW (2009) Eicosanoids: generation and detection in mammalian cells. Methods Mol Biol 462:5–23

    PubMed  Google Scholar 

  38. Jennings LK (2009) Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost 102(2):248–257

    CAS  PubMed  Google Scholar 

  39. O’Donnell VB, Coles B, Lewis MJ, Crews BC, Marnett LJ, Freeman BA (2000) Catalytic consumption of nitric oxide by prostaglandin H synthase-1 regulates platelet function. J Biol Chem 275(49):38239–38244

    Article  PubMed  Google Scholar 

  40. Trostchansky A, Bonilla L, Thomas CP, O’Donnell VB, Marnett LJ, Radi R et al (2011) Nitroarachidonic acid, a novel peroxidase inhibitor of prostaglandin endoperoxide H synthases 1 and 2. J Biol Chem 286(15):12891–12900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kirkby NS, Reed DM, Edin ML, Rauzi F, Mataragka S, Vojnovic I et al (2015) Inherited human group IVA cytosolic phospholipase A2 deficiency abolishes platelet, endothelial, and leucocyte eicosanoid generation. FASEB J Off Publ Fed Am Soc Exp Biol 29(11):4568–4578

    CAS  Google Scholar 

  42. Rauzi F, Kirkby NS, Edin ML, Whiteford J, Zeldin DC, Mitchell JA et al (2016) Aspirin inhibits the production of proangiogenic 15(S)-HETE by platelet cyclooxygenase-1. FASEB J Off Publ Fed Am Soc Exp Biol 30(12):4256–4266

    CAS  Google Scholar 

  43. Marnett LJ (2002) Recent developments in cyclooxygenase inhibition. Prostaglandins Other Lipid Mediat 68-69:153–164

    Article  CAS  PubMed  Google Scholar 

  44. Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274(34):23679–23682

    Article  CAS  PubMed  Google Scholar 

  45. Kalgutkar AS, Crews BC, Rowlinson SW, Garner C, Seibert K, Marnett LJ (1998) Aspirin-like molecules that covalently inactivate cyclooxygenase-2. Science 280(5367):1268–1270

    Article  CAS  PubMed  Google Scholar 

  46. Kalgutkar AS, Kozak KR, Crews BC, Hochgesang GP Jr, Marnett LJ (1998) Covalent modification of cyclooxygenase-2 (COX-2) by 2-acetoxyphenyl alkyl sulfides, a new class of selective COX-2 inactivators. J Med Chem 41(24):4800–4818

    Article  CAS  PubMed  Google Scholar 

  47. Bonilla L, O’Donnell VB, Clark SR, Rubbo H, Trostchansky A (2013) Regulation of protein kinase C by nitroarachidonic acid: impact on human platelet activation. Arch Biochem Biophys 533(1–2):55–61

    Article  CAS  PubMed  Google Scholar 

  48. Rouzer CA, Marnett LJ (2008) Non-redundant functions of cyclooxygenases: oxygenation of endocannabinoids. J Biol Chem 283(13):8065–8069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maskrey BH, Rushworth GF, Law MH, Treweeke AT, Wei J, Leslie SJ et al (2014) 12-hydroxyeicosatetraenoic acid is associated with variability in aspirin-induced platelet inhibition. J Inflamm 11(1):33

    Article  CAS  Google Scholar 

  50. Porro B, Songia P, Squellerio I, Tremoli E, Cavalca V (2014) Analysis, physiological and clinical significance of 12-HETE: a neglected platelet-derived 12-lipoxygenase product. J Chromatogr B Analyt Technol Biomed Life Sci 964:26–40

    Article  CAS  PubMed  Google Scholar 

  51. Midgett C, Stitham J, Martin K, Hwa J (2011) Prostacyclin receptor regulation--from transcription to trafficking. Curr Mol Med 11(7):517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stitham J, Midgett C, Martin KA, Hwa J (2011) Prostacyclin: an inflammatory paradox. Front Pharmacol 2:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gimenez-Bastida JA, Boeglin WE, Boutaud O, Malkowski MG, Schneider C (2018) Residual cyclooxygenase activity of aspirin-acetylated COX-2 forms 15 R-prostaglandins that inhibit platelet aggregation. FASEB J Off Publ Fed Am Soc Exp Biol:fj201801018R

    Google Scholar 

  54. Schuligoi R, Schmidt R, Geisslinger G, Kollroser M, Peskar BA, Heinemann A (2007) PGD2 metabolism in plasma: kinetics and relationship with bioactivity on DP1 and CRTH2 receptors. Biochem Pharmacol 74(1):107–117

    Article  CAS  PubMed  Google Scholar 

  55. Deeb RS, Upmacis RK, Lamon BD, Gross SS, Hajjar DP (2008) Maintaining equilibrium by selective targeting of cyclooxygenase pathways: promising offensives against vascular injury. Hypertension 51(1):1–7

    Article  CAS  PubMed  Google Scholar 

  56. Petrucci G, De Cristofaro R, Rutella S, Ranelletti FO, Pocaterra D, Lancellotti S et al (2011) Prostaglandin E2 differentially modulates human platelet function through the prostanoid EP2 and EP3 receptors. J Pharmacol Exp Ther 336(2):391–402

    Article  CAS  PubMed  Google Scholar 

  57. Glenn JR, White AE, Iyu D, Heptinstall S (2012) PGE(2) reverses G(s)-mediated inhibition of platelet aggregation by interaction with EP3 receptors, but adds to non-G(s)-mediated inhibition of platelet aggregation by interaction with EP4 receptors. Platelets 23(5):344–351

    Article  CAS  PubMed  Google Scholar 

  58. Friedman EA, Ogletree ML, Haddad EV, Boutaud O (2015) Understanding the role of prostaglandin E2 in regulating human platelet activity in health and disease. Thromb Res 136(3):493–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kauskot A, Hoylaerts MF (2012) Platelet receptors. In: Handbook of experimental pharmacology, vol 210. Springer-Verlag, Berlin Heidelberg, pp 23–57

    Google Scholar 

  60. Whittle BJ, Silverstein AM, Mottola DM, Clapp LH (2012) Binding and activity of the prostacyclin receptor (IP) agonists, treprostinil and iloprost, at human prostanoid receptors: treprostinil is a potent DP1 and EP2 agonist. Biochem Pharmacol 84(1):68–75

    Article  CAS  PubMed  Google Scholar 

  61. Gross S, Tilly P, Hentsch D, Vonesch JL, Fabre JE (2007) Vascular wall-produced prostaglandin E2 exacerbates arterial thrombosis and atherothrombosis through platelet EP3 receptors. J Exp Med 204(2):311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trostchansky A, O’Donnell VB, Goodwin DC, Landino LM, Marnett LJ, Radi R et al (2007) Interactions between nitric oxide and peroxynitrite during prostaglandin endoperoxide H synthase-1 catalysis: a free radical mechanism of inactivation. Free Radic Biol Med 42(7):1029–1038

    Article  CAS  PubMed  Google Scholar 

  63. Trostchansky A, Souza JM, Ferreira A, Ferrari M, Blanco F, Trujillo M et al (2007) Synthesis, isomer characterization, and anti-inflammatory properties of nitroarachidonate. Biochemistry 46(15):4645–4653

    Article  CAS  PubMed  Google Scholar 

  64. O’Donnell VB, Eiserich JP, Chumley PH, Jablonsky MJ, Krishna NR, Kirk M et al (1999) Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion. Chem Res Toxicol 12(1):83–92

    Article  PubMed  Google Scholar 

  65. Trostchansky A, Rubbo H (2008) Nitrated fatty acids: mechanisms of formation, chemical characterization, and biological properties. Free Radic Biol Med 44(11):1887–1896

    Article  CAS  PubMed  Google Scholar 

  66. Koenig W, Karakas M, Zierer A, Herder C, Baumert J, Meisinger C et al (2011) Oxidized LDL and the risk of coronary heart disease: results from the MONICA/KORA Augsburg study. Clin Chem 57(8):1196–1200

    Article  CAS  PubMed  Google Scholar 

  67. Di Pietro N, Formoso G, Pandolfi A (2016) Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vasc Pharmacol 84:1–7

    Article  CAS  Google Scholar 

  68. Wang W, Hein TW, Zhang C, Zawieja DC, Liao JC, Kuo L (2011) Oxidized low-density lipoprotein inhibits nitric oxide-mediated coronary arteriolar dilation by up-regulating endothelial arginase I. Microcirculation 18(1):36–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pirillo A, Norata GD, Catapano AL (2013) LOX-1, OxLDL, and atherosclerosis. Mediat Inflamm 2013:152786

    Article  CAS  Google Scholar 

  70. Hackeng CM, Franke B, Relou IA, Gorter G, Bos JL, van Rijn HJ et al (2000) Low-density lipoprotein activates the small GTPases Rap1 and Ral in human platelets. Biochem J 349(Pt 1):231–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Valiyaveettil M, Kar N, Ashraf MZ, Byzova TV, Febbraio M, Podrez EA (2008) Oxidized high-density lipoprotein inhibits platelet activation and aggregation via scavenger receptor BI. Blood 111(4):1962–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma Y, Ashraf MZ, Podrez EA (2010) Scavenger receptor BI modulates platelet reactivity and thrombosis in dyslipidemia. Blood 116(11):1932–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Korporaal SJ, Meurs I, Hauer AD, Hildebrand RB, Hoekstra M, Cate HT et al (2011) Deletion of the high-density lipoprotein receptor scavenger receptor BI in mice modulates thrombosis susceptibility and indirectly affects platelet function by elevation of plasma free cholesterol. Arterioscler Thromb Vasc Biol 31(1):34–42

    Article  CAS  PubMed  Google Scholar 

  74. Biswas S, Zimman A, Gao D, Byzova TV, Podrez EA (2017) TLR2 plays a key role in platelet Hyperreactivity and accelerated thrombosis associated with hyperlipidemia. Circ Res 121(8):951–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Assinger A, Koller F, Schmid W, Zellner M, Koller E, Volf I (2010) Hypochlorite-oxidized LDL induces intraplatelet ROS formation and surface exposure of CD40L--a prominent role of CD36. Atherosclerosis 213(1):129–134

    Article  CAS  PubMed  Google Scholar 

  76. Silverstein RL, Nachman RL (1987) Thrombospondin binds to monocytes-macrophages and mediates platelet-monocyte adhesion. J Clin Invest 79(3):867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Simantov R, Febbraio M, Silverstein RL (2005) The antiangiogenic effect of thrombospondin-2 is mediated by CD36 and modulated by histidine-rich glycoprotein. Matrix Biol 24(1):27–34

    Article  CAS  PubMed  Google Scholar 

  78. Podrez EA, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M et al (2002) Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem 277(41):38503–38516

    Article  CAS  PubMed  Google Scholar 

  79. Chen K, Febbraio M, Li W, Silverstein RL (2008) A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein. Circ Res 102(12):1512–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nergiz-Unal R, Lamers MM, Van Kruchten R, Luiken JJ, Cosemans JM, Glatz JF et al (2011) Signaling role of CD36 in platelet activation and thrombus formation on immobilized thrombospondin or oxidized low-density lipoprotein. J Thromb Haemost 9(9):1835–1846

    Article  CAS  PubMed  Google Scholar 

  81. Stellos K, Sauter R, Fahrleitner M, Grimm J, Stakos D, Emschermann F et al (2012) Binding of oxidized low-density lipoprotein on circulating platelets is increased in patients with acute coronary syndromes and induces platelet adhesion to vascular wall in vivo--brief report. Arterioscler Thromb Vasc Biol 32(8):2017–2020

    Article  CAS  PubMed  Google Scholar 

  82. Aviram M, Dankner G, Brook JG (1990) Platelet secretory products increase low density lipoprotein oxidation, enhance its uptake by macrophages, and reduce its fluidity. Arteriosclerosis 10(4):559–563

    Article  CAS  PubMed  Google Scholar 

  83. Blache D, Gautier T, Tietge UJ, Lagrost L (2012) Activated platelets contribute to oxidized low-density lipoproteins and dysfunctional high-density lipoproteins through a phospholipase A2-dependent mechanism. FASEB J Off Publ Fed Am Soc Exp Biol 26(2):927–937

    CAS  Google Scholar 

  84. Carnevale R, Bartimoccia S, Nocella C, Di Santo S, Loffredo L, Illuminati G et al (2014) LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism. Atherosclerosis 237(1):108–116

    Article  CAS  PubMed  Google Scholar 

  85. Badrnya S, Schrottmaier WC, Kral JB, Yaiw KC, Volf I, Schabbauer G et al (2014) Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler Thromb Vasc Biol 34(3):571–580

    Article  CAS  PubMed  Google Scholar 

  86. Helal O, Defoort C, Robert S, Marin C, Lesavre N, Lopez-Miranda J et al (2011) Increased levels of microparticles originating from endothelial cells, platelets and erythrocytes in subjects with metabolic syndrome: relationship with oxidative stress. Nutr Metab Cardiovasc Dis 21(9):665–671

    Article  CAS  PubMed  Google Scholar 

  87. Zhang X, McGeoch SC, Johnstone AM, Holtrop G, Sneddon AA, MacRury SM et al (2014) Platelet-derived microparticle count and surface molecule expression differ between subjects with and without type 2 diabetes, independently of obesity status. J Thromb Thrombolysis 37(4):455–463

    Article  CAS  PubMed  Google Scholar 

  88. Ghosh A, Li W, Febbraio M, Espinola RG, McCrae KR, Cockrell E et al (2008) Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice. J Clin Invest 118(5):1934–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One 3(11):e3694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Aleman MM, Gardiner C, Harrison P, Wolberg AS (2011) Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. J Thromb Haemost 9(11):2251–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Geddings JE, Mackman N (2014) New players in haemostasis and thrombosis. Thromb Haemost 111(4):570–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang H, Wang ZH, Kong J, Yang MY, Jiang GH, Wang XP et al (2012) Oxidized low-density lipoprotein-dependent platelet-derived microvesicles trigger procoagulant effects and amplify oxidative stress. Mol Med 18:159–166

    Article  CAS  PubMed  Google Scholar 

  93. Ageno W, Becattini C, Brighton T, Selby R, Kamphuisen PW (2008) Cardiovascular risk factors and venous thromboembolism: a meta-analysis. Circulation 117(1):93–102

    Article  PubMed  Google Scholar 

  94. Koller E, Koller F, Binder BR (1989) Purification and identification of the lipoprotein-binding proteins from human blood platelet membrane. J Biol Chem 264(21):12412–12418

    CAS  PubMed  Google Scholar 

  95. Nofer JR, Walter M, Kehrel B, Seedorf U, Assmann G (1995) HDL3 activates phospholipase D in normal but not in glycoprotein IIb/IIIa-deficient platelets. Biochem Biophys Res Commun 207(1):148–154

    Article  CAS  PubMed  Google Scholar 

  96. Pedreno J, de Castellarnau C, Masana L (2001) Platelet HDL(3) binding sites are not related to integrin alpha(IIb)beta(3) (GPIIb-IIIa). Atherosclerosis 154(1):23–29

    Article  CAS  PubMed  Google Scholar 

  97. Brodde MF, Korporaal SJ, Herminghaus G, Fobker M, Van Berkel TJ, Tietge UJ et al (2011) Native high-density lipoproteins inhibit platelet activation via scavenger receptor BI: role of negatively charged phospholipids. Atherosclerosis 215(2):374–382

    Article  CAS  PubMed  Google Scholar 

  98. Imachi H, Murao K, Cao W, Tada S, Taminato T, Wong NC et al (2003) Expression of human scavenger receptor B1 on and in human platelets. Arterioscler Thromb Vasc Biol 23(5):898–904

    Article  CAS  PubMed  Google Scholar 

  99. Nofer JR, van Eck M (2011) HDL scavenger receptor class B type I and platelet function. Curr Opin Lipidol 22(4):277–282

    Article  CAS  PubMed  Google Scholar 

  100. Le QH, El Alaoui M, Vericel E, Segrestin B, Soulere L, Guichardant M et al (2015) Glycoxidized HDL, HDL enriched with oxidized phospholipids and HDL from diabetic patients inhibit platelet function. J Clin Endocrinol Metab 100(5):2006–2014

    Article  CAS  PubMed  Google Scholar 

  101. Assinger A, Schmid W, Eder S, Schmid D, Koller E, Volf I (2008) Oxidation by hypochlorite converts protective HDL into a potent platelet agonist. FEBS Lett 582(5):778–784

    Article  CAS  PubMed  Google Scholar 

  102. Assinger A, Koller F, Schmid W, Zellner M, Babeluk R, Koller E et al (2010) Specific binding of hypochlorite-oxidized HDL to platelet CD36 triggers proinflammatory and procoagulant effects. Atherosclerosis 212(1):153–160

    Article  CAS  PubMed  Google Scholar 

  103. van der Stoep M, Korporaal SJ, Van Eck M (2014) High-density lipoprotein as a modulator of platelet and coagulation responses. Cardiovasc Res 103(3):362–371

    Article  PubMed  CAS  Google Scholar 

  104. Wang N, Tall AR (2016) Cholesterol in platelet biogenesis and activation. Blood 127(16):1949–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ravindran R, Krishnan LK (2007) Increased platelet cholesterol and decreased percentage volume of platelets as a secondary risk factor for coronary artery disease. Pathophysiol Haemost Thromb 36(1):45–51

    Article  CAS  PubMed  Google Scholar 

  106. Relou IA, Hackeng CM, Akkerman JW, Malle E (2003) Low-density lipoprotein and its effect on human blood platelets. Cell Mol Life Sci 60(5):961–971

    Article  CAS  PubMed  Google Scholar 

  107. Kumar S, Vikram A, Kim YR (2014) J SJ, Irani K. P66Shc mediates increased platelet activation and aggregation in hypercholesterolemia. Biochem Biophys Res Commun 449(4):496–501

    Article  CAS  PubMed  Google Scholar 

  108. Panes O, González C, Hidalgo P, Valderas JP, Acevedo M, Contreras S et al (2017) Platelet tissue factor activity and membrane cholesterol are increased in hypercholesterolemia and normalized by rosuvastatin, but not by atorvastatin. Atherosclerosis 257:164–171

    Article  CAS  PubMed  Google Scholar 

  109. Tsimikas S, Brilakis ES, Miller ER, McConnell JP, Lennon RJ, Kornman KS et al (2005) Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med 353(1):46–57

    Article  CAS  PubMed  Google Scholar 

  110. Chen K, Li W, Major J, Rahaman SO, Febbraio M, Silverstein RL (2011) Vav guanine nucleotide exchange factors link hyperlipidemia and a prothrombotic state. Blood 117(21):5744–5750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ramasamy I (2016) Update on the molecular biology of dyslipidemias. Clin Chim Acta 454:143–185

    Article  CAS  PubMed  Google Scholar 

  112. Beaumont JL, Carlson LA, Cooper GR, Fejfar Z, Fredrickson DS, Strasser T (1970) Classification of hyperlipidaemias and hyperlipoproteinaemias. Bull World Health Organ 43(6):891–915

    CAS  PubMed  Google Scholar 

  113. AACE (2017) Guidelines. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr Pract 23(2):1–87

    Google Scholar 

  114. Tada H, Kawashiri MA, Yamagishi M (2017) Clinical perspectives of genetic analyses on dyslipidemia and coronary artery disease. J Atheroscler Thromb 24(5):452–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nelson RH (2013) Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 40(1):195–211

    Article  PubMed  Google Scholar 

  116. van Rooy MJ, Duim W, Ehlers R, Buys AV, Pretorius E (2015) Platelet hyperactivity and fibrin clot structure in transient ischemic attack individuals in the presence of metabolic syndrome: a microscopy and thromboelastography study. Cardiovasc Diabetol 14:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. van Rooy MJ, Pretorius E (2015) Metabolic syndrome, platelet activation and the development of transient ischemic attack or thromboembolic stroke. Thromb Res 135(3):434–442

    Article  PubMed  CAS  Google Scholar 

  118. Gaspar RS, Trostchansky A, Paes AM (2016) Potential role of protein disulfide isomerase in metabolic syndrome-derived platelet hyperactivity. Oxidative Med Cell Longev 2016:2423547

    Article  CAS  Google Scholar 

  119. McFadyen JD, Peter K (2018) Platelet lipidomics and function: joining the dots. Blood 132(5):465–466

    Article  CAS  PubMed  Google Scholar 

  120. Peng B, Geue S, Coman C, Munzer P, Kopczynski D, Has C et al (2018) Identification of key lipids critical for platelet activation by comprehensive analysis of the platelet lipidome. Blood 132(5):e1–e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Trostchansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paes, A.M.d.A., Gaspar, R.S., Fuentes, E., Wehinger, S., Palomo, I., Trostchansky, A. (2019). Lipid Metabolism and Signaling in Platelet Function. In: Trostchansky, A., Rubbo, H. (eds) Bioactive Lipids in Health and Disease. Advances in Experimental Medicine and Biology, vol 1127. Springer, Cham. https://doi.org/10.1007/978-3-030-11488-6_7

Download citation

Publish with us

Policies and ethics