Skip to main content

The Role of NK Cells in Cancer

  • Chapter
  • First Online:

Abstract

Although NK cells were initially discovered and named for their spontaneous ability to kill tumor cells, the knowledge of NK cells has grown to include not only their cytotoxic but also their immunoregulatory function, as well as characterization of many new activating and inhibitory receptors whose balance regulates their activity. In this sense, through recognition of cognate ligands on tumor cells by these receptors NK cells are able to distinguish transformed from normal cells. However, immunosuppressive factors produced by tumors affect NK cell receptor repertoire and lead to impaired NK cell function that facilitates tumor immune escape and disease progression. Better understanding of alterations in NK cell receptor expression, disturbance in NK cell activation, and effectors function in cancer patients may aid in defining novel biomarkers of disease as well as in creating many new immunotherapeutic strategies that potentiate NK cell antitumor activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376.

    Article  CAS  PubMed  Google Scholar 

  2. Caligiuri MA. Human natural killer cells. Blood. 2008;112:461–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood. 2001;97:3146–51.

    Article  CAS  PubMed  Google Scholar 

  4. Konjević G, Jović V, Jurisić V, Radulović S, Jelić S, Spuzić I. IL-2-mediated augmentation of NK-cell activity and activation antigen expression on NK- and T-cell subsets in patients with metastatic melanoma treated with interferon-alpha and DTIC. Clin Exp Metastasis. 2003;20:647–55.

    Article  PubMed  Google Scholar 

  5. Konjević G, Mirjacić Martinović K, Jurisić V, Babović N, Spuzić I. Biomarkers of suppressed natural killer (NK) cell function in metastatic melanoma: decreased NKG2D and increased CD158a receptors on CD3-CD16+ NK cells. Biomarkers. 2009;14:258–70.

    Article  PubMed  CAS  Google Scholar 

  6. Jurisic V, Colovic N, Konjevic G, Minic I, Colovic M. An aggressive extramedullary cutaneous plasmacytoma associated with extreme alterations in the innate immune system. Onkologie. 2010;33:113.

    Article  PubMed  Google Scholar 

  7. Mirjačić Martinović KM, NLj B, Džodić RR, Jurišić VB, Tanić NT, Konjević GM. Decreased expression of NKG2D, NKp46, DNAM-1 receptors, and intracellular perforin and STAT-1 effector molecules in NK cells and their dim and bright subsets in metastatic melanoma patients. Melanoma Res. 2014;24:295–304.

    Article  PubMed  CAS  Google Scholar 

  8. Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5:112–7.

    Article  CAS  PubMed  Google Scholar 

  9. Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer. 1975;16:230–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ryan JC, Turck J, Niemi EC, Yokoyama WM, Seaman WE. Molecular cloning of the NK1.1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules. J Immunol. 1992;149:1631–5.

    CAS  PubMed  Google Scholar 

  11. Montaldo E, Vacca P, Vitale C, Moretta F, Locatelli F, Mingari MC, et al. Human innate lymphoid cells. Immunol Lett. 2016;179:2–8.

    Article  CAS  PubMed  Google Scholar 

  12. Min-Oo G, Kamimura Y, Hendricks DW, Nabekura T, Lanier LL. Natural killer cells: walking three paths down memory lane. Trends Immunol. 2013;34:251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freud AG, Yokohama A, Becknell B, Lee MT, Mao HC, Ferketich AK, et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med. 2006;203:1033–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eissens DN, Spanholtz J, van der Meer A, van Cranenbroek B, Dolstra H, Kwekkeboom J, et al. Defining early human NK cell developmental stages in primary and secondary lymphoid tissues. PLoS One. 2012;7:e30930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Konjevic G, Jurisic V, Jovic V, Vuletic A, Mirjacic Martinovic K, Radenkovic S, et al. Investigation of NK cell function and their modulation in different malignancies. Immunol Res. 2012;52:139–56.

    Article  CAS  PubMed  Google Scholar 

  16. Vuletić A, Jurišić V, Jovanić I, Milovanović Z, Nikolić S, Konjević G. Distribution of several activating and inhibitory receptors on CD3(−)CD56(+) NK cells in regional lymph nodes of melanoma patients. J Surg Res. 2013;183:860–8.

    Article  PubMed  CAS  Google Scholar 

  17. Mujaj SA, Spanevello MM, Gandhi MK, Nourse JP. Molecular mechanisms influencing NK cell development: implications for NK cell malignancies. Am J Blood Res. 2011;1:34–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Luetke-Eversloh M, Killig M, Romagnani C. Signatures of human NK cell development and terminal differentiation. Front Immunol. 2013;4:499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Norris PJ, Nixon DF, Lanier LL. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. 2010;116:3865–74.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, et al. Signatures of human NK cell development and terminal differentiation. Front Immunol. 2013;4:499.

    Google Scholar 

  21. Jaeger BN, Vivier E. When NK cells overcome their lack of education. J Clin Invest. 2012;122:3053–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guia S, Jaeger BN, Piatek S, Mailfert S, Trombik T, Fenis A, et al. Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance. Sci Signal. 2011;4:ra21.

    Article  PubMed  CAS  Google Scholar 

  23. Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology. 2011;132:315–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elliott JM, Wahle JA, Yokoyama WM. MHC class I-deficient natural killer cells acquire a licensed phenotype after transfer into an MHC class I-sufficient environment. J Exp Med. 2010;207:2073–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joncker NT, Shifrin N, Delebecque F, Raulet DH. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J Exp Med. 2010;207:2065–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stojanovic A, Correia MP, Cerwenka A. Shaping of NK cell responses by the tumor microenvironment. Cancer Microenviron. 2013;6:135–46.

    Article  CAS  PubMed  Google Scholar 

  27. Farag SS, Caligiuri MA. Human natural killer cell development and biology. Blood Rev. 2006;20:123–37.

    Article  CAS  PubMed  Google Scholar 

  28. Balsamo M, Scordamaglia F, Pietra G, Manzini C, Cantoni C, Boitano M, et al. Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proc Natl Acad Sci U S A. 2009;106:20847–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jurisić V, Spuzić I, Konjević G. A comparison of the NK cell cytotoxicity with effects of TNF-alpha against K-562 cells, determined by LDH release assay. Cancer Lett. 1999;138:67–72.

    Article  PubMed  Google Scholar 

  30. Konjević G, Mirjacić Martinović K, Vuletić A, Jović V, Jurisić V, Babović N, et al. Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients. Clin Exp Metastasis. 2007;24:1–11.

    Article  PubMed  CAS  Google Scholar 

  31. Jurisic V, Srdic T, Konjevic G, Markovic O, Colovic M. Clinical stage-depending decrease of NK cell activity in multiple myeloma patients. Med Oncol. 2007;24:312–7.

    Article  PubMed  Google Scholar 

  32. Campbell KS, Hasegawa J. Natural killer cell biology: an update and future directions. J Allergy Clin Immunol. 2013;132:536–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thielens A, Vivier E, Romagné F. NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr Opin Immunol. 2012;24:239–45.

    Article  CAS  PubMed  Google Scholar 

  34. Uhrberg M, Valiante NM, Shum BP, Shilling HG, Lienert-Weidenbach K, Corliss B, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997;7:753–63.

    Article  CAS  PubMed  Google Scholar 

  35. Trowsdale J, Parham P. Mini-review: defense strategies and immunity-related genes. Eur J Immunol. 2004;34:7–17.

    Article  CAS  PubMed  Google Scholar 

  36. Yawata M, Yawata N, Draghi M, Partheniou F, Little AM, Parham P. MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood. 2008;112:2369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rajalingam R. Overview of the killer cell immunoglobulin-like receptor system. Methods Mol Biol. 2012;882:391–414.

    Article  CAS  PubMed  Google Scholar 

  38. Purdy AK, Campbell KS. Natural killer cells and cancer: regulation by the killer cell Ig-like receptors (KIR). Cancer Biol Ther. 2009;8:2211–20.

    Article  PubMed  Google Scholar 

  39. Boyton RJ, Altmann DM. Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease. Clin Exp Immunol. 2007;149:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin MP, Carrington M. KIR locus polymorphisms: genotyping and disease association analysis. Methods Mol Biol. 2008;415:49.

    CAS  PubMed  Google Scholar 

  41. Mirjačić Martinović K, Konjević G, Babović N, Inić M. The stage dependent changes in NK cell activity and the expression of activating and inhibitory NK cell receptors in melanoma patients. J Surg Res. 2011;17:637–49.

    Article  CAS  Google Scholar 

  42. Stern-Ginossar N, Mandelboim O. An integrated view of the regulation of NKG2D ligands. Immunology. 2009;128:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. López-Larrea C, Suárez-Alvarez B, López-Soto A, López-Vázquez A, Gonzalez S. The NKG2D receptor: sensing stressed cells. Trends Mol Med. 2008;14:179–89.

    Article  PubMed  CAS  Google Scholar 

  44. Zafirova B, Wensveen FM, Gulin M, Polić B. Regulation of immune cell function and differentiation by the NKG2D receptor. Cell Mol Life Sci. 2011;68:3519–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science. 1999;285:730–2.

    Article  CAS  PubMed  Google Scholar 

  46. Konjevic G, Vuletic A, Mirjacic Martinovic K, Krivokuca A, Jankovic R, Babovic N. Evaluation of the functional capacity of NK cells of melanoma patients in an in vitro model of NK cell contact with K562 and FemX tumor cell lines. J Membr Biol. 2017;250(5):507–16.

    Article  CAS  PubMed  Google Scholar 

  47. Hayakawa Y, Smyth MJ. NKG2D and cytotoxic effector function in tumor immune surveillance. Semin Immunol. 2006;18:176–85.

    Article  CAS  PubMed  Google Scholar 

  48. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol. 2011;89:216–24.

    Article  PubMed  Google Scholar 

  49. Höglund P, Brodin P. Current perspectives of natural killer cell education by MHC class I molecules. Nat Rev Immunol. 2010;10:724–34.

    Article  PubMed  CAS  Google Scholar 

  50. Iwaszko M, Bogunia-Kubik K. Clinical significance of the HLA-E and CD94/NKG2 interaction. Arch Immunol Ther Exp. 2011;59:353–67.

    Article  CAS  Google Scholar 

  51. Braud VM, Allan DS, O’Callaghan CA, Söderström K, D’Andrea A, Ogg GS, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391:795–9.

    Article  CAS  PubMed  Google Scholar 

  52. Bossard C, Bezieau S, Matysiak-Budnik T, Volteau C, Laboisse CL, Jotereau F, et al. HLA-E/b2 microglobulin overexpression in colorectal cancer is associated with recruitment of inhibitory immune cells and tumor progression. Int J Cancer. 2012;131:855–63.

    Article  CAS  PubMed  Google Scholar 

  53. Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, et al. Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother. 2011;60:1195–205.

    Article  CAS  PubMed  Google Scholar 

  54. Pessino A, Sivori S, Bottino C, Malaspina A, Morelli L, Moretta L, et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med. 1998;188:953–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med. 1998;187:2065–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med. 2009;206:1495–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pogge von Strandmann E, Simhadri VR, von Tresckow B, Sasse S, Reiners KS, Hansen HP, et al. Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity. 2007;27:965–74.

    Article  CAS  PubMed  Google Scholar 

  58. Delahaye NF, Rusakiewicz S, Martins I, Menard C, Roux S, Lyonnet L, et al. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med. 2011;17:700–7.

    Article  CAS  PubMed  Google Scholar 

  59. Baychelier F, Sennepin A, Ermonval M, Dorgham K, Debré P, Vieillard V. Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. Blood. 2013;122:2935–42.

    Article  CAS  PubMed  Google Scholar 

  60. Narni-Mancinelli E, Jaeger BN, Bernat C, Fenis A, Kung S, De Gassart A, et al. Tuning of natural killer cell reactivity by NKp46 and Helios calibrates T cell responses. Science. 2012;335:344–38.

    Article  CAS  PubMed  Google Scholar 

  61. Rosental B, Brusilovsky M, Hadad U, Oz D, Appel MY, Afergan F, et al. Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol. 2011;187:5693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hudspeth K, Silva-Santos B, Mavilio D. Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. Front Immunol. 2013;4:69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Stuart-Harris R, Caldas C, Pinder SE, Pharoah P. Proliferation markers and survival in early breast cancer: a systematic review and meta-analysis of 85 studies in 32,825 patients. Breast. 2008;17:323–34.

    Article  CAS  PubMed  Google Scholar 

  64. Regis S, Caliendo F, Dondero A, Casu B, Romano F, Loiacono F, Moretta A, Bottino C, Castriconi R. TGF-β1 Downregulates the expression of CX3CR1 by inducing miR-27a-5p in primary human NK cells. Front Immunol. 2017;8:868.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Konjević G, Vuletić A, Mirjačić MK. Natural killer cell receptors: alterations and therapeutic targeting in malignancies. Immunol Res. 2016;64:25–35.

    Article  PubMed  CAS  Google Scholar 

  66. Martinet L, Smyth MJ. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol. 2015;15:243–54.

    Article  CAS  PubMed  Google Scholar 

  67. Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L, et al. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest. 2009;119:1251–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mamessier E, Sylvain A, Bertucci F, Castellano R, Finetti P, Houvenaeghel G, et al. Human breast tumor cells induce self-tolerance mechanisms to avoid NKG2D-mediated and DNAM-mediated NK cell recognition. Cancer Res. 2011;71:6621–32.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Z, Su T, He L, Wang H, Ji G, Liu X, et al. Identification and functional analysis of ligands for natural killer cell activating receptors in colon carcinoma. Tohoku J Exp Med. 2012;226:59–68.

    Article  CAS  PubMed  Google Scholar 

  70. Morisaki T, Onishi H, Katano M. Cancer immunotherapy using NKG2D and DNAM-1systems. Anticancer Res. 2012;32:2241–7.

    CAS  PubMed  Google Scholar 

  71. Xu F, Sunderland A, Zhou Y, Schulick RD, Edil BH, Zhu Y. Blockade of CD112R and TIGIT signaling sensitizes human natural killer cell functions. Cancer Immunol Immunother. 2017;66:1367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Colonna M, Nakajima H, Cella M. Inhibitory and activating receptors involved in immune surveillance by human NK and myeloid cells. J Leukoc Biol. 1999;66:718–22.

    Article  CAS  PubMed  Google Scholar 

  73. Heidenreich S, ZuEulenburg C, Hildebrandt Y, Stubig T, Sierich H, Badbaran A, et al. Impact of the NK cell receptor LIR-1 (ILT-2/CD85j/LILRB1) on cytotoxicity against multiple myeloma. Clin Dev Immunol. 2012;2012:652130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Warren HS, Kinnear BF. Quantitative analysis of the effect of CD16 ligation on human NK cell proliferation. J Immunol. 1999;162:735–42.

    CAS  PubMed  Google Scholar 

  75. Lanier LL. Natural killer cell receptor signaling. Curr Opin Immunol. 2003;15:308–14.

    Article  CAS  PubMed  Google Scholar 

  76. Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways. Science. 2004;306:1517–9.

    Article  CAS  PubMed  Google Scholar 

  77. Gryzwacz B, Kataria N, Verneris MR. CD56dimCD16 + NK cells downregulate CD16 following target cell induced activation of matrix metalloproteinases. Leukemia. 2007;21:356–9.

    Article  Google Scholar 

  78. Konjević G, Vuletić A, Mirjačić Martinović K, Colović N, Čolović M, Jurišić V. Decreased CD161 activating and increased CD158a inhibitory receptor expression on NK cells underlies impaired NK cell cytotoxicity in patients with multiple myeloma. J Clin Pathol. 2016;pii:jclinpath-2016-203614.

    Google Scholar 

  79. Jewett A, Tseng HC. Tumor induced inactivation of natural killer cell cytotoxic function; implication in growth, expansion and differentiation of cancer stem cells. J Cancer. 2011;2:443–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloproteinase-17 (ADAM17). Blood. 2013;121:3599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Konjević G, Mirjacić Martinović K, Vuletić A, Jurisić V, Spuzić I. Distribution of several activating and inhibitory receptors on CD3-CD16+ NK cells and their correlation with NK cell function in healthy individuals. J Membr Biol. 2009;230:113–23.

    Article  PubMed  CAS  Google Scholar 

  82. Konjević G, Jović V, Vuletić A, Radulović S, Jelić S, Spuzić I. CD69 on CD56+ NK cells and response to chemoimmunotherapy in metastatic melanoma. Eur J Clin Investig. 2007;37:887–96.

    Article  CAS  Google Scholar 

  83. Rosen DB, Bettadapura J, Alsharifi M, Mathew PA, Warren HS, Lanier LL. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J Immunol. 2005;175:7796–9.

    Article  CAS  PubMed  Google Scholar 

  84. Aldemir H, Prod’homme V, Dumaurier MJ, Retiere C, Poupon G, Cazareth J, et al. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J Immunol. 2005;175:7791–5.

    Article  CAS  PubMed  Google Scholar 

  85. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–74.

    Article  CAS  PubMed  Google Scholar 

  86. Langers I, Renoux VM, Thiry M, Delvenne P, Jacobs N. Natural killer cells:role in local tumor growth and metastasis. Biologics. 2012;6:73–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Podack ER. How to induce involuntary suicide: the need for dipeptidyl peptidase I. Proc Natl Acad Sci U S A. 1999;96:8312–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Keefe D, Shi L, Feske S, Massol R, Navarro F, Kirchhausen T, et al. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity. 2005;23:249–62.

    Article  CAS  PubMed  Google Scholar 

  89. Podack ER, Dennert G. Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Nature. 1983;302:442–5.

    Article  CAS  PubMed  Google Scholar 

  90. Konjević G, Schlesinger B, Cheng L, Olsen KJ, Podack ER, Spuzic I. Analysis of perforin expression in human peripheral blood lymphocytes, CD56+ natural killer cell subsets and its induction by interleukin-2. Immunol Investig. 1995;24:499–507.

    Article  Google Scholar 

  91. Konjević G, Mirjačić Martinović K, Vuletić A, Babović N. In-vitro IL-2 or IFN-α-induced NKG2D and CD161 NK cell receptor expression indicates novel aspects of NK cell activation in metastatic melanoma patients. Melanoma Res. 2010;20:459–67.

    Article  PubMed  CAS  Google Scholar 

  92. Konjević G, Mirjačić Martinović K, Vuletić A, Radenković S. Novel aspects of in vitro IL-2 or IFN-α enhanced NK cytotoxicity of healthy individuals based on NKG2D and CD161 NK cell receptor induction. Biomed Pharmacother. 2010;64:663–71.

    Article  PubMed  CAS  Google Scholar 

  93. Konjevic G, Mirjacic-Martinovic K, Vuletic A, Babovic N. In vitro increased natural killer cell activity of metastatic melanoma patients with interferon-α alone as opposed to its combination with 13-cis retinoic acid is associated with modulation of NKG2D and CD161 activating receptor expression. J BUON. 2012;17:761–9.

    CAS  PubMed  Google Scholar 

  94. Cichocki F, Miller JS, Anderson SK, Bryceson YT. Epigenetic regulation of NK cell differentiation and effector functions. Front Immunol. 2013;4:55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Konjević G, Radenković S, Vuletić A, Mirjačić Martinović K, Jurišić V, Srdić T. STAT transcription factors in tumor development and targeted therapy of malignancies. In: Siregar Y, editor. Oncogene and cancer - from bench to clinic. Rijeka: Intech; 2013. p. 455–86.

    Google Scholar 

  96. Mirjačić Martinović K, Babović N, Džodić R, Jurišić V, Matković S, Konjević G. Favorable in vitro effects of combined IL-12 and IL-18 treatment on NK cell cytotoxicity and CD25 receptor expression in metastatic melanoma patients. J Transl Med. 2015;13:120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Vuletić AM, Jovanić IP, Jurišić VB, Milovanović ZM, Nikolić SS, Spurnić I, et al. Decreased interferon γ production in CD3+ and CD3- CD56+ lymphocyte subsets in metastatic regional lymph nodes of melanoma patients. Pathol Oncol Res. 2015;21:1109–14.

    Article  PubMed  CAS  Google Scholar 

  98. Mirjačić Martinović K, Srdić-Rajić T, Babović N, Džodić R, Jurišić V, Konjević G. Decreased expression of pSTAT, IRF-1 and DAP10 signalling molecules in peripheral blood lymphocytes of patients with metastatic melanoma. J Clin Pathol. 2016;69:300–6.

    Article  PubMed  CAS  Google Scholar 

  99. Mirjačić Martinović KM, Vuletić AM, Lj Babović N, Džodić RR, Konjević GM, Jurišić VB. Attenuated in vitro effects of IFN-α, IL-2 and IL-12 on functional and receptor characteristics of peripheral blood lymphocytes in metastatic melanoma patients. Cytokine. 2017;96:30–40.

    Article  PubMed  CAS  Google Scholar 

  100. Konjević G, Radenković S, Srdić T, Jurišic V, Lj S, Milović M. Association of decreased NK cell activity and IFNγ expression with pSTAT dysregulation in breast cancer patients. J BUON. 2011;16:219–26.

    PubMed  Google Scholar 

  101. Jović V, Konjević G, Radulović S, Jelić S, Spuzić I. Impaired perforin-dependent NK cell cytotoxicity and proliferative activity of peripheral blood T cells is associated with metastatic melanoma. Tumori. 2001;87:324–9.

    Article  PubMed  Google Scholar 

  102. Trapani JA, Thia KY, Andrews M, Davis ID, Gedye C, Parente P, Svobodova S, Chia J, et al. Human perforin mutations and susceptibility to multiple primary cancers. Oncoimmunology. 2013;2:e24185.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hameed A, Lowrey DM, Lichtenheld M, Podack ER. Characterization of three serine esterases isolated from human IL-2 activated killer cells. J Immunol. 1988;141:3142–7.

    CAS  PubMed  Google Scholar 

  104. Trapani JA, Sutton VR. Granzyme B: pro-apoptotic, antiviral and antitumor functions. Curr Opin Immunol. 2003;15:533–43.

    Article  CAS  PubMed  Google Scholar 

  105. Beresford PJ, Xia Z, Greenberg AH, Lieberman J. Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity. 1999;10:585–94.

    Article  CAS  PubMed  Google Scholar 

  106. Jurisić V, Bogdanovic G, Srdic T, Jakimov D, Mrdjanovic J, Baltic M, et al. Modulation of TNF-alpha activity in tumor PC cells using anti-CD45 and anti-CD95 monoclonal antibodies. Modulation of TNF-alpha activity in tumor PC cells using anti-CD45 and anti-CD95 monoclonal antibodies. Cancer Lett. 2004;214:55–61.

    Article  PubMed  CAS  Google Scholar 

  107. Jurisic V, Srdic-Rajic T, Konjevic G, Bogdanovic G, Colic M. TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr Biol. 2011;239:115–22.

    Article  CAS  PubMed  Google Scholar 

  108. Khar A, Varalakshmi C, Pardhasaradhi BV, Mubarak Ali A, Kumari AL. Depletion of the natural killer cell population in the peritoneum by AK-5 tumor cell overexpressing fas-ligand: a mechanism of immune evasion. Cell Immunol. 1998;189:85–91.

    Article  CAS  PubMed  Google Scholar 

  109. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. De Maria A, Bozzano F, Cantoni C, Moretta L. Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-gamma on activation. Proc Natl Acad Sci U S A. 2011;108:728–32.

    Article  PubMed  Google Scholar 

  111. Pietra G, Manzini C, Rivara S, Vitale M, Cantoni C, Petretto A, et al. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res. 2012;72:1407–15.

    Article  CAS  PubMed  Google Scholar 

  112. Chiossone L, Vienne M, Kerdiles YM, Vivier E. Natural killer cell immunotherapies against cancer: checkpoint inhibitors and more. Semin Immunol. 2017;31:55–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant of the Ministry of Education, Science and Technological Development of the Republic of Serbia, number 175056.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jurišić, V., Vuletić, A., Martinović, K.M., Konjević, G. (2020). The Role of NK Cells in Cancer. In: Rezaei, N. (eds) Cancer Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-30845-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30845-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30844-5

  • Online ISBN: 978-3-030-30845-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics