Skip to main content

Deep Probabilistic Modeling of Glioma Growth

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

Existing approaches to modeling the dynamics of brain tumor growth, specifically glioma, employ biologically inspired models of cell diffusion, using image data to estimate the associated parameters. In this work, we propose an alternative approach based on recent advances in probabilistic segmentation and representation learning that implicitly learns growth dynamics directly from data without an underlying explicit model. We present evidence that our approach is able to learn a distribution of plausible future tumor appearances conditioned on past observations of the same tumor.

S. A. A. Kohl—Now with DeepMind and the Karlsruhe Institute of Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akbari, H., et al.: Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78(4), 572–580 (2016)

    Article  Google Scholar 

  2. Bi, W.L., Beroukhim, R.: Beating the odds: extreme long-term survival with glioblastoma. Neuro-Oncology 16(9), 1159–1160 (2014)

    Article  Google Scholar 

  3. Engwer, C., Hillen, T., Knappitsch, M., Surulescu, C.: Glioma follow white matter tracts: a multiscale DTI-based model. J. Math. Biol. 71(3), 551–582 (2015)

    Article  MathSciNet  Google Scholar 

  4. Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–790 (2012)

    Article  Google Scholar 

  5. Kohl, S.A.A., et al.: A probabilistic U-net for segmentation of ambiguous images. In: NeurIPS, vol. 31 (2018)

    Google Scholar 

  6. Lipkova, J., et al.: Personalized radiotherapy design for glioblastoma: integrating mathematical tumor models, multimodal scans and Bayesian inference. IEEE Trans. Med. Imaging 38, 1875–1884 (2019)

    Article  Google Scholar 

  7. Lê, M., et al.: Personalized radiotherapy planning based on a computational tumor growth model. IEEE Trans. Med. Imaging 36(3), 815–825 (2017)

    Article  Google Scholar 

  8. Mann, J., Ramakrishna, R., Magge, R., Wernicke, A.G.: Advances in radiotherapy for glioblastoma. Front. Neurol. 8, 748 (2018)

    Article  Google Scholar 

  9. Menze, B.H., Stretton, E., Konukoglu, E., Ayache, N.: Image-based modeling of tumor growth in patients with glioma. In: Optimal Control Image Processing, p. 12 (2011)

    Google Scholar 

  10. Menze, B.H., et al.: A generative approach for image-based modeling of tumor growth. Inf. Process. Med. Imaging 22, 735–747 (2011)

    Google Scholar 

  11. Mosayebi, P., Cobzas, D., Murtha, A., Jagersand, M.: Tumor invasion margin on the Riemannian space of brain fibers. Med. Image Anal. 16(2), 361–373 (2012)

    Article  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Zhang, L., Lu, L., Summers, R.M., Kebebew, E., Yao, J.: Convolutional invasion and expansion networks for tumor growth prediction. IEEE Trans. Med. Imaging 37(2), 638–648 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Petersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petersen, J. et al. (2019). Deep Probabilistic Modeling of Glioma Growth. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11765. Springer, Cham. https://doi.org/10.1007/978-3-030-32245-8_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32245-8_89

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32244-1

  • Online ISBN: 978-3-030-32245-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics