Skip to main content

Pseudo-normal PET Synthesis with Generative Adversarial Networks for Localising Hypometabolism in Epilepsies

  • Conference paper
  • First Online:
Book cover Simulation and Synthesis in Medical Imaging (SASHIMI 2019)

Abstract

[\({}^{18}\)F]fluorodeoxyglucose (FDG) positron emission tomography (PET) aids in the localisation of the epileptogenic zone in patients with focal epilepsy, especially when magnetic resonance imaging (MRI) is normal or non-contributory. We propose a two-stage deep learning framework to support the clinical evaluation of patients with focal epilepsy by identifying candidate regions of hypometabolism in [18F]FDG PET scans. In the first stage, we train a generative adversarial network (GAN) to learn the mapping between healthy [18F]FDG PET and T1-weighted (T1w) MRI data. In the second stage, we synthesise pseudo-normal PET images from T1w MRI scans of patients with epilepsy to compare to the real PET scans. Comparing the estimated pseudo-PET images to the true PET scans in healthy control data, our GAN produced whole-brain mean absolute errors of \(0.053 \pm 0.015\), outperforming a U-Net (\(0.058 \pm 0.021\)) and a high-resolution dilated convolutional neural network (\(0.060 \pm 0.024\); all images scaled 0–1). In a sample of 20 epilepsy patients, we created Z-statistic images (with thresholding at +2.33) by subtracting the patient’s true PET scans from their estimated pseudo-normal PET images to identify regions of hypometabolism. Excellent sensitivity for lobar location of abnormalities (\(92.9 \pm 13.1\%\)) was observed for the seven cases with MR-visible epileptogenic lesions. For the 13 cases with non-contributory MR, a lower sensitivity of \(74.8 \pm 32.3\%\) was observed. Our method performed better than a statistical parametric mapping analysis. Our results highlight the potential of deep learning-based pseudo-normal [18F]FDG PET synthesis to contribute to the management of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreilkamp, B., Das, K., Wieshmann, U., Biswas, S., Marson, A., Keller, S.: Neuroradiological findings in patients with “non-lesional” focal epilepsy revealed by research protocol. Clin. Radiol. 74(1), 78.e1–78.e11 (2019). https://doi.org/10.1016/j.crad.2018.08.013

    Article  Google Scholar 

  2. Widdess-Walsh, P., et al.: Electro-clinical and imaging characteristics of focal cortical dysplasia: correlation with pathological subtypes. Epilepsy Res. 67(1–2), 25–33 (2005). https://doi.org/10.1016/j.eplepsyres.2005.07.013

    Article  Google Scholar 

  3. Tan, Y.L., et al.: Quantitative surface analysis of combined MRI and PET enhances detection of focal cortical dysplasias. NeuroImage 166, 10–18 (2018). https://doi.org/10.1016/j.neuroimage.2017.10.065

    Article  Google Scholar 

  4. Zhu, Y., et al.: Glucose metabolic profile by visual assessment combined with statistical parametric mapping analysis in pediatric patients with epilepsy. J. Nucl. Med. 58(8), 1293–1299 (2017). https://doi.org/10.2967/jnumed.116.187492

    Article  Google Scholar 

  5. Li, R., et al.: Deep learning based imaging data completion for improved brain disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 305–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_39

    Chapter  Google Scholar 

  6. Sikka, A., Peri, S.V., Bathula, D.R.: MRI to FDG-PET: cross-modal synthesis using 3D U-Net for multi-modal Alzheimer’s classification. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 80–89. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_9

    Chapter  Google Scholar 

  7. Pan, Y., Liu, M., Lian, C., Zhou, T., Xia, Y., Shen, D.: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 455–463. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_52

    Chapter  Google Scholar 

  8. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR 2017, pp. 5967–5976. IEEE (2017). https://doi.org/10.1109/CVPR.2017.632

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR 2016, pp. 770–778. IEEE (2016). https://doi.org/10.1109/CVPR.2016.90

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F., Blei, D. (eds.) ICML 2015, vol. 37, pp. 448–456. PMLR, Lille (2015)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV 2015, pp. 1026–1034. IEEE (2015). https://doi.org/10.1109/ICCV.2015.123

  13. Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M.J., Vercauteren, T.: On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 348–360. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_28

    Chapter  Google Scholar 

  14. O’Brien, T.J., et al.: Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Nucl. Med. Commun. 19, 31–45 (1998)

    Article  Google Scholar 

  15. Colliot, O., Antel, S.B., Naessens, V.B., Bernasconi, N., Bernasconi, A.: In vivo profiling of focal cortical dysplasia on high-resolution MRI with computational models. Epilepsia 47(1), 134–142 (2006). https://doi.org/10.1111/j.1528-1167.2006.00379.x

    Article  Google Scholar 

  16. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002). https://doi.org/10.1002/hbm.10062

    Article  Google Scholar 

  17. Modat, M., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010). https://doi.org/10.1016/j.cmpb.2009.09.002

    Article  Google Scholar 

  18. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: Dasgupta, S., McAllester, D. (eds.) ICML 2013, vol. 28, pp. 1139–1147. PMLR (2013)

    Google Scholar 

  19. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010). https://doi.org/10.1109/TMI.2010.2046908

    Article  Google Scholar 

  20. Spencer, S.S., Theodore, W.H., Berkovic, S.F.: Clinical applications: MRI, SPECT, and PET. Magn. Reson. Imaging 13(8), 1119–1124 (1995). https://doi.org/10.1016/0730-725X(95)02021-K

    Article  Google Scholar 

  21. Kramer, M.A., Cash, S.S.: Epilepsy as a disorder of cortical network organization. Neuroscientist 18(4), 360–372 (2012). https://doi.org/10.1177/1073858411422754

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Nurbaya Yaakub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yaakub, S.N. et al. (2019). Pseudo-normal PET Synthesis with Generative Adversarial Networks for Localising Hypometabolism in Epilepsies. In: Burgos, N., Gooya, A., Svoboda, D. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2019. Lecture Notes in Computer Science(), vol 11827. Springer, Cham. https://doi.org/10.1007/978-3-030-32778-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32778-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32777-4

  • Online ISBN: 978-3-030-32778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics