Skip to main content

Big Data and Machine Learning

  • Chapter
  • First Online:
Book cover Oral Epidemiology

Abstract

This chapter focusses on the opportunities and challenges of big data and machine learning in relation to oral epidemiology. Big data are characterized as high-volume data that allow for smart data processing and integration of multiple data sources. They can be useful in many ways for studying the distribution and determinants of oral health. Machine learning, particularly the development of predictive models using artificial intelligence, offers great potential for the improvement of people’s oral health and care through the exploitation of big data. The knowledge derived from big data analytics can help improve oral health policy and clinical decision-making by better specification of intervention points. However, care should be applied regarding potential data quality threads such as data entry errors or non-harmonized standards for data coding. Unless based on sound theoretical frameworks and appropriate statistical methods, any type of big data analysis is prone to be corrupted by spurious correlations and fallacious inference. If used judiciously, however, big data offer vast opportunities for the creation of knowledge and (artificial) intelligence for the better promotion, protection, and management of people’s oral health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baâdoudi F, Duijster D, Maskrey N, Ali FM, Listl S, Whelton H, van der Heijden GJMG. Improving oral healthcare using academic detailing – design of the ADVOCATE Field Studies. Acta Odontol Scand. 2019;21:1–8.

    Google Scholar 

  2. Chalkley M, Listl S. First do no harm – the impact of financial incentives on dental X-rays. J Health Econ. 2018;58:1–9.

    Google Scholar 

  3. DeRouen TA. Promises and pitfalls in the use of "big data" for clinical research. J Dent Res. 2015;94(9 Suppl):107S–9S.

    Article  Google Scholar 

  4. Domingos P. The master algorithm: how the quest for the ultimate learning machine will remake our world. New York: Basic Books; 2018.

    Google Scholar 

  5. Faiad Y, Khoury B, Daouk S, Maj M, Keeley J, Gureje O, Reed G. Frequency of use of the international classification of diseases ICD-10 diagnostic categories for mental and behavioural disorders across world regions. Epidemiol Psychiatr Sci. 2018;27(6):568–76.

    Article  Google Scholar 

  6. Feres M, Louzoun Y, Haber S, Faveri M, Figueiredo LC, Levin L. Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles. Int Dent J. 2018;68(1):39–46.

    Article  Google Scholar 

  7. Gartner. Gartner says solving ‚big data‘ challenge involves more than just managing volumes of data. 2011. http://www.gartner.com/newsroom/id/1731916.

  8. Glick M. Taking a byte out of big data. J Am Dent Assoc. 2015;146(11):793–4. https://doi.org/10.1016/j.adaj.2015.09.002.

    Article  PubMed  Google Scholar 

  9. Glymour MM, Bibbins-Domingo K. The future of observational epidemiology: improving data and design to align with population health. Am J Epidemiol. 2019;188(5):836–9. https://doi.org/10.1093/aje/kwz030.

    Article  PubMed  Google Scholar 

  10. Haux C, Rosing K, Knaup P, Listl S, Kalmus O. A process model for acquiring international administrative routine data for health services research. GMS Med Inform Biom Epidemiol. 2019;15(1):Doc04. https://doi.org/10.3205/mibe000198.

    Article  Google Scholar 

  11. Heo Y, Usama M, Yang J, Hossain MS, Ghoneim A. Recurrent convolutional neural network based multimodal disease risk prediction. Futur Gener Comput Syst. 2019;92:76–83.

    Article  Google Scholar 

  12. Hujoel PP, Cunha-Cruz J, Kressin NR. Spurious associations in oral epidemiological research: the case of dental flossing and obesity. J Clin Periodontol. 2006;33(8):520–3.

    Article  Google Scholar 

  13. Kalenderian E, Ramoni RB, White JM, Schoonheim-Klein ME, Stark PC, Kimmes NS, Patel VL, Walji MF. The importance of using diagnostic codes. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(1):4–5; author reply 5. https://doi.org/10.1016/j.tripleo.2011.01.047.

    Article  PubMed  Google Scholar 

  14. Kalenderian E, Obadan-Udoh E, Yansane A, Kent K, Hebballi NB, Delattre V, Kookal KK, Tokede O, White J, Walji MF. Feasibility of electronic health record-based triggers in detecting dental adverse events. Appl Clin Inform. 2018;9(3):646–53.

    Article  Google Scholar 

  15. Laney D. 3D data management: controlling data volume, velocity, and variety, application delivery strategies. Published by META Group Inc.; 2001.

    Google Scholar 

  16. Listl S, Jürges H, Watt RG. Causal inference from observational data. Community Dent Oral Epidemiol. 2016;44(5):409–15.

    Article  Google Scholar 

  17. Matsuyama Y, Jürges H, Listl S. The causal effect of education on tooth loss: evidence from United Kingdom schooling reforms. Am J Epidemiol. 2019;188(1):87–95.

    Article  Google Scholar 

  18. Munz M, Willenborg C, Richter GM, Jockel-Schneider Y, Graetz C, Staufenbiel I, et al. A genome-wide association study identifies nucleotide variants at SIGLEC5 and DEFA1A3 as risk loci for periodontitis. Hum Mol Genet. 2017;26(13):2577–88.

    Article  Google Scholar 

  19. Nakano Y, Suzuki N, Kuwata F. Predicting oral malodour based on the microbiota in saliva samples using a deep learning approach. BMC Oral Health. 2018;18(1):128.

    Article  Google Scholar 

  20. Olshan AF, Diez Roux AV, Hatch M, Klebanoff MA. Epidemiology: back to the future. Am J Epidemiol. 2019;188(5):814–7.

    Google Scholar 

  21. Seitz MW, Haux C, Knaup P, Schubert I, Listl S. Approach towards an evidence-oriented knowledge and data acquisition for the optimization of interdisciplinary care in dentistry and general medicine. Stud Health Technol Inform. 2018;247:671–4.

    PubMed  Google Scholar 

  22. Shetty V, Yamamoto J, Yale K. Re-architecting oral healthcare for the 21st century. J Dent. 2018;74(Suppl 1):S10–4.

    Article  Google Scholar 

  23. Shungin D, Cornelis MC, Divaris K, Holtfreter B, Shaffer JR, Yu YH, et al. Using genetics to test the causal relationship of total adiposity and periodontitis: mendelian randomization analyses in the gene-lifestyle interactions and dental endpoints (GLIDE) consortium. Int J Epidemiol. 2015;44:638–50.

    Article  Google Scholar 

  24. Srivastava M, Kumar P, Pradhan L, Varadarajan S. Detection of tooth caries in bitewing radiographs using deep learning. arXiv. 2017;1711:07312.

    Google Scholar 

  25. Xu K, Lam M, Pang J, Gao X, Band C, Mathur P, et al. Multimodal machine learning for automated ICD coding. aXiv. 2018;1810:13348.

    Google Scholar 

  26. Walji MF. Electronic health records and data quality. J Dent Educ. 2019;83(3):263–4.

    Article  Google Scholar 

  27. Walji MF, Kalenderian E, Stark PC, White JM, Kookal KK, Phan D, Tran D, Bernstam EV, Ramoni R. BigMouth: a multi-institutional dental data repository. J Am Med Inform Assoc. 2014;21(6):1136–40.

    Article  Google Scholar 

  28. Park WJ, Park JB. History and application of artificial neural networks in dentistry. Eur J Dent. 2018;12(4):594–601.

    Google Scholar 

  29. Olson RS, Cava W, Mustahsan Z, Varik A, Moore JH. Data-driven advice for applying machine learning to bioinformatics problems. Pac Symp Biocomput. 2018;23:192–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Listl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Listl, S., Chiavegatto Filho, A.D.P. (2021). Big Data and Machine Learning. In: Peres, M.A., Antunes, J.L.F., Watt, R.G. (eds) Oral Epidemiology. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-50123-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50123-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50122-8

  • Online ISBN: 978-3-030-50123-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics