Skip to main content

The Role of Inflammation in Pancreatic Cancer

  • Chapter
  • First Online:
Book cover Inflammation and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 816))

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an extremely poor prognosis. Inflammatory processes have emerged as key mediators of pancreatic cancer development and progression. In genetically engineered mouse models, induction of pancreatitis accelerates PDAC development, and patients with chronic pancreatitis are known to have a higher risk of developing pancreatic cancer. In recent years, much effort has been given to identify the underlying mechanisms that contribute to inflammation-induced tumorigenesis. Many inflammatory pathways have been identified and inhibitors have been developed in order to prevent cancer development and progression. In this chapter, we discuss the role of inflammatory pathways in the initiation and progression of pancreatic cancer as well as the role of inhibitors used in treatment and prevention of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts SR et al (2005) PS-341 and gemcitabine in patients with metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group (NCCTG) randomized phase II study. Ann Oncol 16(10):1654–1661

    CAS  PubMed  Google Scholar 

  • Apte RN et al (2006) The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 25(3):387–408

    CAS  PubMed  Google Scholar 

  • Baldwin AS Jr (1996) The NF-kappaB and I kappaB proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    CAS  PubMed  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    CAS  PubMed  Google Scholar 

  • Beg AA, Baldwin AS Jr (1993) The I kappaB proteins: multifunctional regulators of Rel/NF-kappaB transcription factors. Genes Dev 7(11):2064–2070

    CAS  PubMed  Google Scholar 

  • Bromberg J, Darnell JE Jr (2000) The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19(21):2468–2473

    CAS  PubMed  Google Scholar 

  • Cantero D et al (1997) Enhanced expression of urokinase plasminogen activator and its receptor in pancreatic carcinoma. Br J Cancer 75(3):388–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao X et al (1996) Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol Cell Biol 16(4):1595–1603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z et al (1995) Signal-induced site-specific phosphorylation targets I kappaB alpha to the ubiquitin-proteasome pathway. Genes Dev 9(13):1586–1597

    CAS  PubMed  Google Scholar 

  • Chow JY et al (2010) TGF-beta downregulates PTEN via activation of NF-kappaB in pancreatic cancer cells. Am J Physiol Gastrointest Liver Physiol 298(2):G275–G282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chu J et al (2003) Potential involvement of the cyclooxygenase-2 pathway in the regulation of tumor-associated angiogenesis and growth in pancreatic cancer. Mol Cancer Ther 2(1):1–7

    CAS  PubMed  Google Scholar 

  • Chu GC et al (2007) Stromal biology of pancreatic cancer. J Cell Biochem 101(4):887–907

    CAS  PubMed  Google Scholar 

  • Conroy T et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New Engl J Med 364(19):1817–1825

    CAS  PubMed  Google Scholar 

  • Corcoran RB et al (2011) STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res 71(14):5020–5029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Daroqui MC et al (2012) TGF-beta autocrine pathway and MAPK signaling promote cell invasiveness and in vivo mammary adenocarcinoma tumor progression. Oncol Rep 28(2):567–575

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiDonato JA, Mercurio F, Karin M (2012) NF-kappaB and the link between inflammation and cancer. Immunol Rev 246(1):379–400

    PubMed  Google Scholar 

  • Ding XZ, Tong WG, Adrian TE (2001) Cyclooxygenases and lipoxygenases as potential targets for treatment of pancreatic cancer. Pancreatology 1(4):291–299

    CAS  PubMed  Google Scholar 

  • Dragovich T et al (2008) Gemcitabine plus celecoxib in patients with advanced or metastatic pancreatic adenocarcinoma: results of a phase II trial. Am J Clin Oncol 31(2):157–162

    CAS  PubMed  Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. New Engl J Med 315(26):1650–1659

    CAS  PubMed  Google Scholar 

  • Eibl G et al (2003) PGE(2) is generated by specific COX-2 activity and increases VEGF production in COX-2-expressing human pancreatic cancer cells. Biochem Biophys Res Commun 306(4):887–897

    CAS  PubMed  Google Scholar 

  • Eibl G et al (2005) Growth stimulation of COX-2-negative pancreatic cancer by a selective COX-2 inhibitor. Cancer Res 65(3):982–990

    CAS  PubMed  Google Scholar 

  • Ellenrieder V et al (2001) TGF-beta-induced invasiveness of pancreatic cancer cells is mediated by matrix metalloproteinase-2 and the urokinase plasminogen activator system. Int J Cancer 93(2):204–211

    CAS  PubMed  Google Scholar 

  • El-Rayes BF et al (2004) Cyclooxygenase-2-dependent and -independent effects of celecoxib in pancreatic cancer cell lines. Mol Cancer Ther 3(11):1421–1426

    CAS  PubMed  Google Scholar 

  • Erkan M (2013a) The role of pancreatic stellate cells in pancreatic cancer. Pancreatology 13(2):106–109

    CAS  PubMed  Google Scholar 

  • Erkan M (2013b) Understanding the stroma of pancreatic cancer: coevolution of the microenvironment with the epithelial carcinogenesis. J Pathol 231(1):4–7

    Google Scholar 

  • Erkan M (2013c) The role of pancreatic stellate cells in pancreatic cancer. Pancreatol official J. Int. Assoc Pancreatol 13(2):106–109

    CAS  Google Scholar 

  • Erkan M et al (2009) Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11(5):497–508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erkan M et al (2012) The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 9(8):454–467

    CAS  PubMed  Google Scholar 

  • Esposito I et al (2002) The stem cell factor-c-kit system and mast cells in human pancreatic cancer. Lab Invest 82(11):1481–1492

    CAS  PubMed  Google Scholar 

  • Esposito I et al (2004) Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol 57(6):630–636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farrow B et al (2004) Inflammatory mechanisms contributing to pancreatic cancer development. Ann Surg 239(6):763–769 (discussion 769-71)

    PubMed Central  PubMed  Google Scholar 

  • Feurino LW et al (2007) IL-6 stimulates Th2 type cytokine secretion and upregulates VEGF and NRP-1 expression in pancreatic cancer cells. Cancer Biol Ther 6(7):1096–1100

    CAS  PubMed  Google Scholar 

  • Frank DA (2007) STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett 251(2):199–210

    CAS  PubMed  Google Scholar 

  • Friess H et al (1993a) Enhanced expression of the type II transforming growth factor beta receptor in human pancreatic cancer cells without alteration of type III receptor expression. Cancer Res 53(12):2704–2707

    CAS  PubMed  Google Scholar 

  • Friess H et al (1993b) Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 105(6):1846–1856

    CAS  PubMed  Google Scholar 

  • Friess H et al (1999) Growth factors and cytokines in pancreatic carcinogenesis. Ann NY Acad Sci 880:110–121

    CAS  PubMed  Google Scholar 

  • Fukuda A et al (2011) Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19(4):441–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Funahashi H et al (2007) Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res 67(15):7068–7071

    CAS  PubMed  Google Scholar 

  • Gaspar NJ et al (2007) Inhibition of transforming growth factor beta signaling reduces pancreatic adenocarcinoma growth and invasiveness. Mol Pharmacol 72(1):152–161

    CAS  PubMed  Google Scholar 

  • Gillies RJ, Verduzco D, Gatenby RA (2012) Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer 12(7):487–493

    CAS  PubMed  Google Scholar 

  • Greco E et al (2005) Pancreatic cancer cells invasiveness is mainly affected by interleukin-1beta not by transforming growth factor-beta1. Int J Biol Markers 20(4):235–241

    CAS  PubMed  Google Scholar 

  • Greten FR et al (2002) Stat3 and NF-kappaB activation prevents apoptosis in pancreatic carcinogenesis. Gastroenterology 123(6):2052–2063

    CAS  PubMed  Google Scholar 

  • Guerra C et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11(3):291–302

    CAS  PubMed  Google Scholar 

  • Guerra C et al (2011) Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19(6):728–739

    CAS  PubMed  Google Scholar 

  • Gukovsky I et al (1998) Early NF-kappaB activation is associated with hormone-induced pancreatitis. Am J Physiol 275(6 Pt 1):G1402–G1414

    CAS  PubMed  Google Scholar 

  • Hahm KB et al (2000) Loss of TGF-beta signaling contributes to autoimmune pancreatitis. J Clin Invest 105(8):1057–1065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han B, Ji B, Logsdon CD (2001) CCK independently activates intracellular trypsinogen and NF-kappaB in rat pancreatic acinar cells. Am J Physiol Cell Physiol 280(3):C465–C472

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2011) NF-kappaB in immunobiology. Cell Res 21(2):223–244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hennig R et al (2002) 5-Lipoxygenase and leukotriene B(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. Am J Pathol 161(2):421–428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hennig R et al (2005) 5-Lipoxygenase, a marker for early pancreatic intraepithelial neoplastic lesions. Cancer Res 65(14):6011–6016

    CAS  PubMed  Google Scholar 

  • Hermanova M et al (2008) Expression of COX-2 is associated with accumulation of p53 in pancreatic cancer: analysis of COX-2 and p53 expression in premalignant and malignant ductal pancreatic lesions. Eur J Gastroenterol Hepatol 20(8):732–739

    CAS  PubMed  Google Scholar 

  • Huang B et al (2008) TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 27(2):218–224

    CAS  PubMed  Google Scholar 

  • Huang C et al (2010) Effects of IL-6 and AG490 on regulation of Stat3 signaling pathway and invasion of human pancreatic cancer cells in vitro. J Exp Clin Cancer Res 29:51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang H et al (2013) Activation of nuclear factor-kappaB in acinar cells increases the severity of pancreatitis in mice. Gastroenterology 144(1):202–210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ikebe M et al (2009) Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway. J Surg Oncol 100(8):725–731

    CAS  PubMed  Google Scholar 

  • Israel A (2010) The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2(3):a000158

    PubMed Central  PubMed  Google Scholar 

  • Ito H et al (2004) Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2. Cancer Res 64(20):7439–7446

    CAS  PubMed  Google Scholar 

  • Jacobetz MA et al (2013) Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62(1):112–120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karin M (1998) The NF-kappaB activation pathway: its regulation and role in inflammation and cell survival. Cancer J Sci Am 4(Suppl 1):S92–S99

    PubMed  Google Scholar 

  • Karin M et al (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310

    CAS  PubMed  Google Scholar 

  • Kawakami K, Kawakami M, Puri RK (2001) Overexpressed cell surface interleukin-4 receptor molecules can be successfully targeted for antitumor cytotoxin therapy. Crit Rev Immunol 21(1–3):299–310

    CAS  PubMed  Google Scholar 

  • Kleeff J, Korc M (1998) Up-regulation of transforming growth factor (TGF)-beta receptors by TGF-beta1 in COLO-357 cells. J Biol Chem 273(13):7495–7500

    CAS  PubMed  Google Scholar 

  • Kleeff J et al (1999a) Smad6 suppresses TGF-beta-induced growth inhibition in COLO-357 pancreatic cancer cells and is overexpressed in pancreatic cancer. Biochem Biophys Res Commun 255(2):268–273

    CAS  PubMed  Google Scholar 

  • Kleeff J et al (1999b) The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene 18(39):5363–5372

    CAS  PubMed  Google Scholar 

  • Kong R et al (2010) Downregulation of nuclear factor-kappaB p65 subunit by small interfering RNA synergizes with gemcitabine to inhibit the growth of pancreatic cancer. Cancer Lett 291(1):90–98

    CAS  PubMed  Google Scholar 

  • Kuwada Y et al (2003) Potential involvement of IL-8 and its receptors in the invasiveness of pancreatic cancer cells. Int J Oncol 22(4):765–771

    CAS  PubMed  Google Scholar 

  • Lee JY, Hennighausen L (2005) The transcription factor Stat3 is dispensable for pancreatic beta-cell development and function. Biochem Biophys Res Commun 334(3):764–768

    CAS  PubMed  Google Scholar 

  • Lesina M et al (2011) Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19(4):456–469

    CAS  PubMed  Google Scholar 

  • Li M et al (2008) Interleukin-8 increases vascular endothelial growth factor and neuropilin expression and stimulates ERK activation in human pancreatic cancer. Cancer Sci 99(4):733–737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H et al (2011) STAT3 knockdown reduces pancreatic cancer cell invasiveness and matrix metalloproteinase-7 expression in nude mice. PLoS ONE 6(10):e25941

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ling L, Cao Z, Goeddel DV (1998) NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci USA 95(7):3792–3797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liptay S et al (2003) Mitogenic and antiapoptotic role of constitutive NF-kappaB/Rel activity in pancreatic cancer. Int J Cancer 105(6):735–746

    CAS  PubMed  Google Scholar 

  • Lipton A et al (2010) Phase II trial of gemcitabine, irinotecan, and celecoxib in patients with advanced pancreatic cancer. J Clin Gastroenterol 44(4):286–288

    CAS  PubMed  Google Scholar 

  • Logsdon CD, Keyes L, Beauchamp RD (1992) Transforming growth factor-beta (TGF-beta 1) inhibits pancreatic acinar cell growth. Am J Physiol 262(2 Pt 1):G364–G368

    CAS  PubMed  Google Scholar 

  • Lowenfels AB et al (1993) Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. New Engl J Med 328(20):1433–1437

    CAS  PubMed  Google Scholar 

  • Lu Z et al (1997) Presence of two signaling TGF-beta receptors in human pancreatic cancer correlates with advanced tumor stage. Dig Dis Sci 42(10):2054–2063

    CAS  PubMed  Google Scholar 

  • Mace TA et al (2013) Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 73(10):3007–3018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malka D et al (2002) Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut 51(6):849–852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maniati E et al (2011) Crosstalk between the canonical NF-kappaB and Notch signaling pathways inhibits Ppargamma expression and promotes pancreatic cancer progression in mice. J Clin Invest 121(12):4685–4699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103(2):295–309

    CAS  PubMed  Google Scholar 

  • Matsuo Y et al (2004) Enhanced angiogenesis due to inflammatory cytokines from pancreatic cancer cell lines and relation to metastatic potential. Pancreas 28(3):344–352

    CAS  PubMed  Google Scholar 

  • Means AL et al (2005) Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 132(16):3767–3776

    CAS  PubMed  Google Scholar 

  • Melisi D et al (2008) LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther 7(4):829–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melisi D et al (2009) Secreted interleukin-1alpha induces a metastatic phenotype in pancreatic cancer by sustaining a constitutive activation of nuclear factor-kappaB. Mol Cancer Res 7(5):624–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michl P, Gress TM (2013) Current concepts and novel targets in advanced pancreatic cancer. Gut 62(2):317–326

    CAS  PubMed  Google Scholar 

  • Miyamoto M et al (1998) Effect of interleukin-8 on production of tumor-associated substances and autocrine growth of human liver and pancreatic cancer cells. Cancer Immunol Immunother 47(1):47–57

    CAS  PubMed  Google Scholar 

  • Miyamoto Y et al (2001) Interleukin-6 inhibits radiation induced apoptosis in pancreatic cancer cells. Anticancer Res 21(4A):2449–2456

    CAS  PubMed  Google Scholar 

  • Miyatsuka T et al (2006) Persistent expression of PDX-1 in the pancreas causes acinar-to-ductal metaplasia through Stat3 activation. Genes Dev 20(11):1435–1440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore MJ et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25(15):1960–1966

    CAS  PubMed  Google Scholar 

  • Morak MJ et al (2011) Phase II trial of Uracil/Tegafur plus leucovorin and celecoxib combined with radiotherapy in locally advanced pancreatic cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 98(2):261–264

    CAS  Google Scholar 

  • Neoptolemos JP et al (2010) Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA 304(10):1073–1081

    CAS  PubMed  Google Scholar 

  • Ochi A et al (2012) Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J Clin Invest 122(11):4118–4129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okada S et al (1998) Elevated serum interleukin-6 levels in patients with pancreatic cancer. Jpn J Clin Oncol 28(1):12–15

    CAS  PubMed  Google Scholar 

  • Olive KP et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866

    CAS  PubMed  Google Scholar 

  • Pan X et al (2008) Nuclear factor-kappaB p65/relA silencing induces apoptosis and increases gemcitabine effectiveness in a subset of pancreatic cancer cells. Clin Cancer Res 14(24):8143–8151

    CAS  PubMed  Google Scholar 

  • Patterson GI, Padgett RW (2000) TGF beta-related pathways. Roles in Caenorhabditis elegans development. Trends Genet 16(1):27–33

    CAS  PubMed  Google Scholar 

  • Prokopchuk O et al (2005) Interleukin-4 enhances proliferation of human pancreatic cancer cells: evidence for autocrine and paracrine actions. Br J Cancer 92(5):921–928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Provenzano PP et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3):418–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanford DE et al (2013) Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res 19(13):3404–3415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawai H et al (2006) Interleukin-1alpha enhances the aggressive behavior of pancreatic cancer cells by regulating the alpha6beta1-integrin and urokinase plasminogen activator receptor expression. BMC Cell Biol 7:8

    PubMed Central  PubMed  Google Scholar 

  • Schmiegel W et al (1993) Tumor necrosis factor alpha induces the expression of transforming growth factor alpha and the epidermal growth factor receptor in human pancreatic cancer cells. Proc Natl Acad Sci USA 90(3):863–867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sclabas GM et al (2003) Restoring apoptosis in pancreatic cancer cells by targeting the nuclear factor-kappaB signaling pathway with the anti-epidermal growth factor antibody IMC-C225. J Gastrointest Surg 7(1):37–43 (discussion 43)

    PubMed  Google Scholar 

  • Shuai K et al (1993) A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261(5129):1744–1746

    CAS  PubMed  Google Scholar 

  • Shuai K et al (1994) Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76(5):821–828

    CAS  PubMed  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30

    PubMed  Google Scholar 

  • Simeone DM, Pham T, Logsdon CD (2000) Disruption of TGFbeta signaling pathways in human pancreatic cancer cells. Ann Surg 232(1):73–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinle AU et al (1999) NF-kappaB/Rel activation in cerulein pancreatitis. Gastroenterology 116(2):420–430

    CAS  PubMed  Google Scholar 

  • Strieter RM et al (1995) Role of C-X-C chemokines as regulators of angiogenesis in lung cancer. J Leukoc Biol 57(5):752–762

    CAS  PubMed  Google Scholar 

  • Takamori H et al (2000) Autocrine growth effect of IL-8 and GROalpha on a human pancreatic cancer cell line, Capan-1. Pancreas 21(1):52–56

    CAS  PubMed  Google Scholar 

  • Talar-Wojnarowska R et al (2009) Clinical significance of interleukin-6 (IL-6) gene polymorphism and IL-6 serum level in pancreatic adenocarcinoma and chronic pancreatitis. Dig Dis Sci 54(3):683–689

    CAS  PubMed  Google Scholar 

  • Thompson JE et al (1995) I kappaB-beta regulates the persistent response in a biphasic activation of NF-kappaB. Cell 80(4):573–582

    CAS  PubMed  Google Scholar 

  • Verma IM et al (1995) Rel/NF-kappaB/I kappaB family: intimate tales of association and dissociation. Genes Dev 9(22):2723–2735

    CAS  PubMed  Google Scholar 

  • Villanueva A et al (1998) Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene 17(15):1969–1978

    CAS  PubMed  Google Scholar 

  • Von Hoff DD et al (2011) Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J Clin Oncol 29(34):4548–4554

    Google Scholar 

  • Winter JM et al (2012) Survival after resection of pancreatic adenocarcinoma: results from a single institution over three decades. Ann Surg Oncol 19(1):169–175

    PubMed  Google Scholar 

  • Wolf JS et al (2001) IL (interleukin)-1alpha promotes nuclear factor-kappaB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas. Clin Cancer Res 7(6):1812–1820

    CAS  PubMed  Google Scholar 

  • Xiong HQ et al (2004) NF-kappaB activity blockade impairs the angiogenic potential of human pancreatic cancer cells. Int J Cancer 108(2):181–188

    CAS  PubMed  Google Scholar 

  • Xu D et al (2010) Cancer cell-derived IL-1alpha promotes HGF secretion by stromal cells and enhances metastatic potential in pancreatic cancer cells. J Surg Oncol 102(5):469–477

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107(2):135–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yip-Schneider MT et al (2000) Cyclooxygenase-2 expression in human pancreatic adenocarcinomas. Carcinogenesis 21(2):139–146

    CAS  PubMed  Google Scholar 

  • Yoshikawa K et al (2012) Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head. Cancer Sci 103(11):2012–2020

    CAS  PubMed  Google Scholar 

  • Zhong Z, Wen Z, Darnell JE Jr (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264(5155):95–98

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Friess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Hausmann, S., Kong, B., Michalski, C., Erkan, M., Friess, H. (2014). The Role of Inflammation in Pancreatic Cancer. In: Aggarwal, B., Sung, B., Gupta, S. (eds) Inflammation and Cancer. Advances in Experimental Medicine and Biology, vol 816. Springer, Basel. https://doi.org/10.1007/978-3-0348-0837-8_6

Download citation

Publish with us

Policies and ethics