Skip to main content

Cerebrovascular reactivity and autonomic drive following traumatic brain injury

  • Conference paper

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 102))

Introduction The autonomic nervous system exerts tonic control on cerebral vessels, which in turn determine the autoregulation of cerebral blood flow. We hypothesize that the impairment of cerebral autoregulation following traumatic brain injury might be related to the acute failure of the autonomic system.

Methods This prospective, observational study included patients with severe traumatic brain injury requiring mechanical ventilation and invasive monitoring of intracra-nial pressure (ICP) and arterial blood pressure (ABP). Pressure reactivity index (PRx), a validated index of cerebrovascular reactivity, was continuously monitored using bedside computers. Autonomic drive was assessed by means of heart rate variability (HRV) using frequency domain analysis.

Findings Eighteen TBI patients were included in the study. Cerebrovascular reactivity impairment (PRx above 0.2) and autonomic failure (low spectral power of HRV) are significantly and independently associated with fatal out-come (P=0.032 and P<0.001, respectively). We observed a significant correlation between PRx and HRV spectral power (P<0.001). The high frequency component of HRV (HF, 0.15–0.4Hz) can be used to predict impaired autor-egulation (PRx>0.2), although sensitivity and specificity are low (ROC AUC=0.67; P=0.001). Conclusion Following traumatic brain injury, autonomic failure and cerebrovascular autoregulation impairment are both associated with fatal outcome. Impairment of cerebro-vascular autoregulation and autonomic drive are interdependent phenomena. With some refinements, HRV might become a tool for screening patients at risk for cerebral autoregulation derangement following TBI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Google Scholar 

  2. Aegerter P, Boumendil A, Retbi A, Minvielle E, Dervaux B, Guidet B (2005) SAPS II revisited. Intensive Care Med 31:416–423

    Article  PubMed  Google Scholar 

  3. Asil T, Utku U, Balci K, Uzunca I (2007) Changing cerebral blood flow velocity by transcranial Doppler during head up tilt in patients with diabetes mellitus. Clin Neurol Neurosurg 109:1–6

    Article  PubMed  Google Scholar 

  4. Balestreri M, Czosnyka M, Steiner LA, Hiler M, Schmidt EA, Matta B, Menon D, Hutchinson P, Pickard JD (2005) Association between outcome, cerebral pressure reactivity and slow ICP waves following head injury. Acta Neurochir Suppl 95:25–28

    Article  PubMed  CAS  Google Scholar 

  5. Cohen JA, Estacio RO, Lundgren RA, Esler AL, Schrier RW (2003) Diabetic autonomic neuropathy is associated with an increased incidence of strokes. Auton Neurosci 108:73–78

    Article  PubMed  Google Scholar 

  6. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–17 (discussion 17–19)

    Article  PubMed  CAS  Google Scholar 

  7. Daffertshofer M, Diehl RR, Ziems GU, Hennerici M (1991) Orthostatic changes of cerebral blood flow velocity in patients with autonomic dysfunction. J Neurol Sci 104:32–38

    Article  PubMed  CAS  Google Scholar 

  8. Frokjaer VG, Strauss GI, Mehlsen J, Knudsen GM, Rasmussen V, Larsen FS (2006) Autonomic dysfunction and impaired cerebral autoregulation in cirrhosis. Clin Auton Res 16:208–216

    Article  PubMed  Google Scholar 

  9. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101:E215–220

    PubMed  CAS  Google Scholar 

  10. Gulbenkian S, Uddman R, Edvinsson L (2001) Neuronal messengers in the human cerebral circulation. Peptides 22:995–1007

    Article  PubMed  CAS  Google Scholar 

  11. Hetzel A, Reinhard M, Guschlbauer B, Braune S (2003) Challenging cerebral autoregulation in patients with preganglionic autonomic failure. Clin Auton Res 13:27–35

    Article  PubMed  CAS  Google Scholar 

  12. Horowitz DR, Kaufmann H (2001) Autoregulatory cerebral vasodilation occurs during orthostatic hypotension in patients with primary autonomic failure. Clin Auton Res 11:363–367

    Article  PubMed  CAS  Google Scholar 

  13. Littell RC, Pendergast J, Natarajan R (2000) Modelling covari-ance structure in the analysis of repeated measures data. Stat Med 19:1793–1819

    Article  PubMed  CAS  Google Scholar 

  14. Ogawa M, Fukuyama H, Harada K, Kimura J (1998) Cerebral blood flow and metabolism in multiple system atrophy of the Shy-Drager syndrome type: a PET study. J Neurol Sci 158:173–179

    Article  PubMed  CAS  Google Scholar 

  15. Smielewski P, Czosnyka M, Steiner L, Belestri M, Piechnik S, Pickard JD (2005) ICM+: software for on-line analysis of bedside monitoring data after severe head trauma. Acta Neurochir Suppl 95:43–49

    Article  PubMed  CAS  Google Scholar 

  16. Steiner LA, Coles JP, Johnston AJ, Chatfield DA, Smielewski P, Fryer TD, Aigbirhio FI, Clark JC, Pickard JD, Menon DK, Czosnyka M (2003) Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke 34:2404–2409

    Article  PubMed  Google Scholar 

  17. Winchell RJ, Hoyt DB (1997) Analysis of heart-rate variability: a noninvasive predictor of death and poor outcome in patients with severe head injury. J Trauma 43:927–933

    Article  PubMed  CAS  Google Scholar 

  18. Zhang R, Iwasaki K, Zuckerman JH, Behbehani K, Crandall CG, Levine BD (2002) Mechanism of blood pressure and R—R variability: insights from ganglion blockade in humans. J Physiol 543:337–348

    Article  PubMed  CAS  Google Scholar 

  19. Zhang R, Zuckerman JH, Iwasaki K, Wilson TE, Crandall CG, Levine BD (2002) Autonomic neural control of dynamic cerebral autoregulation in humans. Circulation 106:1814–1820

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -J. Steiger

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this paper

Cite this paper

Lavinio, A. et al. (2008). Cerebrovascular reactivity and autonomic drive following traumatic brain injury. In: Steiger, H.J. (eds) Acta Neurochirurgica Supplements. Acta Neurochirurgica Supplementum, vol 102. Springer, Vienna. https://doi.org/10.1007/978-3-211-85578-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-85578-2_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-85577-5

  • Online ISBN: 978-3-211-85578-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics