Skip to main content

A New Generation Computer-controlled Imaging Sensor-based Hand-held Microscope for Quantifying Bedside Microcirculatory Alterations

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2014

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM,volume 2014))

Abstract

The microcirculation is the final station for oxygen transport to the tissues and plays a key role in the cardiovascular system [1]. The microcirculation includes all the vessels that are smaller than 100 micrometer in diameter and has a crucial role in blood and tissue interactions in physiological and pathophysiological states. Many studies have demonstrated that persistent microcirculatory alterations that are unresponsive to therapy are independently associated with adverse outcome, especially in septic patients (e. g., [1–5]). Additionally, these microcirculatory alterations are independent of systemic hemodynamic variables; therefore, microcirculatory observations are a potentially important extension of conventional systemic hemodynamic monitoring of critically ill patients [3,4]. These findings have been made possible by introduction of hand-held microscopes to surgery and intensive care and in this chapter we present the latest generation of these hand-held devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ince C (2005) The microcirculation is the motor of sepsis. Crit Care 9(4):S13–S19

    Article  PubMed  Google Scholar 

  2. De Backer D, Donadello K, Sakr Y et al (2013) Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 41:791–799

    Article  PubMed  Google Scholar 

  3. Top AP, Ince C, de Meij N, van Dijk M, Tibboel D (2011) Persistent low microcirculatory vessel density in nonsurvivors of sepsis in the pediatric intensive care. Crit Care Med 39:8–19

    Article  PubMed  Google Scholar 

  4. Edul VS, Enrico C, Laviolle B, Vazquez AR, Ince C, Dubin A (2012) Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med 40:1443–1448

    Article  PubMed  Google Scholar 

  5. Trzeciak S, Dellinger RP, Parrillo JE et al (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49:88–98

    Article  PubMed  Google Scholar 

  6. Groner W, Winkelman JW, Harris AG et al (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212

    Article  CAS  PubMed  Google Scholar 

  7. Mathura KR, Bouma GJ, Ince C (2001) Abnormal microcirculation in brain tumours during surgery. Lancet 358:1698–1699

    Article  CAS  PubMed  Google Scholar 

  8. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C (2007) Sidestream dark field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15:15101–15114

    Article  CAS  PubMed  Google Scholar 

  9. Mik EG, Johannes T, Fries M (2009) Clinical microvascular monitoring: a bright future without a future? Crit Care Med 37:2980–2981

    Article  PubMed  Google Scholar 

  10. Sherman H, Klausner S, Cook WA (1971) Incident dark-field illumination: a new method for microcirculatory study. Angiology 22:295–303

    Article  CAS  PubMed  Google Scholar 

  11. DonatiA, Tibboel D, Ince C (2013) Towards integrative physiological monitoring of the critically ill: from cardiovascular to microcirculatory and cellular function monitoring at the bedside. Crit Care 17(1):5

    Google Scholar 

  12. Klijn E, Den Uil CA, Bakker J, Ince C (2009) The heterogeneity of the microcirculation in critical illness. Clin Chest Med 29:643–654

    Article  Google Scholar 

  13. van Golen RF, van Gulik TM, Heger M (2012) Free Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/reperfusion injury. Free Rad Biol Med 52:1382–1402

    Article  CAS  PubMed  Google Scholar 

  14. Boerma EC, Ince (2010) The role of vasoactive agents in the resuscitation of microvascular perfusion and tissue oxygenation in critically ill patients. Intensive Care Med 36:2004–2018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 87:198–210

    Article  CAS  PubMed  Google Scholar 

  16. Vincent JL, Ince C, Bakker J (2012) Clinical review: Circulatory shock – an update: a tribute to Professor Max Harry Weil. Crit Care 16:239–243

    Article  PubMed  Google Scholar 

  17. American College of Chest Physician, Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

    Article  Google Scholar 

  18. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:445–447

    Article  Google Scholar 

  19. Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJC (1971) A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 27:392–396

    Article  CAS  PubMed  Google Scholar 

  20. Bland RD, Shoemaker WC, Abraham E, Cobo JC (1985) Hemodynamic and oxygen transport patterns in surviving and nonsurviving postoperative patients. Crit Care Med 13:85–90

    Article  CAS  PubMed  Google Scholar 

  21. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    Article  CAS  PubMed  Google Scholar 

  22. Hayes MA, Timmins AC, Yau EHS, Palazzo M, Hinds CJ, Watson D (1994) Elevtion of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722

    Article  CAS  PubMed  Google Scholar 

  23. Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 277:H1532–H1539

    Google Scholar 

  24. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL (2004) Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147:91–99

    Article  PubMed  Google Scholar 

  25. Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC (2013) Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med 39:612–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Atasever B, Boer C, Speekenbrink R et al (2011) Cardiac displacement during off-pump coronary artery bypass grafting surgery: effect on sublingual microcirculation and cerebral oxygenation. Interact Cardiovasc Thorac Surg 13:573–577

    Article  PubMed  Google Scholar 

  27. Hernandez G, Bruhn A, Ince C (2013) Microcirculation in sepsis: new perspectives. Curr Vasc Pharmacol 11:161–169

    CAS  PubMed  Google Scholar 

  28. Xu J, Ma L, Sun S, Lu X, Wu X, Li Z, Tang W (2013) Fluid resuscitation guided by sublingual partial pressure of carbon dioxide during hemorrhagic shock in a porcine model. Shock 39:361–365

    Article  CAS  PubMed  Google Scholar 

  29. Schultz SG (2002) William Harvey and the circulation of the blood: the birth of a scientific revolution and modern physiology. News Physiol Sci 17:175–180

    PubMed  Google Scholar 

  30. Harvey W (1628) Exercitato anatomica de motu cordis et sanguinis in animalibus. Francofurti

    Google Scholar 

  31. Malpighi M (1661) De pulmonibus observationes anatomicae. , Bologna

    Google Scholar 

  32. Ford BJ (1995) First steps in experimental microscopy, Leeuwenhoek as practical scientist. The Microscope 43:47–57

    Google Scholar 

  33. Krahl VE (1962) Observations on the pulmonary alveolus and its capillary circulation in the living rabbit. Anat Rec 142:350

    Google Scholar 

  34. Slaaf DW, Tangelder GJ, Reneman RS, Jaeger K, Bollinger A (1987) A versatile incident illuminator for intravital microscopy. Int J Microcirc Clin Exp 6:391–397

    CAS  PubMed  Google Scholar 

  35. Mathura KR, Vollebrecht KC, Boer K, de Graaf JC, Ubbink DT, Ince C (2001) Comparison of OPS imaging to intravital capillarosopy of nail fold microcirculation. J Appl Physiol 91:74–78

    CAS  PubMed  Google Scholar 

  36. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104

    Article  PubMed  Google Scholar 

  37. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–1396

    Article  PubMed  Google Scholar 

  38. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C (2007) Sidestream dark field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express 15:15101–15114

    Article  CAS  PubMed  Google Scholar 

  39. Dobbe JGG, Streekstra GJ, Atasever B, van Zijderveld R, Ince C (2008) Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med Biol Eng Comput 46:659–670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sallisalmi M, Oksala N, Pettilä V, Tenhunen J (2012) Evaluation of sublingual microcirculatory blood flow in the critically ill. Acta Anaesthesiol Scand 56:298–306

    Article  CAS  PubMed  Google Scholar 

  41. Massey M, LaRochelle E, Najarro G et al (2013) The microcirculation image quality score: development and preliminary evaluation of a proposed approach to grading quality of image acquisition for bedside videomicroscopy. J Crit Care 28:913–917

    Article  PubMed  Google Scholar 

  42. De Backer D, Hollenberg S, Boerma C et al (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11:R101

    Article  PubMed  Google Scholar 

  43. Boerma EC, Mathura KR, van der Voort PHJ, Spronk PE, Ince C (2005) Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Critical Care 9:R601–R606

    Article  PubMed  Google Scholar 

  44. Elbers PE, Ince C (2006) Mechanisms of critical illness: Classifying microcirculatory flow abnormalities in distributive shock. Crit Care 10:221–299

    Article  PubMed  Google Scholar 

  45. Lindert J, Werner J, Redlin M, Kuppe H, Habazettl H, Pries AR (2002) OPS imaging of human circulation: a short technical report. J Vasc Res 39:368–372

    Article  CAS  PubMed  Google Scholar 

  46. Bezemer R, Dobbe JG, Bartels SA et al (2011) Rapid automatic assessment of microvascular density in sidestream dark field images. Med Biol Eng Comput 49:1269–1278

    Article  PubMed Central  PubMed  Google Scholar 

  47. Bezemer R, Bartels SA, Bakker J, Ince C (2012) Clinical review: Clinical imaging of the sublingual microcirculation in the critically ill– where do we stand? Crit Care 16(3):224

    Article  PubMed  Google Scholar 

  48. Milstein DMJ, Romay E, Ince C (2012) A novel computer-controlled high resolution video microscopy imaging system enables measuring mucosal subsurface focal depth for rapid acquisition of oral microcirculation video images. Intensive Care Med 38(1):S271

    Google Scholar 

  49. Weil MH, Tang W (2007) Welcoming a new era of hemodynamic monitoring: expanding from the macro to the microcirculation. Crit Care Med 35:1204–1205

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ince .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aykut, G., Ince, Y., Ince, C. (2014). A New Generation Computer-controlled Imaging Sensor-based Hand-held Microscope for Quantifying Bedside Microcirculatory Alterations. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2014. Annual Update in Intensive Care and Emergency Medicine, vol 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-03746-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03746-2_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03745-5

  • Online ISBN: 978-3-319-03746-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics