Skip to main content

Bioactive Phytochemicals from Canadian Boreal Forest Species Used Traditionally by Eastern James Bay Cree Aboriginals to Treat Diabetes Mellitus

  • Chapter
  • First Online:
Phytochemicals – Biosynthesis, Function and Application

Abstract

Type-2 diabetes mellitus is a chronic metabolic disorder characterized by impaired insulin secretion and sensitivity, and is more pronounced among some indigenous populations due to their transition from traditional to modern diets, as well as their cultural disconnection from modern pharmacological treatment regimes. This is the case for the Cree Nations of Eeyou Istchee (CEI) of northern Quebec, where the age-adjusted prevalence of disease reached 29 %. The Canadian Institutes of Health Research Team in Aboriginal Antidiabetic Medicines is a multidisciplinary team aimed at alleviating the impact of this disease in the CEI by using a culturally adapted approach. A quantitative ethnobotanical study of traditional medicines conducted by our team in collaboration with Healers and Elders resulted in the identification of several potential antidiabetic plants. The crude extracts of these plants were tested in a comprehensive platform of in vitro bioassays designed to detect potential antidiabetic biological activities including: stimulation of glucose uptake in C2C12 muscle cells and potentiation of differentiation of 3T3-L1 pre-adipocytes indicating enhanced insulin sensitivity. These procedures allowed us to identify the most significant species from the biological activity viewpoint, and they were considered for further phytochemical characterization. The present report provides a comprehensive summary of the major biological activities and phytochemistry of these key Canadian boreal forest plants that demonstrated significant ethnobotanical evidence of antidiabetic activity and associated symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NMR:

Nuclear magnetic resonance spectroscopy

COSY:

Homonuclear correlation spectroscopy

DEPT:

Distortionless enhancement by polarization transfer

NOESY:

Nuclear Overhauser effect spectroscopy

HMQC:

Heteronuclear multiple-quantum correlation spectroscopy

HMBC:

Heteronuclear multiple-bond correlation spectroscopy

HRMS:

High resolution mass spectrometry

UV:

Ultraviolet spectroscopy

IR:

Infrared spectroscopy

References

  1. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  2. Roglic G, Unwin N (2010) Mortality attributable to diabetes: estimates for the year 2010. Diabetes Res Clin Pr 87:15–19

    Article  Google Scholar 

  3. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pr 87:4–14

    Article  CAS  Google Scholar 

  4. Whiting D, Unwin N, Roglic G (2010) Diabetes: equity and social determinants. In: Blas E, Sivasankara Kurup A (eds) Priority public health conditions: from learning to action on social determinants of health. WHO, Geneva, pp 77–94

    Google Scholar 

  5. Kuzmina E, Dannenbaum D, Torrie J (2010) Cree Diabetes Information System (CDIS) 2009 Annual report. Cree Board of Health and Social Services of James Bay. Chisasibi, Québec

    Google Scholar 

  6. Leduc C, Coonishish J, Haddad PS, Cuerrier A (2006) Plants used by the Cree Nation of Eeyou Istchee (Quebec, Canada) for the treatment of diabetes: a novel approach in quantitative ethnobotany. J Ethnopharmacol 105:55–63

    Article  CAS  PubMed  Google Scholar 

  7. Haddad PS, Musallam L, Martineau LC, Harris C, Lavoie L, Arnason JT, Foster B, Bennett S, Johns T, Cuerrier A, Coon Come E, Coon Come R, Diamond J, Etapp L, Etapp C, George J, Husky Swallow C, Husky Swallow J, Jolly M, Kawapit A, Mamianskum E, Petagumskum J, Petawabano S, Petawabano L, Weistche A, Badawi A (2012) Comprehensive evidence-based assessment and prioritization of potential antidiabetic medicinal plants: a case study from Canadian Eastern James Bay Cree traditional medicine. Evid Based Complementary Altern Med. doi:10.1155/2012/893426

    Google Scholar 

  8. Spoor DC, Martineau LC, Leduc C, Benhaddou-Andaloussi A, Meddah B, Harris C, Burt A, Fraser MH, Coonishish J, Joly E, Cuerrier A, Bennett SA, Johns T, Prentki M, Arnason JT, Haddad PS (2006) Selected plant species from the Cree pharmacopoeia of northern Quebec possess anti-diabetic potential. Can J Physiol Pharmacol 84:847–858

    Article  CAS  PubMed  Google Scholar 

  9. Harbilas D, Martineau LC, Harris CS, Adeyiwola-Spoor DC, Saleem A, Lambert J, Caves D, Johns T, Prentki M, Cuerrier A, Arnason JT, Bennett SA, Haddad PS (2009) Evaluation of the antidiabetic potential of selected medicinal plant extracts from the Canadian boreal forest used to treat symptoms of diabetes: part II. Can J Physiol Pharmacol 87:479–492

    Article  CAS  PubMed  Google Scholar 

  10. Fraser MH, Cuerrier A, Haddad PS, Arnason JT, Owen PL, Johns T (2007) Medicinal plants of Cree communities (Québec, Canada): antioxidant activity of plants used to treat type 2 diabetes symptoms. Can J Physiol Pharmacol 85:1200–1214

    Article  CAS  PubMed  Google Scholar 

  11. Hosie RC (1979) Native trees of Canada. Fitzhenry & Whiteside, Toronto

    Google Scholar 

  12. Leighton AL (1985) Wild plant use by the woods Cree (Nihithawak) of East-Central Saskatchewan. National Museums of Canada, Ottawa

    Google Scholar 

  13. Marshall S, Chikamish-Napash L, Lavallée C (2006) The gift of healing, health problems and their treatments. Cree Board of Health and Social Services of James Bay. Chisasibi

    Google Scholar 

  14. Guerrero-Analco JA, Martineau L, Saleem A, Madiraju P, Muhammad A, Durst T, Haddad PS, Arnason JT (2010) Bioassay-guided isolation of the antidiabetic principle from Sorbus decora (Rosaceae) used traditionally by the Eeyou Istchee Cree First Nations. J Nat Prod 73:1519–1523

    Article  CAS  PubMed  Google Scholar 

  15. Vianna R, Brault A, Martineau LC, Couture R, Arnason JT, Haddad PS (2011) In vivo anti-diabetic activity of the ethanolic crude extract of Sorbus decora C.K.Schneid. (Rosaceae): A medicinal plant used by Canadian James Bay Cree Nations to treat symptoms related to diabetes. Evid Based Complement Alternat Med. doi:10.1093/ecam/nep158

    Google Scholar 

  16. Holmes EM (1884) Medicinal plants used by the Cree Indians, Hudson’s Bay territory. Pharm J Trans 15:302–304

    Google Scholar 

  17. Marshall S, Diamond L, Blackned S (1989) Healing ourselves, helping ourselves: the medicinal use of plants and animals by the people of Waskaganish. Cree Regional Authority, Val d’Or

    Google Scholar 

  18. Siegfried EV (1994) Plant use by the Wabasca/Desmarais Cree, Ethnobotany of the Northern Cree of Wabasca/Desmarais. National Library of Canada, Ottawa, pp 99–169

    Google Scholar 

  19. Marles RJ, Clavelle C, Monteleone L, Tays N, Burns D (2000) Aboriginal plant use in Canada’s Northwest boreal forest. University of British Columbia Press, Vancouver, pp 368

    Google Scholar 

  20. Arnason JT, Hebda R, Johns T (1981) Use of plants for food and medicine by Native Peoples of Eastern Canada. Can J Botany 59:2189–2325

    Article  Google Scholar 

  21. Black MJ (1980) Algonquin Ethnobotany: an interpretation of Aboriginal adaptation in Southwestern Quebec. National Museums of Canada, Ottawa

    Google Scholar 

  22. Shang N, Guerrero-Analco JA, Musallam L, Saleem A, Muhammad A, Walshe-Roussel B, Cuerrier A, Arnason JT, Haddad PS (2012) Adipogenic constituents from the bark of Larix laricina du Roi (K. Koch; Pinaceae), an important medicinal plant used traditionally by the Cree of Eeyou Istchee (Quebec, Canada) for the treatment of type 2 diabetes symptoms. J Ethnopharmacol 141:1051–1057

    Article  CAS  PubMed  Google Scholar 

  23. Pichette A, Lavoie S, Morin P, Mshvildadze V, Lebrun M, Legault J (2006) New labdane diterpenes from the stem bark of Larix laricina. Chem Pharm Bull 54:1429–1432

    Article  CAS  PubMed  Google Scholar 

  24. Suresh-Babu K, Tiwari AK, Srinivas PV, Ali AZ, China-Raju B, Rao JM (2004) Yeast and mammalian alpha-glucosidase inhibitory constituents from Himalayan rhubarb Rheum emodi Wall.ex Meisson. Bioorg Med Chem Lett 14:3841–3845

    Article  CAS  PubMed  Google Scholar 

  25. Harbilas D, Vallerand D, Brault A, Saleem A, Arnason JT, Musallam L, Haddad PS (2012) Larix laricina, an Antidiabetic alternative treatment from the Cree of Northern Quebec pharmacopoeia, decreases glycemia and improves insulin sensitivity in vivo. Evid Based Complement Alternat Med 2012:296432. doi:10.1155/2012/296432

    PubMed Central  PubMed  Google Scholar 

  26. Schnell D (2003) Carnivorous plants of the United States and Canada, 2nd ed., Timber Press, Oregon

    Google Scholar 

  27. Muhammad A, Guerrero-Analco JA, Martineau LC, Musallam L, Madiraju P, Nachar A, Saleem A, Haddad PS, Arnason JT (2012) Antidiabetic compounds from Sarracenia purpurea used traditionally by the Eeyou Istchee Cree First Nation. J Nat Prod 75:1284–1288

    Article  CAS  PubMed  Google Scholar 

  28. Eid HM, Martineau LC, Saleem S, Muhammad A, Vallerand D, Benhaddou-Andaloussi A, Nistor L, Afshar A, Arnason JT, Haddad PS (2010) Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Mol Nutr Food Res 54:991–1003

    Article  CAS  PubMed  Google Scholar 

  29. Fang XK, Gao J, Zhu DN (2008) Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci 82:615–622

    Article  CAS  PubMed  Google Scholar 

  30. Leila Z, Angela R, Poliane F, Maria SRB, Moacir GP, Laura DL, FaÌtima R, Silva MB (2008) Insulinomimetic effect of kaempferol 3-neohesperidoside on the rat soleus muscle. J Nat Prod 71:532–535

    Article  Google Scholar 

  31. Shinji O, Tadahi A, Toshifumi H, Takayuki S (1984) The structures of four diarylheptanoid glycosides from the female flowers of Alnus serrulatoides. J Chem Soc [Perkin I] 8:1635–1642

    Google Scholar 

  32. Lee KK, Bahler BD, Hofmann GA, Mattern MR, Johnson RK, Kingston DG (1998) Isolation and structure elucidation of new PKCa inhibitors from Pinus flexilis. J Nat Prod 61:1407–1409

    Google Scholar 

  33. Ruben FG, Richard FH, Jie C, Joseph JK (1998) Two acylated diarylheptanoid glycosides from Red Alder bark. J Nat Prod 61:1292–1294

    Article  Google Scholar 

  34. Kuroyanagi M, Shimomae M, Nagashima Y, Muto N, Okuda T, Kawahara N, Nakane T, Sano T (2005) New diarylheptanoids from Alnus japonica and their antioxidant activity. Chem Pharm Bull 53:1519–1523

    Article  CAS  PubMed  Google Scholar 

  35. Martineau LC, Muhammad A, Saleem S, Hervé J, Harris CS, Arnason JT, Haddad PS (2010) Anti-adipogenic Activities of Alnus incana and Populus balsamifera Bark Extracts, Part II: Bioassay-guided Identification of Actives Salicortin and Oregonin. Planta Med 76:1519–1524

    Article  CAS  PubMed  Google Scholar 

  36. Mattes BR, Clausen TP, Reichardt PB (1987) Volatile constituents of balsam poplar: the phenol glycoside connection. Phytochemistry 26:1361–1366

    Article  CAS  Google Scholar 

  37. Zazworsky D, Nelson-Bolin J, Gaubeca VB (2005) Handbook of diabetes management. Springer, New York

    Book  Google Scholar 

  38. Spoor DA, Martineau LC, Arnason JT, Haddad PS (2007) Mechanisms of anti-diabetic activity of extracts of selected medicinal plant species of the Canadian boreal forest. Diabetes Vasc Dis Res 4:156

    Google Scholar 

  39. Martineau LC, Adeyiwola-Spoor DC, Vallerand D, Afshar A, Arnason JT, Haddad PS (2010) Enhancement of muscle cell glucose uptake by medicinal plant species of Canada’s native populations is mediated by a common, metformin-like mechanism. J Ethnopharmacol 127:396–406

    Article  PubMed  Google Scholar 

  40. Harris CS, Burt AJ, Saleem A, Le PM, Martineau LC, Haddad PS, Bennett SA, Arnason JT (2007) A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifolium. Phytochem Anal 18:161–169

    Article  CAS  PubMed  Google Scholar 

  41. Mcintyre KL, Harris CS, Saleem A, Beaulieu LP, Ta CA, Haddad PS, Arnason JT (2009) Seasonal phytochemical variation of anti-glycation principles in lowbush blueberry (Vaccinium angustifolium). Planta Med 75:286–292

    Article  CAS  PubMed  Google Scholar 

  42. Ferrier J, Djeffal S, Morgan HP, Vander Kloet S, Redzic S, Cuerrier A, Balick MJ, Arnason JT (2012) Anti-glycation activity of Vaccinium spp. (Ericaceae) from the Sam Vander Kloet Collection for the treatment of type II diabetes. Botany 90:401–406

    Article  CAS  Google Scholar 

  43. Misra P (2008) AMP activated protein kinase: a next generation target for total metabolic control. Expert Opin Ther Targets 12:91–100

    CAS  PubMed  Google Scholar 

  44. Viollet B, Lantier L, Devin-Leclerc J, Hebrard S, Amouyal C, Mounier R, Foretz M, Andreelli F (2009) Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front Biosci 14:3380–3400

    Article  CAS  Google Scholar 

  45. Winder WW, Thomson DM (2007) Cellular energy sensing and signaling by AMP-activated protein kinase. Cell Biochem Biophys 47:332–347

    Article  CAS  PubMed  Google Scholar 

  46. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L, Andreelli F (2006) Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 574:41–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Thong FS, Bilan PJ, Klip A (2007) The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP activated protein kinase signals regulating GLUT4 traffic. Diabetes 56:414–423

    Article  CAS  PubMed  Google Scholar 

  49. Cartee GD, Wojtaszewski JF (2007) Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl Physiol Nutr Metab 32:557–566

    Article  CAS  PubMed  Google Scholar 

  50. Winder WW (2001) Energy-sensing and signaling by AMPactivated protein kinase in skeletal muscle. J Appl Physiol 91:1017–1028

    CAS  PubMed  Google Scholar 

  51. Reznick RM, Shulman GI (2006) The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol 574:33–39

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Mcgee SL, Hargreaves M (2008) AMPK and transcriptional regulation. Front Biosci 13:3022–3033

    Article  CAS  PubMed  Google Scholar 

  53. Bischoff SC (2008) Quercetin: potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care 11:733–740

    Article  CAS  PubMed  Google Scholar 

  54. Eid HM, Ouchfoun M, Brault A, Vallerand D, Mussalam L, Arnason JT, Haddad PS (2011) W9, a medicinal plant from the pharmacopeia of the Eastern James Bay Cree, exhibits anti-diabetic activities in two mouse model of diabetes. Planta Med 77-PF7. doiI:10.1055/s-0031–1282395

    Google Scholar 

  55. Kaushik D, O’Fallon K, Priscilla M, Clarkson PM, Dunne CP, Conca KR, Michniak-Kohn B (2012) Comparison of Quercetin Pharmacokinetics following oral supplementation in humans. J Food Sci 77:H231–H238

    Google Scholar 

  56. Chartier Ch, Staub H, Goetz P (2005) Monographie médicalisée: Thé du Labrador (lédon du Groenland) (Ledum groenlandicum Oeder). Phytothérapie 2:84–87

    Google Scholar 

  57. Zieba RA (1992) Healing and healers among the northern Cree. National Library of Canada, Ottawa

    Google Scholar 

  58. Beardsley G (1941) Notes on Cree medicines, based on collections made by I. Cowie in 1892. Pap Mich Acad Sci Arts Lett 28:492

    Google Scholar 

  59. Saleem A, Harris CS, Asim M, Cuerrier A, Martineau L, Haddad PS, Arnason JT (2010) A RP-HPLC-DAD-APCI/MSD method for the characterisation of medicinal Ericaceae used by the Eeyou Istchee Cree First Nations. Phytochem Anal 21:328–339

    Article  CAS  PubMed  Google Scholar 

  60. Black PL, Arnason JT, Cuerrier A (2008) Medicinal plants used by the Inuit of Qikiqtaaluk (Baffin Island, Nunavut). Botany 86:157–163

    Article  Google Scholar 

  61. Black P, Saleem A, Dunford A, Guerrero-Analco J, Walshe-Roussel B, Haddad P, Cuerrier A, Arnason JT (2011) Seasonal variation of phenolic constituents and medicinal activities of Northern Labrador tea, Rhododendron tomentosum ssp. subarcticum, an Inuit and Cree First Nations traditional medicine. Planta Med 77:1655–1662

    Article  CAS  PubMed  Google Scholar 

  62. Surveswaran S, Cai YZ, Xing J, Corke H, Sun M (2010) Antioxidant properties and principal phenolic phytochemicals of Indian medicinal plants from Asclepiadoideae and Periplocoideae. Nat Prod Res 24:206–221

    Article  CAS  PubMed  Google Scholar 

  63. Mustafa RA, Abdul-Hamid A, Mohamed S, Bakar FA (2010) Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. J Food Sci 75:C28–C35

    Article  CAS  PubMed  Google Scholar 

  64. Winrow VR, Winyard PG, Morris CJ, Blake DR (1993) Free radicals in inflammation: second messengers and mediators of tissue destruction. Br Med Bull 49:506–522

    CAS  PubMed  Google Scholar 

  65. D’acquisto F, May MJ, Ghosh S (2002) Inhibition of nuclear factor kappa B (NFkB): an emerging theme in anti-inflammatory therapies. Mol Interv 2:22–35

    Article  PubMed  Google Scholar 

  66. Cuerrier A, Downing A, Patterson E, Haddad PS (2012) Aboriginal antidiabetic plant project with the James Bay Cree of Québec: an insightful collaboration. J Enterp Comm People Places Global Econ 6:251–270

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Team Grant from the Canadian Institutes of Health Research (CIHR Team in Aboriginal Antidiabetic Medicines) to PSH, JTA and AC and was conducted with the consent and support of the Cree communities of Mistissini, Whapmagoostui, Nemaska, Waskaganish, Weminji and Oujé-Bougoumou as well as of the Cree Board of Health and Social Services of James Bay (Quebec, Canada). Very special thanks are due to Elizabeth Coon Come, Mable Gunner, Charlotte Husky Swallow, Johnny Husky Swallow, Ronny Loon and Girty Loon from the Cree Nation of Mistissini, to Eliza Kawapit, Abraham Mamianskum, Andrew Natachequan, Maggie Natachequan and John Petagumskum from Whapmagoostui First Nation, as well as 54 other Elders and Healers who kindly agreed to be interviewed. They made this manuscript possible by allowing us to use, for the purposes of this research, their knowledge relating to medicinal plants, transmitted to them by their Elders. Their trust has also enabled a useful exchange between Indigenous knowledge and Western science. We also wish to dedicate this paper to the memory of the Elders that have passed away in the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Arnason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guerrero-Analco, J. et al. (2014). Bioactive Phytochemicals from Canadian Boreal Forest Species Used Traditionally by Eastern James Bay Cree Aboriginals to Treat Diabetes Mellitus. In: Jetter, R. (eds) Phytochemicals – Biosynthesis, Function and Application. Recent Advances in Phytochemistry, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-04045-5_4

Download citation

Publish with us

Policies and ethics