Skip to main content

Role of Ezrin in Osteosarcoma Metastasis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 804))

Abstract

The cause of death for the vast majority of cancer patients is the development of metastases at sites distant from that of the primary tumor. For most pediatric sarcoma patients such as those with osteosarcoma (OS), despite successful management of the primary tumor through multimodality approaches, the development of metastases, commonly to the lungs, is the cause of death. Significant improvements in long-term outcome for these patients have not been seen in more than 30 years. Furthermore, the long-term outcome for patients who present with metastatic disease is grave [1–5]. New treatment options are needed.

Opportunities to improve outcomes for patients who present with metastases and those at-risk for progression and metastasis require an improved understanding of cancer progression and metastasis. With this goal in mind we and others have identified ezrin as a metastasis-associated protein that associated with OS and other cancers. Ezrin is the prototypical ERM (Ezrin/Radixin/Moesin) protein family member. ERMs function as linker proteins connecting the actin cytoskeleton and the plasma membrane. Since our initial identification of ezrin in pediatric sarcoma, an increasing understanding the role of ezrin in metastasis has emerged. Briefly, ezrin appears to allow metastatic cells to overcome a number of stresses experienced during the metastatic cascade, most notably the stress experienced as cells interact with the microenvironment of the secondary site. Cells must rapidly adapt to this environment in order to survive. Evidence now suggests a connection between ezrin expression and a variety of mechanisms linked to this important cellular adaptation including the ability of metastatic cells to initiate the translation of new proteins and to allow the efficient generation of ATP through a variety of sources. This understanding of the role of ezrin in the biology of metastasis is now sufficient to consider ezrin as an important therapeutic target in osteosarcoma patients. This chapter reviews our understanding of ezrin and the related ERM proteins in normal tissues and physiology, summarizes the expression of ezrin in human cancers and associations with clinical parameters of disease progression, reviews reports that detail a biological understanding of ezrin’s role in metastatic progression, and concludes with a rationale that may be considered to target ezrin and ezrin biology in osteosarcoma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369(9574):1742–1757

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Ferrari S, Briccoli A, Mercuri M, Bertoni F, Picci P, Tienghi A, Del Prever AB, Fagioli F, Comandone A, Bacci G (2003) Postrelapse survival in osteosarcoma of the extremities: prognostic factors for long-term survival. J Clin Oncol 21(4):710–715

    PubMed  Google Scholar 

  3. Harris MB, Gieser P, Goorin AM, Ayala A, Shochat SJ, Ferguson WS, Holbrook T, Link MP (1998) Treatment of metastatic osteosarcoma at diagnosis: a Pediatric Oncology Group Study. J Clin Oncol 16(11):3641–3648

    PubMed  CAS  Google Scholar 

  4. Hawkins DS, Arndt CA (2003) Pattern of disease recurrence and prognostic factors in patients with osteosarcoma treated with contemporary chemotherapy. Cancer 98(11):2447–2456

    PubMed  Google Scholar 

  5. Hayden JB, Hoang BH (2006) Osteosarcoma: basic science and clinical implications. Orthop Clin N Am 37(1):1–7

    Google Scholar 

  6. Doi Y, Itoh M, Yonemura S, Ishihara S, Takano H, Noda T, Tsukita S (1999) Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in moesin gene knockout. J Biol Chem 274(4):2315–2321

    PubMed  CAS  Google Scholar 

  7. Kikuchi S, Hata M, Fukumoto K, Yamane Y, Matsui T, Tamura A, Yonemura S, Yamagishi H, Keppler D, Tsukita S, Tsukita S (2002) Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet 31(3):320–325

    PubMed  CAS  Google Scholar 

  8. Kitajiri S, Fukumoto K, Hata M, Sasaki H, Katsuno T, Nakagawa T, Ito J, Tsukita S, Tsukita S (2004) Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. J Cell Biol 166(4):559–570

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Saotome I, Curto M, McClatchey AI (2004) Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev Cell 6(6):855–864

    PubMed  CAS  Google Scholar 

  10. Polesello C, Payre F (2004) Small is beautiful: what flies tell us about ERM protein function in development. Trends Cell Biol 14(6):294–302

    PubMed  CAS  Google Scholar 

  11. Gobel V, Barrett PL, Hall DH, Fleming JT (2004) Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1. Dev Cell 6(6):865–873

    PubMed  Google Scholar 

  12. Jankovics F, Sinka R, Lukacsovich T, Erdelyi M (2002) MOESIN crosslinks actin and cell membrane in Drosophila oocytes and is required for OSKAR anchoring. Curr Biol 12(23):2060–2065

    PubMed  CAS  Google Scholar 

  13. Polesello C, Delon I, Valenti P, Ferrer P, Payre F (2002) Dmoesin controls actin-based cell shape and polarity during Drosophila melanogaster oogenesis. Nat Cell Biol 4(10):782–789

    PubMed  CAS  Google Scholar 

  14. Hipfner DR, Keller N, Cohen SM (2004) Slik Sterile-20 kinase regulates Moesin activity to promote epithelial integrity during tissue growth. Genes Dev 18(18):2243–2248

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Pilot F, Philippe JM, Lemmers C, Lecuit T (2006) Spatial control of actin organization at adherens junctions by a synaptotagmin-like protein Btsz. Nature 442(7102):580–584

    PubMed  CAS  Google Scholar 

  16. Wu YX, Uezato T, Fujita M (2000) Tyrosine phosphorylation and cellular redistribution of ezrin in MDCK cells treated with pervanadate. J Cell Biochem 79(2):311–321

    PubMed  CAS  Google Scholar 

  17. Liu D, Ge L, Wang F, Takahashi H, Wang D, Guo Z, Yoshimura SH, Ward T, Ding X, Takeyasu K, Yao X (2007) Single-molecule detection of phosphorylation-induced plasticity changes during ezrin activation. FEBS Lett 581(18):3563–3571

    PubMed  CAS  Google Scholar 

  18. Hamada K, Shimizu T, Matsui T, Tsukita S, Hakoshima T (2000) Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J 19(17):4449–4462

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Fievet BT, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D, Arpin M (2004) Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol 164(5):653–659

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Ng T, Parsons M, Hughes WE, Monypenny J, Zicha D, Gautreau A, Arpin M, Gschmeissner S, Verveer PJ, Bastiaens PI, Parker PJ (2001) Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J 20(11):2723–2741

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Pietromonaco SF, Simons PC, Altman A, Elias L (1998) Protein kinase C-theta phosphorylation of moesin in the actin-binding sequence. J Biol Chem 273(13):7594–7603

    PubMed  CAS  Google Scholar 

  22. Wald FA, Oriolo AS, Mashukova A, Fregien NL, Langshaw AH, Salas PJ (2008) Atypical protein kinase C (iota) activates ezrin in the apical domain of intestinal epithelial cells. J Cell Sci 121(Pt 5):644–654

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita S (1998) Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 140(3):647–657

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Cant SH, Pitcher JA (2005) G protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton. Mol Biol Cell 16(7):3088–3099

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Nakamura N, Oshiro N, Fukata Y, Amano M, Fukata M, Kuroda S, Matsuura Y, Leung T, Lim L, Kaibuchi K (2000) Phosphorylation of ERM proteins at filopodia induced by Cdc42. Genes Cells 5(7):571–581

    PubMed  CAS  Google Scholar 

  26. Baumgartner M, Sillman AL, Blackwood EM, Srivastava J, Madson N, Schilling JW, Wright JH, Barber DL (2006) The Nck-interacting kinase phosphorylates ERM proteins for formation of lamellipodium by growth factors. Proc Natl Acad Sci U S A 103(36):13391–13396

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Nijhara R, van Hennik PB, Gignac ML, Kruhlak MJ, Hordijk PL, Delon J, Shaw S (2004) Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes. J Immunol 173(8):4985–4993

    PubMed  CAS  Google Scholar 

  28. Liu Y, Belkina NV, Park C, Nambiar R, Loughhead SM, Patino-Lopez G, Ben-Aissa K, Hao JJ, Kruhlak MJ, Qi H, von Andrian UH, Kehrl JH, Tyska MJ, Shaw S (2012) Constitutively active ezrin increases membrane tension, slows migration, and impedes endothelial transmigration of lymphocytes in vivo in mice. Blood 119(2):445–453

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Chen J, Mandel LJ (1997) Unopposed phosphatase action initiates ezrin dysfunction: a potential mechanism for anoxic injury. Am J Physiol 273(2 Pt 1):C710–C716

    PubMed  CAS  Google Scholar 

  30. Kondo T, Takeuchi K, Doi Y, Yonemura S, Nagata S, Tsukita S (1997) ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J Cell Biol 139(3):749–758

    PubMed  CAS  PubMed Central  Google Scholar 

  31. Ren L, Khanna C (2010) Merlin/NF2 tumor suppressor and ezrin–radixin–moesin (ERM) proteins in cancer development and progression. In: Thomas-Tikhonenko A (ed) Cancer genome and tumor microenvironment. Springer, New York, NY, pp 93–115

    Google Scholar 

  32. Tsukita S, Oishi K, Sato N, Sagara J, Kawai A (1994) ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 126(2):391–401

    PubMed  CAS  Google Scholar 

  33. Legg JW, Isacke CM (1998) Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr Biol 8(12):705–708

    PubMed  CAS  Google Scholar 

  34. Legg JW, Lewis CA, Parsons M, Ng T, Isacke CM (2002) A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nat Cell Biol 4(6):399–407

    PubMed  CAS  Google Scholar 

  35. Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, Tsukita S, Tsukita S (1998) Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol 140(4):885–895

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Serrador JM, Nieto M, Alonso-Lebrero JL, del Pozo MA, Calvo J, Furthmayr H, Schwartz-Albiez R, Lozano F, Gonzalez-Amaro R, Sanchez-Mateos P, Sanchez-Madrid F (1998) CD43 interacts with moesin and ezrin and regulates its redistribution to the uropods of T lymphocytes at the cell-cell contacts. Blood 91(12):4632–4644

    PubMed  CAS  Google Scholar 

  37. Heiska L, Alfthan K, Gronholm M, Vilja P, Vaheri A, Carpen O (1998) Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 273(34):21893–21900

    PubMed  CAS  Google Scholar 

  38. Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, Furthmayr H, Sanchez-Madrid F (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157(7):1233–1245

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Serrador JM, Vicente-Manzanares M, Calvo J, Barreiro O, Montoya MC, Schwartz-Albiez R, Furthmayr H, Lozano F, Sanchez-Madrid F (2002) A novel serine-rich motif in the intercellular adhesion molecule 3 is critical for its ezrin/radixin/moesin-directed subcellular targeting. J Biol Chem 277(12):10400–10409

    PubMed  CAS  Google Scholar 

  40. Lozupone F, Lugini L, Matarrese P, Luciani F, Federici C, Iessi E, Margutti P, Stassi G, Malorni W, Fais S (2004) Identification and relevance of the CD95-binding domain in the N-terminal region of ezrin. J Biol Chem 279(10):9199–9207

    PubMed  CAS  Google Scholar 

  41. Brambilla D, Zamboni S, Federici C, Lugini L, Lozupone F, De Milito A, Cecchetti S, Cianfriglia M, Fais S (2012) P-glycoprotein binds to ezrin at amino acid residues 149-242 in the FERM domain and plays a key role in the multidrug resistance of human osteosarcoma. Int J Cancer 130(12):2824–2834

    PubMed  CAS  Google Scholar 

  42. Reczek D, Bretscher A (1998) The carboxyl-terminal region of EBP50 binds to a site in the amino-terminal domain of ezrin that is masked in the dormant molecule. J Biol Chem 273(29):18452–18458

    PubMed  CAS  Google Scholar 

  43. Donowitz M, Cha B, Zachos NC, Brett CL, Sharma A, Tse CM, Li X (2005) NHERF family and NHE3 regulation. J Physiol 567(Pt 1):3–11

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Fievet B, Louvard D, Arpin M (2007) ERM proteins in epithelial cell organization and functions. Biochim Biophys Acta 1773(5):653–660

    PubMed  CAS  Google Scholar 

  45. Dransfield DT, Bradford AJ, Smith J, Martin M, Roy C, Mangeat PH, Goldenring JR (1997) Ezrin is a cyclic AMP-dependent protein kinase anchoring protein. EMBO J 16(1):35–43

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Lamprecht G, Weinman EJ, Yun CH (1998) The role of NHERF and E3KARP in the cAMP-mediated inhibition of NHE3. J Biol Chem 273(45):29972–29978

    PubMed  CAS  Google Scholar 

  47. Weinman EJ, Steplock D, Donowitz M, Shenolikar S (2000) NHERF associations with sodium-hydrogen exchanger isoform 3 (NHE3) and ezrin are essential for cAMP-mediated phosphorylation and inhibition of NHE3. Biochemistry 39(20):6123–6129

    PubMed  CAS  Google Scholar 

  48. Sun F, Hug MJ, Lewarchik CM, Yun CH, Bradbury NA, Frizzell RA (2000) E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells. J Biol Chem 275(38):29539–29546

    PubMed  CAS  Google Scholar 

  49. Luciani F, Matarrese P, Giammarioli AM, Lugini L, Lozupone F, Federici C, Iessi E, Malorni W, Fais S (2004) CD95/phosphorylated ezrin association underlies HIV-1 GP120/IL-2-induced susceptibility to CD95(APO-1/Fas)-mediated apoptosis of human resting CD4(+)T lymphocytes. Cell Death Differ 11(5):574–582

    PubMed  CAS  Google Scholar 

  50. Cha B, Tse M, Yun C, Kovbasnjuk O, Mohan S, Hubbard A, Arpin M, Donowitz M (2006) The NHE3 juxtamembrane cytoplasmic domain directly binds ezrin: dual role in NHE3 trafficking and mobility in the brush border. Mol Biol Cell 17(6):2661–2673

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Stanasila L, Abuin L, Diviani D, Cotecchia S (2006) Ezrin directly interacts with the alpha1b-adrenergic receptor and plays a role in receptor recycling. J Biol Chem 281(7):4354–4363

    PubMed  CAS  Google Scholar 

  52. Zhou R, Cao X, Watson C, Miao Y, Guo Z, Forte JG, Yao X (2003) Characterization of protein kinase A-mediated phosphorylation of ezrin in gastric parietal cell activation. J Biol Chem 278(37):35651–35659

    PubMed  CAS  Google Scholar 

  53. Matsui T, Yonemura S, Tsukita S (1999) Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr Biol 9(21):1259–1262

    PubMed  CAS  Google Scholar 

  54. Fukata Y, Kimura K, Oshiro N, Saya H, Matsuura Y, Kaibuchi K (1998) Association of the myosin-binding subunit of myosin phosphatase and moesin: dual regulation of moesin phosphorylation by Rho-associated kinase and myosin phosphatase. J Cell Biol 141(2):409–418

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Shaw RJ, Henry M, Solomon F, Jacks T (1998) RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol Biol Cell 9(2):403–419

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Kotani H, Takaishi K, Sasaki T, Takai Y (1997) Rho regulates association of both the ERM family and vinculin with the plasma membrane in MDCK cells. Oncogene 14(14):1705–1713

    PubMed  CAS  Google Scholar 

  57. Takahashi K, Sasaki T, Mammoto A, Takaishi K, Kameyama T, Tsukita S, Takai Y (1997) Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem 272(37):23371–23375

    PubMed  CAS  Google Scholar 

  58. Jensen PV, Larsson LI (2004) Actin microdomains on endothelial cells: association with CD44, ERM proteins, and signaling molecules during quiescence and wound healing. Histochem Cell Biol 121(5):361–369

    PubMed  CAS  Google Scholar 

  59. Zhang L, Xiao R, Xiong J, Leng J, Ehtisham A, Hu Y, Ding Q, Xu H, Liu S, Wang J, Tang DG, Zhang Q (2013) Activated ERM protein plays a critical role in drug resistance of MOLT4 cells induced by CCL25. PLoS One 8(1):e52384

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Kobori T, Harada S, Nakamoto K, Tokuyama S (2013) Activation of ERM-family proteins via RhoA-ROCK signaling increases intestinal P-gp expression and leads to attenuation of oral morphine analgesia. J Pharm Sci 102(3):1095–1105

    PubMed  CAS  Google Scholar 

  61. Batchelor CL, Woodward AM, Crouch DH (2004) Nuclear ERM (ezrin, radixin, moesin) proteins: regulation by cell density and nuclear import. Exp Cell Res 296(2):208–222

    PubMed  CAS  Google Scholar 

  62. Sarrio D, Rodriguez-Pinilla SM, Dotor A, Calero F, Hardisson D, Palacios J (2006) Abnormal ezrin localization is associated with clinicopathological features in invasive breast carcinomas. Breast Cancer Res Treat 98(1):71–79

    PubMed  CAS  Google Scholar 

  63. Halon A, Donizy P, Surowiak P, Matkowski R (2013) ERM/Rho protein expression in ductal breast cancer: a 15 year follow-up. Cell Oncol (Dordr) 36(3):181–190

    CAS  Google Scholar 

  64. Di Cristofano C, Leopizzi M, Miraglia A, Sardella B, Moretti V, Ferrara A, Petrozza V, Della Rocca C (2010) Phosphorylated ezrin is located in the nucleus of the osteosarcoma cell. Mod Pathol 23(7):1012–1020

    PubMed  Google Scholar 

  65. Ma L, Jiang T (2013) Clinical implications of Ezrin and CD44 coexpression in breast cancer. Oncol Rep 30(4):1899–1905

    PubMed  CAS  Google Scholar 

  66. Gschwantler-Kaulich D, Natter C, Steurer S, Walter I, Thomas A, Salama M, Singer CF (2013) Increase in ezrin expression from benign to malignant breast tumours. Cell Oncol 36(6):485–491

    CAS  Google Scholar 

  67. Kobel M, Gradhand E, Zeng K, Schmitt WD, Kriese K, Lantzsch T, Wolters M, Dittmer J, Strauss HG, Thomssen C, Hauptmann S (2006) Ezrin promotes ovarian carcinoma cell invasion and its retained expression predicts poor prognosis in ovarian carcinoma. Int J Gynecol Pathol 25(2):121–130

    PubMed  Google Scholar 

  68. Moilanen J, Lassus H, Leminen A, Vaheri A, Butzow R, Carpen O (2003) Ezrin immunoreactivity in relation to survival in serous ovarian carcinoma patients. Gynecol Oncol 90(2):273–281

    PubMed  CAS  Google Scholar 

  69. Federici C, Brambilla D, Lozupone F, Matarrese P, de Milito A, Lugini L, Iessi E, Cecchetti S, Marino M, Perdicchio M, Logozzi M, Spada M, Malorni W, Fais S (2009) Pleiotropic function of ezrin in human metastatic melanomas. Int J Cancer 124(12):2804–2812

    PubMed  CAS  Google Scholar 

  70. Ilmonen S, Vaheri A, Asko-Seljavaara S, Carpen O (2005) Ezrin in primary cutaneous melanoma. Mod Pathol 18(4):503–510

    PubMed  CAS  Google Scholar 

  71. Madan R, Brandwein-Gensler M, Schlecht NF, Elias K, Gorbovitsky E, Belbin TJ, Mahmood R, Breining D, Qian H, Childs G, Locker J, Smith R, Haigentz M Jr, Gunn-Moore F, Prystowsky MB (2006) Differential tissue and subcellular expressionof ERM proteins in normal and malignant tissues: cytoplasmic ezrin expression has prognostic signficance for head and neck squamous cell carcinoma. Head Neck 28(11):1018–1027

    PubMed  Google Scholar 

  72. Schlecht NF, Brandwein-Gensler M, Smith RV, Kawachi N, Broughel D, Lin J, Keller CE, Reynolds PA, Gunn-Moore FJ, Harris T, Childs G, Belbin TJ, Prystowsky MB (2012) Cytoplasmic ezrin and moesin correlate with poor survival in head and neck squamous cell carcinoma. Head Neck Pathol 6(2):232–243

    PubMed  PubMed Central  Google Scholar 

  73. Mhawech-Fauceglia P, Dulguerov P, Beck A, Bonet M, Allal AS (2007) Value of ezrin, maspin and nm23-H1 protein expressions in predicting outcome of patients with head and neck squamous-cell carcinoma treated with radical radiotherapy. J Clin Pathol 60(2):185–189

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Chen QY, Yan J, Hu HZ, Chen FY, Song J, Jiang ZY, Jiao DM, Wu YQ (2012) Expression of ezrin in human non-small cell lung cancer and its relationship with metastasis and prognosis. Zhonghua Zhong Liu Za Zhi 34(6):436–440

    PubMed  CAS  Google Scholar 

  75. Lee HW, Kim EH, Oh MH (2012) Clinicopathologic implication of ezrin expression in non-small cell lung cancer. Kr J Pathol 46(5):470–477

    Google Scholar 

  76. Zhang XQ, Chen GP, Wu T, Yan JP, Zhou JY (2012) Expression and clinical significance of ezrin in non-small-cell lung cancer. Clin Lung Cancer 13(3):196–204

    PubMed  Google Scholar 

  77. Morales FC, Molina JR, Hayashi Y, Georgescu MM (2010) Overexpression of ezrin inactivates NF2 tumor suppressor in glioblastoma. Neuro Oncol 12(6):528–539

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Mao J, Yuan XR, Xu SS, Jiang XC, Zhao XT (2013) Expression and Functional Significance of Ezrin in Human Brain Astrocytoma. Cell Biochem Biophys. 67(3):1507–1511

    PubMed  CAS  Google Scholar 

  79. Jorgren F, Nilbert M, Rambech E, Bendahl PO, Lindmark G (2012) Ezrin expression in rectal cancer predicts time to development of local recurrence. Int J Colorectal Dis 27(7):893–899

    PubMed  Google Scholar 

  80. Korkeila E, Sundstrom J, Pyrhonen S, Syrjanen K (2012) Main effects and interactions of carbonic anhydrase IX, hypoxia-inducible factor-1alpha, ezrin and glucose transporter-1 in multivariate analysis for disease outcome in rectal cancer. Anticancer Res 32(8):3299–3303

    PubMed  Google Scholar 

  81. Korkeila EA, Syrjanen K, Bendardaf R, Laulajainen M, Carpen O, Pyrhonen S, Sundstrom J (2011) Preoperative radiotherapy modulates ezrin expression and its value as a predictive marker in patients with rectal cancer. Hum Pathol 42(3):384–392

    PubMed  CAS  Google Scholar 

  82. Elzagheid A, Korkeila E, Bendardaf R, Buhmeida A, Heikkila S, Vaheri A, Syrjanen K, Pyrhonen S, Carpen O (2008) Intense cytoplasmic ezrin immunoreactivity predicts poor survival in colorectal cancer. Hum Pathol 39(12):1737–1743

    PubMed  CAS  Google Scholar 

  83. Patara M, Santos EM, Coudry Rde A, Soares FA, Ferreira FO, Rossi BM (2011) Ezrin expression as a prognostic marker in colorectal adenocarcinoma. Pathol Oncol Res 17(4):827–833

    PubMed  CAS  Google Scholar 

  84. Lam EK, Wang X, Shin VY, Zhang S, Morrison H, Sun J, Ng EK, Yu J, Jin H (2011) A microRNA contribution to aberrant Ras activation in gastric cancer. Am J Transl Res 3(2):209–218

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Li L, Wang YY, Zhao ZS, Ma J (2011) Ezrin is associated with gastric cancer progression and prognosis. Pathol Oncol Res 17(4):909–915

    PubMed  CAS  Google Scholar 

  86. Weng WH, Ahlen J, Astrom K, Lui WO, Larsson C (2005) Prognostic impact of immunohistochemical expression of ezrin in highly malignant soft tissue sarcomas. Clin Cancer Res 11(17):6198–6204

    PubMed  CAS  Google Scholar 

  87. Carneiro A, Bendahl PO, Akerman M, Domanski HA, Rydholm A, Engellau J, Nilbert M (2011) Ezrin expression predicts local recurrence and development of metastases in soft tissue sarcomas. J Clin Pathol 64(8):689–694

    PubMed  Google Scholar 

  88. Salas S, Bartoli C, Deville JL, Gaudart J, Fina F, Calisti A, Bollini G, Curvale G, Gentet JC, Duffaud F, Figarella-Branger D, Bouvier C (2007) Ezrin and alpha-smooth muscle actin are immunohistochemical prognostic markers in conventional osteosarcomas. Virchows Arch 451(6):999–1007

    PubMed  CAS  Google Scholar 

  89. Kim MS, Song WS, Cho WH, Lee SY, Jeon DG (2007) Ezrin expression predicts survival in stage IIB osteosarcomas. Clin Orthop Relat Res 459:229–236

    PubMed  Google Scholar 

  90. Li H, Min D, Zhao H, Wang Z, Qi W, Zheng S, Tang L, He A, Sun Y, Yao Y, Shen Z (2013) The prognostic role of ezrin immunoexpression in osteosarcoma: a meta-analysis of published data. PLoS One 8(6):e64513

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Boldrini E, Peres SV, Morini S, de Camargo B (2010) Immunoexpression of Ezrin and CD44 in patients with osteosarcoma. J Pediatr Hematol Oncol 32(6):e213–e217

    PubMed  CAS  Google Scholar 

  92. Makitie T, Carpen O, Vaheri A, Kivela T (2001) Ezrin as a prognostic indicator and its relationship to tumor characteristics in uveal malignant melanoma. Invest Ophthalmol Vis Sci 42(11):2442–2449

    PubMed  CAS  Google Scholar 

  93. Killock DJ, Parsons M, Zarrouk M, Ameer-Beg SM, Ridley AJ, Haskard DO, Zvelebil M, Ivetic A (2009) In vitro and in vivo characterization of molecular interactions between calmodulin, ezrin/radixin/moesin, and L-selectin. J Biol Chem 284(13):8833–8845

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Lugini L, Lozupone F, Matarrese P, Funaro C, Luciani F, Malorni W, Rivoltini L, Castelli C, Tinari A, Piris A, Parmiani G, Fais S (2003) Potent phagocytic activity discriminates metastatic and primary human malignant melanomas: a key role of ezrin. Lab Invest 83(11):1555–1567

    PubMed  CAS  Google Scholar 

  95. Lugini L, Matarrese P, Tinari A, Lozupone F, Federici C, Iessi E, Gentile M, Luciani F, Parmiani G, Rivoltini L, Malorni W, Fais S (2006) Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res 66(7):3629–3638

    PubMed  CAS  Google Scholar 

  96. Belbin TJ, Singh B, Smith RV, Socci ND, Wreesmann VB, Sanchez-Carbayo M, Masterson J, Patel S, Cordon-Cardo C, Prystowsky MB, Childs G (2005) Molecular profiling of tumor progression in head and neck cancer. Arch Otolaryngol Head Neck Surg 131(1):10–18

    PubMed  Google Scholar 

  97. Bruce B, Khanna G, Ren L, Landberg G, Jirstrom K, Powell C, Borczuk A, Keller ET, Wojno KJ, Meltzer P, Baird K, McClatchey A, Bretscher A, Hewitt SM, Khanna C (2007) Expression of the cytoskeleton linker protein ezrin in human cancers. Clin Exp Metastasis 24(2):69–78

    PubMed  CAS  Google Scholar 

  98. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A, Yeung C, Gorlick R, Hewitt SM, Helman LJ (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 10(2):182–186

    PubMed  CAS  Google Scholar 

  99. Yu Y, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G (2004) Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 10(2):175–181

    PubMed  CAS  Google Scholar 

  100. Nestl A, Von Stein OD, Zatloukal K, Thies WG, Herrlich P, Hofmann M, Sleeman JP (2001) Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res 61(4):1569–1577

    PubMed  CAS  Google Scholar 

  101. Khanna C, Khan J, Nguyen P, Prehn J, Caylor J, Yeung C, Trepel J, Meltzer P, Helman L (2001) Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res 61(9):3750–3759

    PubMed  CAS  Google Scholar 

  102. Yu Y, Davicioni E, Triche TJ, Merlino G (2006) The homeoprotein six1 transcriptionally activates multiple protumorigenic genes but requires ezrin to promote metastasis. Cancer Res 66(4):1982–1989

    PubMed  CAS  Google Scholar 

  103. Krishnan K, Bruce B, Hewitt S, Thomas D, Khanna C, Helman LJ (2006) Ezrin mediates growth and survival in Ewing’s sarcoma through the AKT/mTOR, but not the MAPK, signaling pathway. Clin Exp Metastasis 23(3–4):227–236

    PubMed  CAS  Google Scholar 

  104. Lun DX, Hu YC, Xu ZW, Xu LN, Wang BW (2013) The prognostic value of elevated ezrin in patients with osteosarcoma. Tumour Biol. 35(2):1263–1266

    PubMed  Google Scholar 

  105. Elliott BE, Qiao H, Louvard D, Arpin M (2004) Co-operative effect of c-Src and ezrin in deregulation of cell-cell contacts and scattering of mammary carcinoma cells. J Cell Biochem 92(1):16–28

    PubMed  CAS  Google Scholar 

  106. Endo K, Kondo S, Shackleford J, Horikawa T, Kitagawa N, Yoshizaki T, Furukawa M, Zen Y, Pagano JS (2009) Phosphorylated ezrin is associated with EBV latent membrane protein 1 in nasopharyngeal carcinoma and induces cell migration. Oncogene 28(14):1725–1735

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Jaroensong T, Endo Y, Lee SJ, Kamida A, Mochizuki M, Nishimura R, Sasaki N, Nakagawa T (2012) Effects of transplantation sites on tumour growth, pulmonary metastasis and ezrin expression of canine osteosarcoma cell lines in nude mice. Vet Comp Oncol 10(4):274–282

    PubMed  CAS  Google Scholar 

  108. Ren L, Hong SH, Cassavaugh J, Osborne T, Chou AJ, Kim SY, Gorlick R, Hewitt SM, Khanna C (2009) The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene 28(6):792–802

    PubMed  CAS  Google Scholar 

  109. Hong SH, Osborne T, Ren L, Briggs J, Mazcko C, Burkett SS, Khanna C (2011) Protein kinase C regulates ezrin-radixin-moesin phosphorylation in canine osteosarcoma cells. Vet Comp Oncol 9(3):207–218

    PubMed  CAS  Google Scholar 

  110. Brown L, Waseem A, Cruz IN, Szary J, Gunic E, Mannan T, Unadkat M, Yang M, Valderrama F, O’Toole EA, Wan H (2013) Desmoglein 3 promotes cancer cell migration and invasion by regulating activator protein 1 and protein kinase C-dependent-Ezrin activation. Oncogene advance online publication, 10 June 2013

    Google Scholar 

  111. Hong SH, Ren L, Mendoza A, Eleswarapu A, Khanna C (2012) Apoptosis resistance and PKC signaling: distinguishing features of high and low metastatic cells. Neoplasia 14(3):249–258

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Rofstad EK, Sundfor K, Lyng H, Trope CG (2000) Hypoxia-induced treatment failure in advanced squamous cell carcinoma of the uterine cervix is primarily due to hypoxia-induced radiation resistance rather than hypoxia-induced metastasis. Br J Cancer 83(3):354–359

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Xie K, Huang S (2003) Contribution of nitric oxide-mediated apoptosis to cancer metastasis inefficiency. Free Radic Biol Med 34(8):969–986

    PubMed  CAS  Google Scholar 

  114. Brideau G, Makinen MJ, Elamaa H, Tu H, Nilsson G, Alitalo K, Pihlajaniemi T, Heljasvaara R (2007) Endostatin overexpression inhibits lymphangiogenesis and lymph node metastasis in mice. Cancer Res 67(24):11528–11535

    PubMed  CAS  Google Scholar 

  115. Medina RA, Owen GI (2002) Glucose transporters: expression, regulation and cancer. Biol Res 35(1):9–26

    PubMed  CAS  Google Scholar 

  116. Mendoza M, Khanna C (2009) Revisiting the seed and soil in cancer metastasis. Int J Biochem Cell Biol 41(7):1452–1462

    PubMed  CAS  Google Scholar 

  117. Ren L, Hong SH, Chen QR, Briggs J, Cassavaugh J, Srinivasan S, Lizardo MM, Mendoza A, Xia AY, Avadhani N, Khan J, Khanna C (2012) Dysregulation of ezrin phosphorylation prevents metastasis and alters cellular metabolism in osteosarcoma. Cancer Res 72(4):1001–1012

    PubMed  CAS  Google Scholar 

  118. Briggs JW, Ren L, Nguyen R, Chakrabarti K, Cassavaugh J, Rahim S, Bulut G, Zhou M, Veenstra TD, Chen Q, Wei JS, Khan J, Uren A, Khanna C (2012) The ezrin metastatic phenotype is associated with the initiation of protein translation. Neoplasia 14(4):297–310

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Bulut G, Hong SH, Chen K, Beauchamp EM, Rahim S, Kosturko GW, Glasgow E, Dakshanamurthy S, Lee HS, Daar I, Toretsky JA, Khanna C, Uren A (2012) Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells. Oncogene 31(3):269–281

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Wan X, Mendoza A, Khanna C, Helman LJ (2005) Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res 65(6):2406–2411

    PubMed  CAS  Google Scholar 

  121. Ory B, Moriceau G, Redini F, Heymann D (2007) mTOR inhibitors (rapamycin and its derivatives) and nitrogen containing bisphosphonates: bi-functional compounds for the treatment of bone tumours. Curr Med Chem 14(13):1381–1387

    PubMed  CAS  Google Scholar 

  122. Gautreau A, Poullet P, Louvard D, Arpin M (1999) Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 96(13):7300–7305

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work is supported by the Intramural Research Program of NIH, National Cancer Institute, Center of Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chand Khanna D.V.M., Ph.D., Dipl. A.C.V.I.M. (Oncology) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ren, L., Khanna, C. (2014). Role of Ezrin in Osteosarcoma Metastasis. In: Kleinerman, M.D., E. (eds) Current Advances in Osteosarcoma. Advances in Experimental Medicine and Biology, vol 804. Springer, Cham. https://doi.org/10.1007/978-3-319-04843-7_10

Download citation

Publish with us

Policies and ethics