Skip to main content

Predicting Procedure Duration to Improve Scheduling of Elective Surgery

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8862))

Abstract

The accuracy of surgery schedules depends on precise estimation of surgery duration. Current approaches employed by hospitals include historical averages and surgical team estimates which are not accurate enough. The inherent complexity of surgery duration estimation contributes significantly to increased procedure cancellations and reduced utilisation of already encumbered resources. In this study we employ administrative and perioperative data from a large metropolitan hospital to investigate the performance of different machine learning approaches for improving procedure duration estimation. The predictive modelling approaches applied include linear regression (LR), multivariate adaptive regression splines (MARS), and random forests (RF). Cross validation results reveal that the random forest model outperforms other methods, reducing mean absolute percentage error by 28% when compared to current hospital estimation approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and scheduling: A literature review. European Journal of Operational Research 201(3), 921–932 (2010)

    Article  MATH  Google Scholar 

  2. Macario, A., Vitez, T.S., Dunn, B., McDonald, T.: Where are the costs in perioperative care?: Analysis of hospital costs and charges for inpatient surgical care. Anesthesiology 83(6), 1138–1144 (1995)

    Article  Google Scholar 

  3. Pandit, J.J., Carey, A.: Estimating the duration of common elective operations: Implications for operating list management. Anaesthesia 61(8), 768–776 (2006)

    Article  Google Scholar 

  4. Schofield, W.N., Rubin, G.L., Piza, M., Lai, Y.Y., Sindhusake, D., Fearnside, M.R., Klineberg, P.L.: Cancellation of operations on the day of intended surgery at a major Australian referral hospital. Med. J. Aust. 182(12), 612–615 (2005)

    Google Scholar 

  5. Kayis, E., Wang, H., Patel, M., Gonzalez, T., Jain, S., Ramamurthi, R., Santos, C., Singhal, S., Suermondt, J., Sylvester, K.: Improving Prediction of Surgery Duration using Operational and Temporal Factors. In: AMIA Annu. Symp. Proc., pp. 456–462 (2012)

    Google Scholar 

  6. Eijkemans, M.J.C., Van Houdenhoven, M., Nguyen, T., Boersma, E., Steyerberg, E.W., Kazemier, G.: Predicting the unpredictable: A new prediction model for operating room times using individual characteristics and the surgeon’s estimate. Anesthesiology 112(1), 41–49 (2010)

    Article  Google Scholar 

  7. Dexter, F., Dexter, E.U., Masursky, D., Nussmeier, N.A.: Systematic review of general thoracic surgery articles to identify predictors of operating room case durations. Anesthesia and Analgesia 106(4), 1232–1241 (2008)

    Article  Google Scholar 

  8. Wright, I.H., Kooperberg, C., Bonar, B.A., Bashein, G.: Statistical modeling to predict elective surgery time: Comparison with a computer scheduling system and surgeon-provided estimates. Anesthesiology 85(6), 1235–1245 (1996)

    Article  Google Scholar 

  9. Zhou, J., Dexter, F., Macario, A., Lubarsky, D.A.: Relying solely on historical surgical times to estimate accurately future surgical times is unlikely to reduce the average length of time cases finish late. Journal of Clinical Anesthesia 11(7), 601–605 (1999)

    Article  Google Scholar 

  10. Combes, C., Meskens, N., Rivat, C., Vandamme, J.P.: Using a KDD process to forecast the duration of surgery. International Journal of Production Economics 112(1), 279–293 (2008)

    Article  Google Scholar 

  11. Stepaniak, P.S., Heij, C., De Vries, G.: Modeling and prediction of surgical procedure times. Statistica Neerlandica 64(1), 1–18 (2010)

    Article  Google Scholar 

  12. Li, Y., Zhang, S., Baugh, R.F., Huang, J.Z.: Predicting surgical case durations using ill-conditioned CPT code matrix. IIE Transactions (Institute of Industrial Engineers) 42(2), 121–135 (2010)

    Google Scholar 

  13. Dexter, F., Ledolter, J.: Bayesian prediction bounds and comparisons of operating room times even for procedures with few or no historic data. Anesthesiology 103(6), 1259–1267 (2005)

    Article  Google Scholar 

  14. Dexter, F., Ledolter, J., Tiwari, V., Epstein, R.H.: Value of a scheduled duration quantified in terms of equivalent numbers of historical cases. Anesthesia & Analgesia 117(1), 205–210 (2013)

    Article  Google Scholar 

  15. Devi, S.P., Rao, K.S., Sangeetha, S.S.: Prediction of surgery times and scheduling of operation theaters in optholmology department. Journal of Medical Systems 36(2), 415–430 (2012)

    Article  Google Scholar 

  16. Gomes, C., Almada-Lobo, B., Borges, J., Soares, C.: Integrating data mining and optimization techniques on surgery scheduling. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA 2012. LNCS, vol. 7713, pp. 589–602. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Charlson, M.E., Pompei, P., Ales, K.L., MacKenzie, C.R.: A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 40(5), 373–383 (1987)

    Article  Google Scholar 

  18. Palmer, P.B., O’Connell, D.G.: Regression Analysis For Prediction: Understanding the process. Cardiopulmonary Physical Therapy Journal 20(3), 23 (2009)

    Google Scholar 

  19. Heil, D.P., Freedson, P.S., Ahlquist, L.E., Price, J., Rippe, J.M.: Nonexercise regression models to estimate peak oxygen consumption, pp. 599–606. Williams & Wilkins, Baltimore (1995)

    Google Scholar 

  20. Dossey, J., Blum, W., Niss, M.: Using Mathematical Competencies to Predict Item Difficulty in PISA: A MEG Study. In: Research on PISA, pp. 23–37. Springer (2013)

    Google Scholar 

  21. Hedley, C.B., Yule, I.J.: A method for spatial prediction of daily soil water status for precise irrigation scheduling. Agricultural Water Management 96(12), 1737–1745 (2009)

    Article  Google Scholar 

  22. Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning: Data mining, inference, and prediction. Springer, New York (2001)

    Google Scholar 

  23. Strum, D.P., May, J.H., Vargas, L.G.: Modeling the uncertainty of surgical procedure times: Comparison of log- normal and normal models. Anesthesiology 92(4), 1160–1167 (2000)

    Article  Google Scholar 

  24. Friedman, J.H.: Multivariate Adaptive Regression Splines. Annals of Statistics 19(1), 1–141 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jekabsons, G.: ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave (2011), http://www.cs.rtu.lv/jekabsons/

  26. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  27. Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  28. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation, DTIC Document (1985)

    Google Scholar 

  29. Liaw, A.: Breiman and Cutler’s random forests for classification and regression (2012), http://stat-www.berkeley.edu/users/breiman/RandomForests

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

ShahabiKargar, Z., Khanna, S., Good, N., Sattar, A., Lind, J., O’Dwyer, J. (2014). Predicting Procedure Duration to Improve Scheduling of Elective Surgery. In: Pham, DN., Park, SB. (eds) PRICAI 2014: Trends in Artificial Intelligence. PRICAI 2014. Lecture Notes in Computer Science(), vol 8862. Springer, Cham. https://doi.org/10.1007/978-3-319-13560-1_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13560-1_86

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13559-5

  • Online ISBN: 978-3-319-13560-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics