Skip to main content

Immune Memory and Exhaustion: Clinically Relevant Lessons from the LCMV Model

  • Conference paper
  • First Online:
Crossroads Between Innate and Adaptive Immunity V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 850))

Abstract

The development of dysfunctional or exhausted T cells is characteristic of immune responses to chronic viral infections and cancer. Exhausted T cells are defined by reduced effector function, sustained upregulation of multiple inhibitory receptors, an altered transcriptional program and perturbations of normal memory development and homeostasis. This review focuses on (a) illustrating milestone discoveries that led to our present understanding of T cell exhaustion, (b) summarizing recent developments in the field, and (c) identifying new challenges for translational research. Exhausted T cells are now recognized as key therapeutic targets in human infections and cancer. Much of our knowledge of the clinically relevant process of exhaustion derives from studies in the mouse model of Lymphocytic choriomeningitis virus (LCMV) infection. Studies using this model have formed the foundation for our understanding of human T cell memory and exhaustion. We will use this example to discuss recent advances in our understanding of T cell exhaustion and illustrate the value of integrated mouse and human studies and will emphasize the benefits of bi-directional mouse-to-human and human-to-mouse research approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, R., Salmi, A., Butler, L. D., Chiller, J. M., & Oldstone, M. B. (1984). Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. The Journal of Experimental Medicine, 160(2), 521–540.

    Article  CAS  PubMed  Google Scholar 

  • Alter, G., Hatzakis, G., Tsoukas, C. M., Pelley, K., Rouleau, D., LeBlanc, R., et al. (2003). Longitudinal assessment of changes in HIV-specific effector activity in HIV-infected patients starting highly active antiretroviral therapy in primary infection. Journal of Immunology, 171(1), 477–488.

    Article  CAS  Google Scholar 

  • Amanna, I. J., Slifka, M. K., & Crotty, S. (2006). Immunity and immunological memory following smallpox vaccination. Immunological Reviews, 211, 320–337.

    Article  CAS  PubMed  Google Scholar 

  • Angelosanto, J. M., Blackburn, S. D., Crawford, A., & Wherry, E. J. (2012). Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. Journal of Virology, 86(15), 8161–8170.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baitsch, L., Baumgaertner, P., Devevre, E., Raghav, S. K., Legat, A., Barba, L., et al. (2011). Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. The Journal of Clinical Investigation, 121(6), 2350–2360.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H., et al. (2006). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 439(7077), 682–687.

    Article  CAS  PubMed  Google Scholar 

  • Blackburn, S. D., Shin, H., Freeman, G. J., & Wherry, E. J. (2008). Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 15016–15021.

    Google Scholar 

  • Blackburn, S. D., Shin, H., Haining, W. N., Zou, T., Workman, C. J., Polley, A., et al. (2009). Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature Immunology, 10(1), 29–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blackburn, S. D., Crawford, A., Shin, H., Polley, A., Freeman, G. J., & Wherry, E. J. (2010). Tissue-specific differences in PD-1 and PD-L1 expression during chronic viral infection: Implications for CD8 T-cell exhaustion. Journal of Virology, 84(4), 2078–2089.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W. J., Topalian, S. L., Hwu, P., et al. (2012). Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. The New England Journal of Medicine, 366(26), 2455–2465.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buchholz, V. R., Flossdorf, M., Hensel, I., Kretschmer, L., Weissbrich, B., Graf, P., et al. (2013). Disparate individual fates compose robust CD8+ T cell immunity. Science, 340(6132), 630–635.

    Article  CAS  PubMed  Google Scholar 

  • Buggert, M., Tauriainen, J., Yamamoto, T., Frederiksen, J., Ivarsson, M. A., Michaelsson, J., et al. (2014). T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathogens, 10(7), e1004251.

    Article  PubMed Central  PubMed  Google Scholar 

  • Butz, E. A., & Bevan, M. J. (1998). Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity, 8(2), 167–175.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casazza, J. P., Betts, M. R., Picker, L. J., & Koup, R. A. (2001). Decay kinetics of human immunodeficiency virus-specific CD8+ T cells in peripheral blood after initiation of highly active antiretroviral therapy. Journal of Virology, 75(14), 6508–6516.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crawford, A., Angelosanto, J. M., Kao, C., Doering, T. A., Odorizzi, P. M., Barnett, B. E., et al. (2014). Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection. Immunity, 40(2), 289–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Day, C. L., Kaufmann, D. E., Kiepiela, P., Brown, J. A., Moodley, E. S., Reddy, S., et al. (2006). PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature, 443(7109), 350–354.

    Article  CAS  PubMed  Google Scholar 

  • Dillon, S. R., Jameson, S. C., & Fink, P. J. (1994). V beta 5+ T cell receptors skew toward OVA + H-2Kb recognition. Journal of Immunology, 152(4), 1790–1801.

    CAS  Google Scholar 

  • Doering, T. A., Crawford, A., Angelosanto, J. M., Paley, M. A., Ziegler, C. G., & Wherry, E. J. (2012). Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity, 37(6), 1130–1144.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Douek, D. C., McFarland, R. D., Keiser, P. H., Gage, E. A., Massey, J. M., Haynes, B. F., et al. (1998). Changes in thymic function with age and during the treatment of HIV infection. Nature, 396(6712), 690–695.

    Article  CAS  PubMed  Google Scholar 

  • Enouz, S., Carrie, L., Merkler, D., Bevan, M. J., & Zehn, D. (2012). Autoreactive T cells bypass negative selection and respond to self-antigen stimulation during infection. The Journal of Experimental Medicine, 209(10), 1769–1779.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frebel, H., Nindl, V., Schuepbach, R. A., Braunschweiler, T., Richter, K., Vogel, J., et al. (2012). Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. The Journal of Experimental Medicine, 209(13), 2485–2499.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuller, M. J., & Zajac, A. J. (2003). Ablation of CD8 and CD4 T cell responses by high viral loads. Journal of Immunology, 170(1), 477–486.

    Article  CAS  Google Scholar 

  • Gallimore, A., Glithero, A., Godkin, A., Tissot, A. C., Pluckthun, A., Elliott, T., et al. (1998). Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. The Journal of Experimental Medicine, 187(9), 1383–1393.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gerlach, C., Rohr, J. C., Perie, L., van Rooij N., van Heijst J. W., Velds, A., et al. (2013). Heterogeneous differentiation patterns of individual CD8+ T cells. Science, 340(6132), 635–639.

    Article  CAS  PubMed  Google Scholar 

  • Hamid, O., Robert, C., Daud, A., Hodi, F. S., Hwu, W. J., Kefford, R., et al. (2013). Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. The New England Journal of Medicine, 369(2), 134–144.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hammarlund, E., Lewis, M. W., Hansen, S. G., Strelow, L. I., Nelson, J. A., Sexton, G. J., et al. (2003). Duration of antiviral immunity after smallpox vaccination. Nature Medicine, 9(9), 1131–1137.

    Article  CAS  PubMed  Google Scholar 

  • Harari, A., Dutoit, V., Cellerai, C., Bart, P. A., Du Pasquier R. A., & Pantaleo, G. (2006). Functional signatures of protective antiviral T-cell immunity in human virus infections. Immunological Reviews, 211, 236–254.

    Article  CAS  PubMed  Google Scholar 

  • Hertoghs, K. M., Moerland, P. D., van Stijn A., Remmerswaal, E. B., Yong, S. L., van de Berg P. J., et al. (2010). Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. The Journal of Clinical Investigation, 120(11), 4077–4090.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jameson, S. C., & Masopust, D. (2009). Diversity in T cell memory: An embarrassment of riches. Immunity, 31(6), 859–871.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jamieson, B. D., Yang, O. O., Hultin, L., Hausner, M. A., Hultin, P., Matud, J., et al. (2003). Epitope escape mutation and decay of human immunodeficiency virus type 1-specific CTL responses. Journal of Immunology, 171(10), 5372–5379.

    Article  CAS  Google Scholar 

  • Jin, X., Bauer, D. E., Tuttleton, S. E., Lewin, S., Gettie, A., Blanchard, J., et al. (1999). Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. The Journal of Experimental Medicine, 189(6), 991–998.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaech, S. M., & Cui, W. (2012). Transcriptional control of effector and memory CD8+ T cell differentiation. Nature Reviews Immunology, 12(11), 749–761.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kao, C., Oestreich, K. J., Paley, M. A., Crawford, A., Angelosanto, J. M., Ali, M. A., et al. (2011). Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nature Immunology, 12(7), 663–671.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kasprowicz, V., Schulze Zur Wiesch, J., Kuntzen, T., Nolan, B. E., Longworth, S., Berical, A., et al. (2008). High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. Journal of Virology, 82(6), 3154–3160.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kelly, J. M., Sterry, S. J., Cose, S., Turner, S. J., Fecondo, J., Rodda, S., et al. (1993). Identification of conserved T cell receptor CDR3 residues contacting known exposed peptide side chains from a major histocompatibility complex class I-bound determinant. European Journal of Immunology, 23(12), 3318–3326.

    Article  CAS  PubMed  Google Scholar 

  • Kemball, C. C., Lee, E. D., Vezys, V., Pearson, T. C., Larsen, C. P., & Lukacher, A. E. (2005). Late priming and variability of epitope-specific CD8+ T cell responses during a persistent virus infection. Journal of Immunology, 174(12), 7950–7960.

    Article  CAS  Google Scholar 

  • Kim, P. S., & Ahmed, R. (2010). Features of responding T cells in cancer and chronic infection. Current Opinion in Immunology, 22(2), 223–230.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klenerman, P., & Hill, A. (2005). T cells and viral persistence: Lessons from diverse infections. Nature Immunology, 6(9), 873–879.

    Article  CAS  PubMed  Google Scholar 

  • Lau, L. L., Jamieson, B. D., Somasundaram, T., & Ahmed, R. (1994). Cytotoxic T-cell memory without antigen. Nature, 369(6482), 648–652.

    Article  CAS  PubMed  Google Scholar 

  • Leslie, A. J., Pfafferott, K. J., Chetty, P., Draenert, R., Addo, M. M., Feeney, M., et al. (2004). HIV evolution: CTL escape mutation and reversion after transmission. Nature Medicine, 10(3), 282–289.

    Article  CAS  PubMed  Google Scholar 

  • Lichterfeld, M., Yu, X. G., Mui, S. K., Williams, K. L., Trocha, A., Brockman, M. A., et al. (2007). Selective depletion of high-avidity human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells after early HIV-1 infection. Journal of Virology, 81(8), 4199–4214.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makedonas, G., & Betts, M. R. (2006). Polyfunctional analysis of human T cell responses: Importance in vaccine immunogenicity and natural infection. Springer Seminars in Immunopathology, 28(3), 209–219.

    Article  PubMed  Google Scholar 

  • Masopust, D., Vezys, V., Wherry, E. J., Barber, D. L., & Ahmed, R. (2006). Cutting edge: Gut microenvironment promotes differentiation of a unique memory CD8 T cell population. Journal of Immunology, 176(4), 2079–2083.

    Article  CAS  Google Scholar 

  • Matloubian, M., Concepcion, R. J., & Ahmed, R. (1994). CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. Journal of Virology, 68(12), 8056–8063.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miller, N. E., Bonczyk, J. R., Nakayama, Y., & Suresh, M. (2005). Role of thymic output in regulating CD8 T-cell homeostasis during acute and chronic viral infection. Journal of Virology, 79(15), 9419–9429.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller, J. D., van der Most R. G., Akondy, R. S., Glidewell, J. T., Albott, S., Masopust, D., et al. (2008). Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity, 28(5), 710–722.

    Article  CAS  PubMed  Google Scholar 

  • Moskophidis, D., Lechner, F., Pircher, H., & Zinkernagel, R. M. (1993). Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature, 362(6422), 758–761.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, S. N., Gebhardt, T., Carbone, F. R., & Heath, W. R. (2013). Memory T cell subsets, migration patterns, and tissue residence. Annual Review of Immunology, 31, 137–161.

    Article  CAS  PubMed  Google Scholar 

  • Murali-Krishna, K., Altman, J. D., Suresh, M., Sourdive, D. J., Zajac, A. J., Miller, J. D., et al. (1998). Counting antigen-specific CD8 T cells: A reevaluation of bystander activation during viral infection. Immunity, 8(2), 177–187.

    Article  CAS  PubMed  Google Scholar 

  • Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A., & Wherry, E. J. (2015). Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med.

    Google Scholar 

  • Oldstone, M. B. (2002). Biology and pathogenesis of lymphocytic choriomeningitis virus infection. Current Topics in Microbiology and Immunology, 263, 83–117.

    CAS  PubMed  Google Scholar 

  • Ortiz, G. M., Wellons, M., Brancato, J., Vo, H. T., Zinn, R. L., Clarkson, D. E., et al. (2001). Structured antiretroviral treatment interruptions in chronically HIV-1-infected subjects. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13288–13293.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paley, M. A., Kroy, D. C., Odorizzi, P. M., Johnnidis, J. B., Dolfi, D. V., Barnett, B. E., et al. (2012). Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science, 338(6111), 1220–1225.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pauken, K. E., & Wherry, E. J. (2015). Overcoming T cell exhaustion in infection and cancer. Trends Immunol, 36, 265–276.

    Google Scholar 

  • Petrovas, C., Casazza, J. P., Brenchley, J. M., Price, D. A., Gostick, E., Adams, W. C., et al. (2006). PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. The Journal of Experimental Medicine, 203(10), 2281–2292.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petrovic, D., Dempsey, E., Doherty, D. G., Kelleher, D., & Long, A. (2012). Hepatitis C virus-T-cell responses and viral escape mutations. European Journal of Immunology, 42(1), 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Quigley, M., Pereyra, F., Nilsson, B., Porichis, F., Fonseca, C., Eichbaum, Q., et al. (2010). Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nature Medicine, 16(10), 1147–1151.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shin, H., Blackburn, S. D., Blattman, J. N., & Wherry, E. J. (2007). Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. The Journal of Experimental Medicine, 204(4), 941–949.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schinazi, R., Halfon, P., Marcellin, P., & Asselah, T. (2014). HCV direct-acting antiviral agents: The best interferon-free combinations. Liver International: Official Journal of the International Association for the Study of the Liver, 34(Suppl 1), 69–78.

    Article  CAS  Google Scholar 

  • Schmitz, J. E., Kuroda, M. J., Santra, S., Sasseville, V. G., Simon, M. A., Lifton, M. A., et al. (1999). Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science, 283(5403), 857–860.

    Article  CAS  PubMed  Google Scholar 

  • Speiser, D. E., Utzschneider, D. T., Oberle, S. G., Munz, C., Romero, P., & Zehn, D. (2014). T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? Nat Rev Immunol, 14, 768–774.

    Google Scholar 

  • Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443–2454.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trautmann, L., Janbazian, L., Chomont, N., Said, E. A., Gimmig, S., Bessette, B., et al. (2006). Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nature Medicine, 12(10), 1198–1202.

    Article  CAS  PubMed  Google Scholar 

  • Utzschneider, D. T., Legat, A., Fuertes Marraco, S. A., Carrie, L., Luescher, I., Speiser, D. E., et al. (2013). T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nature Immunology, 14(6), 603–610.

    Article  CAS  PubMed  Google Scholar 

  • Velu, V., Titanji, K., Zhu, B., Husain, S., Pladevega, A., Lai, L., et al. (2009). Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature, 458(7235), 206–210.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vezys, V., Masopust, D., Kemball, C. C., Barber, D. L., O'Mara, L. A., Larsen, C. P., et al. (2006). Continuous recruitment of naive T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection. The Journal of Experimental Medicine, 203(10), 2263–2269.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vigano, S., Utzschneider, D. T., Perreau, M., Pantaleo, G., Zehn, D., & Harari, A. (2012). Functional avidity: A measure to predict the efficacy of effector T cells? Clinical & Developmental Immunology, 2012, 153863.

    Google Scholar 

  • Virgin, H. W., Wherry, E. J., & Ahmed, R. (2009). Redefining chronic viral infection. Cell, 138(1), 30–50.

    Article  CAS  PubMed  Google Scholar 

  • Wherry, E. J. (2011). T cell exhaustion. Nature Immunology, 12(6), 492–499.

    Article  CAS  PubMed  Google Scholar 

  • Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most R., & Ahmed, R. (2003). Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. Journal of Virology, 77(8), 4911–4927.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N., & Ahmed, R. (2004). Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proceedings of the National Academy of Sciences of the United States of America, 101(45), 16004–16009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wherry, E. J., Ha, S. J., Kaech, S. M., Haining, W. N., Sarkar, S., Kalia, V., et al. (2007). Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity, 27(4), 670–684.

    Article  CAS  PubMed  Google Scholar 

  • Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. The New England Journal of Medicine, 369(2), 122–133.

    Article  CAS  PubMed  Google Scholar 

  • Zajac, A. J., Blattman, J. N., Murali-Krishna, K., Sourdive, D. J., Suresh, M., Altman, J. D., et al. (1998). Viral immune evasion due to persistence of activated T cells without effector function. The Journal of Experimental Medicine, 188(12), 2205–2213.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zehn, D., & Bevan, M. J. (2006). T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity, 25(2), 261–270.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zehn, D., Lee, S. Y., & Bevan, M. J. (2009). Complete but curtailed T-cell response to very low-affinity antigen. Nature, 458(7235), 211–214.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, N., & Bevan, M. J. (2011). CD8(+) T cells: Foot soldiers of the immune system. Immunity, 35(2), 161–168.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zinkernagel, R. M., & Doherty, P. C. (1974). Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature, 248(5450), 701–702.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zehn, D., Wherry, E. (2015). Immune Memory and Exhaustion: Clinically Relevant Lessons from the LCMV Model. In: Schoenberger, S., Katsikis, P., Pulendran, B. (eds) Crossroads Between Innate and Adaptive Immunity V. Advances in Experimental Medicine and Biology, vol 850. Springer, Cham. https://doi.org/10.1007/978-3-319-15774-0_10

Download citation

Publish with us

Policies and ethics