Skip to main content

Abstract

Sarcoidosis is a multisystem disease of unknown origin, predominantly affecting young adults, and characterized by compact noncaseating epithelioid cell granulomas. The term sarkoid was first introduced in 1899 by Caesar Boeck, a Norwegian dermatologist, to describe benign cutaneous lesions that resembled sarcoma on histopathological examination. With the development and progress of new imaging modalities including positron emission tomography (PET) and magnetic resonance imaging (MRI), there has been a recent increase in interest from clinicians and researchers regarding the diagnosis and treatment of cardiac sarcoidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boeck C. Multiple benign sarkoid of the skin. J Cutan Genitourinary Dis. 1899;17:543–50.

    Google Scholar 

  2. Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am J Respir Crit Care Med. 1999;160:736–55.

    Google Scholar 

  3. Henke CE, Henke G, Elveback LR, et al. The epidemiology of sarcoidosis in Rochester, Minnesota: a population-based study of incidence and survival. Am J Epidemiol. 1986;123:840–5.

    CAS  PubMed  Google Scholar 

  4. Bresnitz EA, Strom BL. Epidemiology of sarcoidosis. Epidemiol Rev. 1983;5:124–56.

    CAS  PubMed  Google Scholar 

  5. Erdal BS, Clymer BD, Yildiz VO, et al. Unexpectedly high prevalence of sarcoidosis in a representative U.S. Metropolitan population. Respir Med. 2012;106:893–9.

    PubMed  Google Scholar 

  6. Hennessy TW, Ballard DJ, DeRemee RA, et al. The influence of diagnostic access bias on the epidemiology of sarcoidosis: a population-based study in Rochester, Minnesota, 1935–1984. J Clin Epidemiol. 1988;41:565–70.

    CAS  PubMed  Google Scholar 

  7. Buck AA, Sartwell PE. Epidemiologic investigations of sarcoidosis. II. Skin sensitivity and environmental factors. Am J Hyg. 1961;74:152–73.

    CAS  PubMed  Google Scholar 

  8. Buck AA, McKusick VA. Epidemiologic investigations of sarcoidosis. III. Serum proteins; syphilis; association with tuberculosis: familial aggregation. Am J Hyg. 1961;74:174–88.

    CAS  PubMed  Google Scholar 

  9. Buck AA. Epidemiologic investigations of sarcoidosis. IV. Discussion and summary. Am J Hyg. 1961;74:189–202.

    CAS  PubMed  Google Scholar 

  10. Hills SE, Parkes SA, Baker SB. Epidemiology of sarcoidosis in the Isle of Man–2: Evidence for space-time clustering. Thorax. 1987;42:427–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Prezant DJ, Dhala A, Goldstein A, et al. The incidence, prevalence, and severity of sarcoidosis in New York City firefighters. Chest. 1999;116:1183–93.

    CAS  PubMed  Google Scholar 

  12. Kajdasz DK, Lackland DT, Mohr LC, Judson MA. A current assessment of rurally linked exposures as potential risk factors for sarcoidosis. Ann Epidemiol. 2001;11:111–7.

    CAS  PubMed  Google Scholar 

  13. Kucera GP, Rybicki BA, Kirkey KL, et al. Occupational risk factors for sarcoidosis in African-American siblings. Chest. 2003;123:1527–35.

    PubMed  Google Scholar 

  14. Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med. 2007;357:2153–65.

    CAS  PubMed  Google Scholar 

  15. Baughman RP, Lower EE. Novel therapies for sarcoidosis. Semin Respir Crit Care Med. 2007;28:128–33.

    PubMed  Google Scholar 

  16. Studdy PR, Bird R. Serum angiotensin converting enzyme in sarcoidosis–its value in present clinical practice. Ann Clin Biochem. 1989;26(Pt 1):13–8.

    PubMed  Google Scholar 

  17. Prabhakar HB, Rabinowitz CB, Gibbons FK, et al. Imaging features of sarcoidosis on MDCT, FDG PET, and PET/CT. AJR Am J Roentgenol. 2008;190:S1–6.

    PubMed  Google Scholar 

  18. Scadding JG. Prognosis of intrathoracic sarcoidosis in England. A review of 136 cases after five years’ observation. Br Med J. 1961;2:1165–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Baughman RP, Shipley R, Desai S, et al. Changes in chest roentgenogram of sarcoidosis patients during a clinical trial of infliximab therapy: comparison of different methods of evaluation. Chest. 2009;136:526–35.

    CAS  PubMed  Google Scholar 

  20. Braun JJ, Kessler R, Constantinesco A, Imperiale A. 18 F-FDG PET/CT in sarcoidosis management: review and report of 20 cases. Eur J Nucl Med Mol Imaging. 2008;35:1537–43.

    PubMed  Google Scholar 

  21. Abrar ML, Agrawal K, Bhattacharya A, Mittal BR. Diffuse lung uptake in stress myocardial perfusion scintigraphy with Thallium-201 in a patient with sarcoidosis. Indian J Nucl Med. 2013;28:57.

    PubMed Central  PubMed  Google Scholar 

  22. Lebtahi R, Crestani B, Belmatoug N, et al. Somatostatin receptor scintigraphy and gallium scintigraphy in patients with sarcoidosis. J Nucl Med. 2001;42:21–6.

    CAS  PubMed  Google Scholar 

  23. Beaumont D, Herry JY, Sapene M, et al. Gallium-67 in the evaluation of sarcoidosis: correlations with serum angiotensin-converting enzyme and bronchoalveolar lavage. Thorax. 1982;37:11–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Klech H, Kohn H, Kummer F, Mostbeck A. Assessment of activity in sarcoidosis. Sensitivity and specificity of 67Gallium scintigraphy, serum ACE levels, chest roentgenography, and blood lymphocyte subpopulations. Chest. 1982;82:732–8.

    CAS  PubMed  Google Scholar 

  25. Nishiyama Y, Yamamoto Y, Fukunaga K, et al. Comparative evaluation of 18 F-FDG PET and 67Ga scintigraphy in patients with sarcoidosis. J Nucl Med. 2006;47:1571–6.

    PubMed  Google Scholar 

  26. Phelps ME, Hoffman EJ, Selin C, et al. Investigation of [18 F]2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism. J Nucl Med. 1978;19:1311–9.

    CAS  PubMed  Google Scholar 

  27. Basu S, Zhuang H, Torigian DA, et al. Functional imaging of inflammatory diseases using nuclear medicine techniques. Semin Nucl Med. 2009;39:124–45.

    PubMed  Google Scholar 

  28. Mañá J. Nuclear imaging. 67Gallium, 201thallium, 18 F-labeled fluoro-2-deoxy-D-glucose positron emission tomography. Clin Chest Med. 1997;18:799–811.

    PubMed  Google Scholar 

  29. Cremers JP, Van Kroonenburgh MJ, Mostard RL, et al. Extent of disease activity assessed by 18 F-FDG PET/CT in a Dutch sarcoidosis population. Sarcoidosis Vasc Diffuse Lung Dis. 2014;31:37–45.

    PubMed  Google Scholar 

  30. Ambrosini V, Zompatori M, Fasano L, et al. 18 F-FDG PET/CT for the assessment of disease extension and activity in patients with sarcoidosis: results of a preliminary prospective study. Clin Nucl Med. 2013;38:e171–7.

    PubMed  Google Scholar 

  31. Sobic-Saranovic D, Grozdic I, Videnovic-Ivanov J, et al. The utility of 18 F-FDG PET/CT for diagnosis and adjustment of therapy in patients with active chronic sarcoidosis. J Nucl Med. 2012;53:1543–9.

    PubMed  Google Scholar 

  32. De Vries J, Rothkrantz-Kos S, van Dieijen-Visser MP, Drent M. The relationship between fatigue and clinical parameters in pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2004;21:127–36.

    PubMed  Google Scholar 

  33. Schoenberger CI, Line BR, Keogh BA, et al. Lung inflammation in sarcoidosis: comparison of serum angiotensin-converting enzyme levels with bronchoalveolar lavage and gallium-67 scanning assessment of the T lymphocyte alveolitis. Thorax. 1982;37:19–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Nunes H, Brillet P-Y, Valeyre D, et al. Imaging in sarcoidosis. Semin Respir Crit Care Med. 2007;28:102–20.

    PubMed  Google Scholar 

  35. Mostard RLM, Vöö S, van Kroonenburgh MJPG, et al. Inflammatory activity assessment by F18 FDG-PET/CT in persistent symptomatic sarcoidosis. Respir Med. 2011;105:1917–24.

    CAS  PubMed  Google Scholar 

  36. Drent M, Mansour K, Linssen C. Bronchoalveolar lavage in sarcoidosis. Semin Respir Crit Care Med. 2007;28:486–95.

    PubMed  Google Scholar 

  37. Bjermer L, Rosenhall L, Angström T, Hällgren R. Predictive value of bronchoalveolar lavage cell analysis in sarcoidosis. Thorax. 1988;43:284–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Keogh BA, Hunninghake GW, Line BR, Crystal RG. The alveolitis of pulmonary sarcoidosis. Evaluation of natural history and alveolitis-dependent changes in lung function. Am Rev Respir Dis. 1983;128:256–65.

    CAS  PubMed  Google Scholar 

  39. Lin YH, Haslam PL, Turner-Warwick M. Chronic pulmonary sarcoidosis: relationship between lung lavage cell counts, chest radiograph, and results of standard lung function tests. Thorax. 1985;40:501–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Turner-Warwick M, McAllister W, Lawrence R, et al. Corticosteroid treatment in pulmonary sarcoidosis: do serial lavage lymphocyte counts, serum angiotensin converting enzyme measurements, and gallium-67 scans help management? Thorax. 1986;41:903–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Treglia G, Taralli S, Giordano A. Emerging role of whole-body 18 F-fluorodeoxyglucose positron emission tomography as a marker of disease activity in patients with sarcoidosis: a systematic review. Sarcoidosis Vasc Diffuse Lung Dis. 2011;28:87–94.

    CAS  PubMed  Google Scholar 

  42. Brudin LH, Valind SO, Rhodes CG, et al. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med. 1994;21:297–305.

    CAS  PubMed  Google Scholar 

  43. Teirstein AS, Machac J, Almeida O, et al. Results of 188 whole-body fluorodeoxyglucose positron emission tomography scans in 137 patients with sarcoidosis. Chest. 2007;132:1949–53.

    PubMed  Google Scholar 

  44. Sobic-Saranovic DP, Grozdic IT, Videnovic-Ivanov J, et al. Responsiveness of FDG PET/CT to treatment of patients with active chronic sarcoidosis. Clin Nucl Med. 2013;38:516–21.

    PubMed  Google Scholar 

  45. Imperiale A, Riehm S, Braun JJ. Interest of [18 F]FDG PET/CT for treatment efficacy assessment in aggressive phenotype of sarcoidosis with special emphasis on sinonasal involvement. Q J Nucl Med Mol Imaging. 2013;57:177–86.

    CAS  PubMed  Google Scholar 

  46. Keijsers RGM, Verzijlbergen JF, van Diepen DM, et al. 18 F-FDG PET in sarcoidosis: an observational study in 12 patients treated with infliximab. Sarcoidosis Vasc Diffuse Lung Dis. 2008;25:143–9.

    CAS  PubMed  Google Scholar 

  47. Milman N, Graudal N, Loft A, et al. Effect of the TNF-α inhibitor adalimumab in patients with recalcitrant sarcoidosis: a prospective observational study using FDG-PET. Clin Respir J. 2012;6:238–47.

    CAS  PubMed  Google Scholar 

  48. Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation. 1978;58:1204–11.

    CAS  PubMed  Google Scholar 

  49. Matsui Y, Iwai K, Tachibana T, et al. Clinicopathological study of fatal myocardial sarcoidosis. Ann N Y Acad Sci. 1976;278:455–69.

    CAS  PubMed  Google Scholar 

  50. Tadamura E, Yamamuro M, Kubo S, et al. Effectiveness of delayed enhanced MRI for identification of cardiac sarcoidosis: comparison with radionuclide imaging. AJR Am J Roentgenol. 2005;185:110–5.

    PubMed  Google Scholar 

  51. Sekhri V, Sanal S, Delorenzo LJ, et al. Cardiac sarcoidosis: a comprehensive review. Arch Med Sci. 2011;7:546–54.

    PubMed Central  PubMed  Google Scholar 

  52. Roberts WC, McAllister HA, Ferrans VJ. Sarcoidosis of the heart. A clinicopathologic study of 35 necropsy patients (group 1) and review of 78 previously described necropsy patients (group 11). Am J Med. 1977;63:86–108.

    CAS  PubMed  Google Scholar 

  53. Banba K, Kusano KF, Nakamura K, et al. Relationship between arrhythmogenesis and disease activity in cardiac sarcoidosis. Heart Rhythm. 2007;4:1292–9.

    PubMed  Google Scholar 

  54. Kandolin R, Lehtonen J, Kupari M. Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults. Circ Arrhythm Electrophysiol. 2011;4:303–9.

    PubMed  Google Scholar 

  55. Nery PB, Beanlands RS, Nair GM, et al. Atrioventricular block as the initial manifestation of cardiac sarcoidosis in middle-aged adults. J Cardiovasc Electrophysiol. 2014;25:875–81.

    PubMed  Google Scholar 

  56. Yazaki Y, Isobe M, Hiroe M, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol. 2001;88:1006–10.

    CAS  PubMed  Google Scholar 

  57. Chapelon-Abric C, de Zuttere D, Duhaut P, et al. Cardiac sarcoidosis: a retrospective study of 41 cases. Medicine (Baltimore). 2004;83:315–34.

    Google Scholar 

  58. Kato Y, Morimoto S, Uemura A, et al. Efficacy of corticosteroids in sarcoidosis presenting with atrioventricular block. Sarcoidosis Vasc Diffuse Lung Dis. 2003;20:133–7.

    PubMed  Google Scholar 

  59. Yodogawa K, Seino Y, Ohara T, et al. Effect of corticosteroid therapy on ventricular arrhythmias in patients with cardiac sarcoidosis. Ann Noninvasive Electrocardiol. 2011;16:140–7.

    PubMed  Google Scholar 

  60. Doughan AR, Williams BR. Cardiac sarcoidosis. Heart. 2006;92:282–8.

    PubMed Central  PubMed  Google Scholar 

  61. Winters SL, Cohen M, Greenberg S, et al. Sustained ventricular tachycardia associated with sarcoidosis: assessment of the underlying cardiac anatomy and the prospective utility of programmed ventricular stimulation, drug therapy and an implantable antitachycardia device. J Am Coll Cardiol. 1991;18:937–43.

    CAS  PubMed  Google Scholar 

  62. Sadek MM, Yung D, Birnie DH, et al. Corticosteroid therapy for cardiac sarcoidosis: a systematic review. Can J Cardiol. 2013;29:1034–41.

    PubMed  Google Scholar 

  63. Chiu C-Z, Nakatani S, Zhang G, et al. Prevention of left ventricular remodeling by long-term corticosteroid therapy in patients with cardiac sarcoidosis. Am J Cardiol. 2005;95:143–6.

    CAS  PubMed  Google Scholar 

  64. Jefic D, Joel B, Good E, et al. Role of radiofrequency catheter ablation of ventricular tachycardia in cardiac sarcoidosis: report from a multicenter registry. Heart Rhythm. 2009;6:189–95.

    PubMed  Google Scholar 

  65. Futamatsu H, Suzuki J, Adachi S, et al. Utility of gallium-67 scintigraphy for evaluation of cardiac sarcoidosis with ventricular tachycardia. Int J Cardiovasc Imaging. 2006;22:443–8.

    PubMed  Google Scholar 

  66. Hiramitsu S, Morimoto S, Uemura A, et al. National survey on status of steroid therapy for cardiac sarcoidosis in Japan. Sarcoidosis Vasc Diffuse Lung Dis. 2005;22:210–3.

    PubMed  Google Scholar 

  67. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis. 1981;23:321–36.

    CAS  PubMed  Google Scholar 

  68. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989;32:217–38.

    CAS  PubMed  Google Scholar 

  69. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res. 1997;33:243–57.

    CAS  PubMed  Google Scholar 

  70. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–129.

    CAS  PubMed  Google Scholar 

  71. Wisneski JA, Gertz EW, Neese RA, Mayr M. Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Invest. 1987;79:359–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Ohira H, Tsujino I, Yoshinaga K. 18 F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis. Eur J Nucl Med Mol Imaging. 2011;38:1773–83.

    CAS  PubMed  Google Scholar 

  73. Yamagishi H, Shirai N, Takagi M, et al. Identification of cardiac sarcoidosis with (13)N-NH(3)/(18)F-FDG PET. J Nucl Med. 2003;44:1030–6.

    PubMed  Google Scholar 

  74. Youssef G, Leung E, Mylonas I, et al. The use of 18 F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53:241–8.

    CAS  PubMed  Google Scholar 

  75. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol. 2009;16:801–10.

    PubMed  Google Scholar 

  76. Ishida Y, Yoshinaga K, Miyagawa M, et al. Recommendations for (18)F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology recommendations. Ann Nucl Med. 2014;28:393–403.

    PubMed  Google Scholar 

  77. Frayn KN. The glucose-fatty acid cycle: a physiological perspective. Biochem Soc Trans. 2003;31:1115–9.

    CAS  PubMed  Google Scholar 

  78. Cheng VY, Slomka PJ, Ahlen M, et al. Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18 F-FDG uptake during PET: a randomized controlled trial. J Nucl Cardiol. 2010;17:286–91.

    PubMed Central  PubMed  Google Scholar 

  79. Williams G, Kolodny GM. Suppression of myocardial 18 F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol. 2008;190:W151–6.

    PubMed  Google Scholar 

  80. Harisankar CNB, Mittal BR, Agrawal KL, et al. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol. 2011;18:926–36.

    PubMed  Google Scholar 

  81. Soussan M, Brillet P-Y, Nunes H, et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20:120–7.

    PubMed  Google Scholar 

  82. Lum DP, Wandell S, Ko J, Coel MN. Reduction of myocardial 2-deoxy-2-[18 F]fluoro-D-glucose uptake artifacts in positron emission tomography using dietary carbohydrate restriction. Mol Imaging Biol. 2002;4:232–7.

    PubMed  Google Scholar 

  83. Wykrzykowska J, Lehman S, Williams G, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18 F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50:563–8.

    PubMed  Google Scholar 

  84. Coulden R, Chung P, Sonnex E, et al. Suppression of myocardial 18 F-FDG uptake with a preparatory “Atkins-style” low-carbohydrate diet. Eur Radiol. 2012;22:2221–8.

    PubMed  Google Scholar 

  85. Kobayashi Y, Kumita S, Fukushima Y, et al. Significant suppression of myocardial 18 F-fluorodeoxyglucose uptake using 24-h carbohydrate restriction and a low-carbohydrate, high-fat diet. J Cardiol. 2013;62:314–9.

    PubMed  Google Scholar 

  86. Nuutila P, Koivisto VA, Knuuti J, et al. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest. 1992;89:1767–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Persson E. Lipoprotein lipase, hepatic lipase and plasma lipolytic activity. Effects of heparin and a low molecular weight heparin fragment (Fragmin). Acta Med Scand. 1988;724(Suppl):1–56.

    CAS  Google Scholar 

  88. Ohira H, Tsujino I, Ishimaru S, et al. Myocardial imaging with 18 F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging. 2008;35:933–41.

    PubMed  Google Scholar 

  89. Ishimaru S, Tsujino I, Takei T, et al. Focal uptake on 18 F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J. 2005;26:1538–43.

    PubMed  Google Scholar 

  90. Morooka M, Moroi M, Uno K, et al. Long fasting is effective in inhibiting physiological myocardial 18 F-FDG uptake and for evaluating active lesions of cardiac sarcoidosis. EJNMMI Res. 2014;4:1.

    PubMed Central  PubMed  Google Scholar 

  91. Strauss HW, Miller DD, Wittry MD, et al. Procedure guideline for myocardial perfusion imaging 3.3. J Nucl Med Technol. 2008;36:155–61.

    PubMed  Google Scholar 

  92. Tahara N, Tahara A, Nitta Y, et al. Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovasc Imaging. 2010;3:1219–28.

    PubMed  Google Scholar 

  93. Manabe O, Ohira H, Yoshinaga K, et al. Elevated (18)F-fluorodeoxyglucose uptake in the interventricular septum is associated with atrioventricular block in patients with suspected cardiac involvement sarcoidosis. Eur J Nucl Med Mol Imaging. 2013;40:1558–66.

    CAS  PubMed  Google Scholar 

  94. Skali H, Schulman AR, Dorbala S. 18 F-FDG PET/CT for the assessment of myocardial sarcoidosis. Curr Cardiol Rep. 2013;15:1–11.

    Google Scholar 

  95. Blankstein R, Osborne M, Naya M, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63:329–36.

    PubMed Central  PubMed  Google Scholar 

  96. Diagnostic standard and guidelines for sarcoidosis. Jpn J Sarcoidosis Granulomatous Disorders [in Japanese]. 2007;27:89–102.

    Google Scholar 

  97. Deng JC, Baughman RP, Lynch JP. Cardiac involvement in sarcoidosis. Semin Respir Crit Care Med. 2002;23:513–27.

    PubMed  Google Scholar 

  98. Patel MR, Cawley PJ, Heitner JF, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation. 2009;120:1969–77.

    PubMed Central  PubMed  Google Scholar 

  99. Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11:1305–23.

    PubMed  Google Scholar 

  100. Cooper LT, Baughman KL, Feldman AM, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation. 2007;116:2216–33.

    PubMed  Google Scholar 

  101. Ardehali H, Howard DL, Hariri A, et al. A positive endomyocardial biopsy result for sarcoid is associated with poor prognosis in patients with initially unexplained cardiomyopathy. Am Heart J. 2005;150:459–63.

    PubMed  Google Scholar 

  102. Okumura W, Iwasaki T, Toyama T, et al. Usefulness of fasting 18 F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med. 2004;45:1989–98.

    PubMed  Google Scholar 

  103. Khandani AH, Isasi CR, Donald Blaufox M. Intra-individual variability of cardiac uptake on serial whole-body 18 F-FDG PET. Nucl Med Commun. 2005;26:787–91.

    PubMed  Google Scholar 

  104. Gropler RJ, Siegel BA, Lee KJ, et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med. 1990;31:1749–56.

    CAS  PubMed  Google Scholar 

  105. De Keizer B, Scholtens AM, van Kimmenade RRJ, de Jong PA. High FDG uptake in the right ventricular myocardium of a pulmonary hypertension patient. J Am Coll Cardiol. 2013;62:1724.

    PubMed  Google Scholar 

  106. Can MM, Kaymaz C, Tanboga IH, et al. Increased right ventricular glucose metabolism in patients with pulmonary arterial hypertension. Clin Nucl Med. 2011;36:743–8.

    PubMed  Google Scholar 

  107. Osborne MT, Hulten EA, Singh A, et al. Reduction in 18 F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol. 2014;21:166–74.

    PubMed  Google Scholar 

  108. Fleming HA, Bailey SM. The prognosis of sarcoid heart disease in the United Kingdom. Ann N Y Acad Sci. 1986;465:543–50.

    CAS  PubMed  Google Scholar 

  109. Mehta D, Lubitz SA, Frankel Z, et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest. 2008;133:1426–35.

    PubMed  Google Scholar 

  110. Judson MA, Baughman RP, Teirstein AS, et al. Defining organ involvement in sarcoidosis: the ACCESS proposed instrument. ACCESS Research Group. A Case Control Etiologic Study of Sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 1999;16:75–86.

    CAS  PubMed  Google Scholar 

  111. Mc Ardle BA, Birnie DH, Klein R, et al. Is there an association between clinical presentation and the location and extent of myocardial involvement of cardiac sarcoidosis as assessed by 18 F- fluorodoexyglucose positron emission tomography? Circ Cardiovasc Imaging. 2013;6:617–26.

    PubMed  Google Scholar 

  112. Takeda N, Yokoyama I, Hiroi Y, et al. Positron emission tomography predicted recovery of complete A-V nodal dysfunction in a patient with cardiac sarcoidosis. Circulation. 2002;105:1144–5.

    CAS  PubMed  Google Scholar 

  113. Pandya C, Brunken RC, Tchou P, et al. Detecting cardiac involvement in sarcoidosis: a call for prospective studies of newer imaging techniques. Eur Respir J. 2007;29:418–22.

    CAS  PubMed  Google Scholar 

  114. Uusimaa P, Ylitalo K, Anttonen O, et al. Ventricular tachyarrhythmia as a primary presentation of sarcoidosis. Eurospace. 2008;10:760–6.

    Google Scholar 

  115. Nery PB, Leung E, Birnie DH. Arrhythmias in cardiac sarcoidosis: diagnosis and treatment. Curr Opin Cardiol. 2012;27:181–9.

    PubMed  Google Scholar 

  116. Nery PB, Mc Ardle BA, Redpath CJ, et al. Prevalence of cardiac sarcoidosis in patients presenting with monomorphic ventricular tachycardia. Pacing Clin Electrophysiol. 2014;37:364–74.

    PubMed  Google Scholar 

  117. White JA, Rajchl M, Butler J, et al. Active cardiac sarcoidosis: first clinical experience of simultaneous positron emission tomography–magnetic resonance imaging for the diagnosis of cardiac disease. Circulation. 2013;127:e639–41.

    PubMed  Google Scholar 

  118. Schneider S, Batrice A, Rischpler C, et al. Utility of multimodal cardiac imaging with PET/MRI in cardiac sarcoidosis: implications for diagnosis, monitoring and treatment. Eur Heart J. 2014;35:312.

    PubMed  Google Scholar 

  119. Yamada Y, Uchida Y, Tatsumi K, et al. Fluorine-18-fluorodeoxyglucose and carbon-11-methionine evaluation of lymphadenopathy in sarcoidosis. J Nucl Med. 1998;39:1160–6.

    CAS  PubMed  Google Scholar 

  120. Hain SF, Beggs AD. C-11 methionine uptake in granulomatous disease. Clin Nucl Med. 2004;29:585–6.

    PubMed  Google Scholar 

  121. Kaira K, Oriuchi N, Otani Y, et al. Diagnostic usefulness of fluorine-18-alpha-methyltyrosine positron emission tomography in combination with 18 F-fluorodeoxyglucose in sarcoidosis patients. Chest. 2007;131:1019–27.

    PubMed  Google Scholar 

  122. Kim S-K, Im HJ, Kim W, et al. F-18 fluorodeoxyglucose and F-18 fluorothymidine positron emission tomography/computed tomography imaging in a case of neurosarcoidosis. Clin Nucl Med. 2010;35:67–70.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Pelletier-Galarneau MD, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pelletier-Galarneau, M., Mc Ardle, B., Ohira, H., Leung, E., Ruddy, T.D. (2015). Role of PET/CT in Assessing Cardiac Sarcoidosis. In: Schindler, T., George, R., Lima, J. (eds) Molecular and Multimodality Imaging in Cardiovascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-19611-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19611-4_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19610-7

  • Online ISBN: 978-3-319-19611-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics