Skip to main content

Beta Amyloid Hallmarks: From Intrinsically Disordered Proteins to Alzheimer’s Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 870))

Abstract

Beta amyloid protein (Aβ) is one of the intrinsically disordered proteins associated with neurodegenerative diseases like Parkinson’s, prion disease and Alzheimer’s disease (AD) in particular. Although the direct involvement of Aβ peptides in AD is well documented and their aggregative ability is closely related to their neurotoxicity, the precise mechanism of the neurotoxic effects of Aβ peptides remains unclear. There is still a significant gap between the site-specific structural information and the complex structural diversity of Aβ amyloids. The description of the structural polymorphisms of Aβ amyloids can provide valuable information of the molecular basis of AD onset-progress and is essential for comprehension of the Aβ aggregation pathways, in particular its structural evolution. In this review we tried to illustrate the emerging trend of defining several human neurodegenerative disorders as syndromes of protein folding and oligomerization through the example of AD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    European Commission website 2014. Neurodegenerative Disorders. Accessed 26 October 2014. http://ec.europa.eu/health/major_chronic_diseases/diseases/brain_neurological/index_en.htm.

  2. 2.

    Alzheimer’s Disease International website 2014. World Alzheimer’s Reports. Accessed 26 October 2014. http://www.alz.co.uk/research/world-report.

References

  • Ahmed M, Davis J, Aucoin D et al (2010) Structural conversion of neurotoxic amyloid-β(1–42) oligomers to fibrils. Nat Struct Mol Biol 17(5):561–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aksenov MY, Aksenova MV, Butterfield DA et al (1996) Glutaminesynthetase-induced enhancement of β-amyloid peptide Aβ (1–40) neurotoxicity accompanied by abrogation of fibril formation and Aβ fragmentation. J Neurochem 66:2050–2056

    Article  CAS  PubMed  Google Scholar 

  • Balbach JJ, Petkova AT, Oyler NA et al (2002) Supramolecular Structure in Full-Length Alzheimer’s β-Amyloid Fibrils: Evidence for a Parallel b -Sheet Organization from Solid-State Nuclear Magnetic Resonance. Biophys J 83:1205–1216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barrantes FJ, Borroni V, Vallés S (2010) Neuronal nicotinic acetylcholine receptor–cholesterol crosstalk in Alzheimer’s disease. FEBS Lett 584(9):1856–1863

    Article  CAS  PubMed  Google Scholar 

  • Bayer TA, Cappai R, Masters CL et al (1999) It all sticks together the APP-related family of proteins and Alzheimer’s disease. Mol Psychiatry 4(6):524–528

    Article  CAS  PubMed  Google Scholar 

  • Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357

    Article  CAS  PubMed  Google Scholar 

  • Benzinger TLS, Gregory DM, Burkoth TS et al (1998) Propagating structure of Alzheimer’s β-amyloid(10–35) is parallel β-sheet with residues in exact register. Proc Natl Acad Sci U S A 95(23):13407–13412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernstein SL, Dupuis NF, Lazo ND et al (2009) Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat Chem 1(4):326–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bertini I, Luchinat C, Parigi G et al (2011a) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci U S A 108(26):10396–10399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bertini I, Gonnelli L, Luchinat C et al (2011b) A new structural model of Aβ40 Fibrils. J Am Chem Soc U S A 133(40):16013–16022

    Article  CAS  Google Scholar 

  • Bertini I, Engelke F, Gonnelli L et al (2012a) On the use of ultracentrifugal devices for sedimented solute NMR. J Biomol NMR 54(2):123–127

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Engelke F, Luchinat C et al (2012b) NMR properties of sedimented solutes. Phys Chem Chem Phys 14(2):439–447

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Gallo G, Korsak M et al (2013a) Formation kinetics and structural features of β-amyloid aggregates by sedimented solute NMR. Eur J Chem Biol 14(14):1891–1897

    CAS  Google Scholar 

  • Bertini I, Luchinat C, Parigi G et al (2013b) SedNMR: on the edge between solution and solid-state NMR. Acc Cheml Res 46(9):2059–2069

    Article  CAS  Google Scholar 

  • Bieschke J, Herbst M, Wiglenda T et al (2012) Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nat Chem Biol 8(1):93–101

    Article  CAS  Google Scholar 

  • Bitan G, Teplow DB (2005) Preparation of aggregate-free, low molecular weight amyloid β for assembly and toxicity assays. Methods Mol Biol 299:3–9

    CAS  PubMed  Google Scholar 

  • Bitan G, Kirkitadze MD, Lomakin A et al (2003) Amyloid β-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A 100(1):330–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bockmann A, Gardiennet C, Verel R et al (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45(3):319–327

    Article  CAS  PubMed  Google Scholar 

  • Broersen K, Jonckheere W, Rozenski J et al (2011) A Standardized and biocompatible preparation of aggregate-free amyloid β peptide for biophysical and biological studies of Alzheimer's disease. Protein Eng Des Sel PEDS 24(9):743–750

    Article  CAS  PubMed  Google Scholar 

  • Chimon S, Yoshitaka I (2005) Capturing intermediate structures of Alzheimer’s β-amyloid, Aβ1–40, by solid state NMR spectroscopy. J Am Chem Soc U S A 127(39):13472–13473

    Article  CAS  Google Scholar 

  • Chimon S, Shaibat MA, Jones CR et al (2007) Evidence of fibril-like b-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid. Nat Struct Mol Biol 14:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Danielsson J, Andersson A, Jarvet J et al (2006) 15Nrelaxation study of the amyloid βpeptide: structural propensities and persistence length. Magn Reson Chem 44:S114–S121

    Article  CAS  PubMed  Google Scholar 

  • Dickson TC, King CE, McCormack GH et al (1999) Neurochemical diversity of dystrophic neurites in the early and late stages of Alzheimer’s disease. Exp Neurol 1:100–110

    Google Scholar 

  • Dobson CM, Misfolding PF (2003) Nature 426:884–890

    Article  CAS  PubMed  Google Scholar 

  • Esch FS, Keim PS, Beattie EC et al (1990) Cleavage of amyloid β peptide during constitutive processing of its precursor. Science (New York N.Y.) 248(4959):1122–1124

    Article  CAS  PubMed  Google Scholar 

  • Evin G, Weidemann A (2002) Biogenesis and metabolism of Alzheimer’s disease Aβ amyloid peptides. Peptides 23:1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Fändrich M (2012) Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J Mol Biol 421(4–5):427–440

    Article  PubMed  CAS  Google Scholar 

  • Fändrich M, Schmidt M, Grigorieff N (2011) Recent progress in understanding Alzheimer’s β-amyloid structures. Trends Biochem Sci 36:338–345

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fawzi NL, Ying J, Ghirlando R et al (2011) Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR. Nature 480(7376):268–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fezoui Y, Hartley DM, Harper JD et al (2000) An improved method of preparing the amyloid β-protein for fibrillogenesis and neurotoxicity experiments. Amyloid 7(3):166–178

    Article  CAS  PubMed  Google Scholar 

  • Frost D, Gorman PM, Yip CM et al (2003) Co-incorporation of Aβ 40 and Aβ 42 to form mixed pre-fibrillar aggregates. Eur J Biochem 270(4):654–663

    Article  CAS  PubMed  Google Scholar 

  • Gallion SL (2012) Modeling amyloid-β as homogeneous dodecamers and in complex with cellular prion protein. PLoS ONE 7(11):e49375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gardiennet C, Schutz AK, Hunkeler A et al (2012) A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. Angew Chem Int Ed 51(31):7855–7858

    Article  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890

    Article  CAS  PubMed  Google Scholar 

  • Haass C (2010) Initiation and propagation of neurodegeneration. Nat Med 16(11):1201–1204

    Article  CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8(2):101–112

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hartley DM, Walsh DM, Chian P et al (1999) Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19(20):8876–8884

    CAS  PubMed  Google Scholar 

  • Haupt C, Leppert J, Ronicke R et al (2012) Structural basis of β-amyloid-dependent synaptic dysfunctions. Angew Chem Int Ed 51(7):1576–1579

    Article  CAS  Google Scholar 

  • Hellstrand E, Barry B, Dominic MW et al (2010) Amyloid β-Protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem Neurosci 1(1):13–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herzig MC, Winkler DT, Burgermeister P et al (2004) Aβ is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 7(9):954–960

    Article  CAS  PubMed  Google Scholar 

  • Hoshi M, Sato M, Sato M et al (2003) Spherical aggregates of (b-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3b. Proc Natl Acad Sci U S A 100:6370–6375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hou L, Shao H, Zhang Y et al (2004) Solution NMR studies of the aβ(1–40) and aβ(1–42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J Am Chem Soc 126(7):1992–2005

    Article  CAS  PubMed  Google Scholar 

  • Howlett DR, Jennings KH, Lee DC et al (1995) Aggregation state and neurotoxic properties of Alzheimer β-amyloid peptide. Neurodegeneration 4(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Jan A, Gokce O, Luthi-Carter R et al (2008) The ratio of monomeric to aggregated forms of Aβ40 and Aβ42 is an important determinant of amyloid-β aggregation, fibrillogenesis, and toxicity. J Biol Chem 283(42):28176–28189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jan A, Hartley DM, Lashuel HA (2010) Preparation and characterization of toxic aβ aggregates for structural and functional studies in Alzheimer’s disease research. Nat Protoc 5(6):1186–1209

    Article  CAS  PubMed  Google Scholar 

  • Jao S-C, Kan M, Talafous J et al (1997) Trifluoroacetic acid pretreatment reproducibly disaggregates the amyloid β-peptide. Amyloid Internatl J Exp Clin Invest 4(4):240–252

    CAS  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A et al (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell surface receptor. Nature 325:733–736

    Article  CAS  PubMed  Google Scholar 

  • Kheterpal I, Chen M, Cook KD et al (2006) Structural differences in Abeta amyloid protofibrils and fibrils mapped by hydrogen exchange–mass spectrometry with on-line proteolytic fragmentation. J Mol Biol 361(4):785–795

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Onstead L, Randle S et al (2007) Aβ40 inhibits amyloid deposition in vivo. J Neurosci 27(3):627–633

    Article  CAS  PubMed  Google Scholar 

  • Kirkitadze MD, Bitan G, Teplow DB (2002) Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 69:567–577

    Article  CAS  PubMed  Google Scholar 

  • Knopman DS, Parisi JE, Salviati A et al (2003) Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 62:1087–1095

    Google Scholar 

  • Krafft GA, Klein WL (2010) ADDLs and the signaling web that leads to Alzheimer’s disease. Neuropharmacology 59(4–5):230–242

    Article  CAS  PubMed  Google Scholar 

  • Kuhn P-H, Wang H, Dislich B et al (2010) ADAM10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons. EMBO J, 29(17):3020–3027

    Google Scholar 

  • Kumar S, Rezaei-Ghaleh N, Terwel D et al (2011) Extracellular phosphorylation of the amyloid β-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. Eur Mol Biol Organ J 30(11):2255–2265

    Article  CAS  Google Scholar 

  • Kuperstein I, Broersen K, Benilova I et al (2010) Neurotoxicity of Alzheimer’s disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. Eur Mol Biol Organ J 29(19):3408–3420

    Article  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lammich S, Kojro E, Postina R et al (1999) Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 96(7):3922–3927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lansbury PT, Costa PR, Griffiths JM et al (1995) Structural model for the β-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nat Struct Mol Biol 2(11):990–998

    Article  CAS  Google Scholar 

  • Lee J, Culyba EK, Powers ET et al (2011) Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nat Chem Biol 7(9):602–609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lesné S, Koh MT, Kotilinek L et al (2006) A specific amyloid-β protein assembly in the brainimpairs memory. Nature 440(7082):352–357

    Article  PubMed  CAS  Google Scholar 

  • Long F, Cho W, Ishii Y (2011) Expression and purification of 15N- and 13C-Isotope labeled 40-residue human Alzheimer’s B-amyloid peptide for NMR-based structural analysis. Protein Expr Purif 79(1):16–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez del Amo JM, Fink U, Dasari M et al (2012) Structural properties of EGCG-induced, nontoxic Alzheimer’s disease Aβ oligomers. J Mol Biol 421(4–5):517–524

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci U S A 91(25):12243–12247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu J-X, Qiang W, Yau W-M et al (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Lührs T, Ritter C, Adrian M et al (2005) 3D structure of Alzheimer’s amyloid β (1–42) fibrils. Proc Natl Acad Sci U S A 102(48):17342–17347

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Martins IC, Kuperstein I, Wilkinson H et al (2008) Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice. Eur Mol Biol Organ J 27(1):224–233

    Article  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA et al (1985a) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 82:4245–4249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masters CL, Multhaup G, Simms G et al (1985b) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4(11):2757–2763

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meinhardt J, Sachse C, Hortschansky P et al (2009) Aβ(1–40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils. J Mol Biol 386(3):869–877

    Article  CAS  PubMed  Google Scholar 

  • Merz PA, Wisniewski HM, Somerville RA et al (1983) Ultrastructural morphology of amyloid fibrils from neuritic and amyloid plaques. Acta Neuropathol 60(1–2):113–124

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Luehmann M, Spires-Jones TL, Prada C et al (2008) Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451:720–77U5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naito A, Kamihira M, Inoue R et al (2004) Structural diversity of amyloid fibril formed inhuman calcitonin as revealed by site-directed 13C solid-state NMR spectroscopy. Magn Reson Chem 42:247–257

    Article  CAS  PubMed  Google Scholar 

  • Noguchi A, Matsumura S, Dezawa M et al (2009) Isolation and characterization of patient-derived, toxic, high mass amyloid β-protein (Aβ) assembly from Alzheimer disease brains. J Biol Chem 284(47):32895–32905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pan J, Han J, Borchers CH et al (2011) Conformer-specific hydrogen exchange analysis of Ab(1–42) oligomers by top-down electron capture dissociation mass spectrometry. Anal Chem 83(13):5386–5393

    Article  CAS  PubMed  Google Scholar 

  • Paravastu AK, Leapman RD, Yau W-M et al (2008) Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci U S A 105(47):18349–18354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paravastu AK, Quhwash I, Leapman RD et al (2009) Seeded growth of βamyloid fibrils from Alzheimer’s brain-derived fibrils produces a distinct fibril structure. Proc Natl Acad Sci U S A 106(18):7443–7448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pauwels K, Williams TL, Morris KL et al (2012) Structural basis for increased toxicity of pathological aβ42:aβ40 ratios in Alzheimer disease. J Biol Chem 287(8):5650–5660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ et al (2002) A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 99(26):16742–16747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petkova AT, Leapman RD, Guo ZH et al (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s β-amyloid fibrils. Science 307(5707):262–265

    Article  CAS  PubMed  Google Scholar 

  • Petkova AT, Yau W-M, Tycko R (2006) Experimental constraints onquaternary structure in Alzheimer’s β-amyloid fibrils. BioChemistry 45(2):498–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polenova T (2011) Protein NMR spectroscopy: spinning into focus. Nat Chem 3(10):759–760

    Article  CAS  PubMed  Google Scholar 

  • Qiang W, Yau W-M, Tycko R (2011) Structural evolution of Iowa mutant β-amyloid fibrils from polymorphic to homogeneous states under repeated seeded growth. J Am Chem Soc 133(11):4018–4029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiang W, Yau W-M, Luo Y et al (2012) Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils. J Am Chem Soc 109(12):4443–4448

    CAS  Google Scholar 

  • Ravera E, Corzilius B, Michaelis VK et al (2013) Dynamic nuclear polarization of sedimented solutes. J Am Chem Soc U S A 135(5):1641–1644

    Article  CAS  Google Scholar 

  • Roberts SB, Ripellino JA, Ingalls KM et al (1994) Nonamyloidogenic cleavage of the β-amyloid precursor protein by an integral membrane metalloendopeptidase. J Biol Chem 269(4):3111–3116

    CAS  PubMed  Google Scholar 

  • Sachse C, Fändrich M, Grigorieff N (2008) Paired βsheet structure of an Aβ(1–40) amyloid fibril revealed by electron microscopy. Proc Natl Acad Sci U S A 105(21):7462–7466

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sachse C, Grigorieff N, Fändrich M (2010) Nanoscale flexibility parameters of Alzheimer amyloid fibrils determined by electron cryo-microscopy. Angew Chem Int Ed 49(7):1321–1323

    Article  CAS  Google Scholar 

  • Scheidt HA, Morgado I, Rothemund S et al (2011) Solid-state NMR spectroscopic investigation of Aβ protofibrils: implication of aβ-sheet remodeling upon maturation into terminal amyloid fibrils. Angew Chem Int Ed 50(12):2837–2840

    Article  CAS  Google Scholar 

  • Selkoe DJMD (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53(5):438–447

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6(11):1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2008) Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Serpell LC et al (2000) Alzheimer’s amyloid fibrils: structure and assembly. Biochim Biophys Acta 1502(1):16–30

    Article  CAS  Google Scholar 

  • Shen CL, Murphy RM (1995) Solvent effects on self-assembly of β-amyloid peptide. Biophys J 69(2):640–651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sinha S, Anderson JP, Barbour R et al (1999) Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 402(6761):537–540

    Article  CAS  PubMed  Google Scholar 

  • Sisodia SS (1992) β-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci U S A 89(13):6075–6079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sola C, Mengod G, Probst A et al (1993) Di_erential regional and cellular distribution of β-amyloid precursor protein messenger RNAs containing and lacking the Kunitz protease inhibitor domain in the brain of human, rat and mouse. Neuroscience 53(1):267–295

    Article  CAS  PubMed  Google Scholar 

  • Snider BJ, Norton J, Coats MA et al (2005) Novel presenilin 1 mutation (S170F) causing Alzheimer disease with Lewy bodies in the third decade of life. Arch Neurol 62:1821–1830

    Google Scholar 

  • Soto C, Castaño EM, Kumar RA et al (1995) Fibrillogenesis of synthetic amyloid-B peptides is dependent on their initial secondary structure. Neurosci Lett 200(2):105–108

    Article  CAS  PubMed  Google Scholar 

  • Studelska DR, McDowell LM, Espe MP et al (1997) Slowed enzymatic turnover allows characterization of intermediates by solid-state NMR. BioChemistry 36(50):15555–15560

    Article  CAS  PubMed  Google Scholar 

  • Thal DR, Rüb U, Orantes M et al (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Google Scholar 

  • Tycko R (2010) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299

    Article  CAS  Google Scholar 

  • Tycko R, Ishii Y (2003) Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling. J Am Chem Soc 125:6606–6607

    Article  CAS  PubMed  Google Scholar 

  • Vlassenko AG, Mintun MA, Xiong C et al (2011) Amyloid-β plaque growth in cognitively normal adults: longitudinal [11C]Pittsburgh compound B data. Annals of neurology,70(5):857–861

    Google Scholar 

  • Walsh DM, Lomakin A, Benedek GB et al (1997) Amyloid β-protein fibrillogenesis detection of a protofibrilar intermediate. J Biol Chem 272(35):22364–22372

    Article  CAS  PubMed  Google Scholar 

  • Walsh DM, Hartley DM, Kusumoto Y et al (1999) Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274(36):25945–25952

    Article  CAS  PubMed  Google Scholar 

  • Walsh DM, Thulin E, Minogue AM et al (2009) A facile method for expression and purification of the Alzheimer’s disease associated amyloid β peptide. FEBS J 276(5):1266–1281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walter J, Fluhrer R, Hartung B et al (2001) Phosphorylation regulates intracellular traficking of β-secretase. J Biol Chem 276(18):14634–14641

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Wang B, He W et al (2006) Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology. J Biol Chem 281(22):15330–15336

    Article  CAS  PubMed  Google Scholar 

  • Ward RV, Jennings KH, Jepras R et al (2000) Fractionation and characterization of oligomeric, protofibrillar and fibrillar forms of β-amyloid peptide. Biochem J 348(Pt 1):137–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wasco W, Bupp K, Magendantz M et al (1992) Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid β protein precursor. Proc Natl Acad Sci U S A 89(22):10758–10762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wasco W, Gurubhagavatula S, Paradis MD et al (1993) Isolation and characterization of APLP2 encoding a homologue of the Alzheimer’s associated amyloid β protein precursor. Nat Genet 5(1):95–100

    Article  CAS  PubMed  Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H et al (2008) Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319(5869):1523–1526

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Wang C (2007) Aβ40 protects non-toxic Aβ42 monomer from aggregation. J Mol Biol 369(4):909–916

    Article  CAS  PubMed  Google Scholar 

  • Yoshiike Y, Chui D-H, Akagi T et al (2003) Specific compositions of amyloid-beta peptides as the determinant of toxic β-aggregation. J Biol Chem 278(26):23648–23655

    Article  CAS  PubMed  Google Scholar 

  • Yoshikai S, Sasaki H, Doh-ura K et al (1990) Genomic organization of the human amyloid β-protein precursor gene. Gene 87(2):257–263

    Article  CAS  PubMed  Google Scholar 

  • Younkin SG (1995) Evidence that Aβ 42 is the real culprit in Alzheimer’s disease. Ann Neurol 37(3):287–288

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yu H, Song C et al (2009) Expression, purification, and characterization of recombinant human β-Amyloid42 peptide in escherichia coli. Protein Exp Purif 64(1):55–62

    Article  CAS  Google Scholar 

  • Zheng H, Koo EH (2011) Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener 6(1):27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zou K, Kim D, Kakio A et al (2003) Amyloid β-protein (Aβ)1–40 protects neurons from damage induced by Aβ1–42 in culture and in rat brain. J Neurochem 87(3):609–619

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Korsak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Korsak, M., Kozyreva, T. (2015). Beta Amyloid Hallmarks: From Intrinsically Disordered Proteins to Alzheimer’s Disease. In: Felli, I., Pierattelli, R. (eds) Intrinsically Disordered Proteins Studied by NMR Spectroscopy. Advances in Experimental Medicine and Biology, vol 870. Springer, Cham. https://doi.org/10.1007/978-3-319-20164-1_14

Download citation

Publish with us

Policies and ethics