Skip to main content

Whole Tooth Regeneration as a Future Dental Treatment

  • Chapter
Book cover Engineering Mineralized and Load Bearing Tissues

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 881))

Abstract

Dental problems caused by dental caries, periodontal disease and tooth injury compromise the oral and general health issues. Current advances for the development of regenerative therapy have been influenced by our understanding of embryonic development, stem cell biology, and tissue engineering technology. Tooth regenerative therapy for tooth tissue repair and whole tooth replacement is currently expected a novel therapeutic concept with the full recovery of tooth physiological functions. Dental stem cells and cell-activating cytokines are thought to be candidate approach for tooth tissue regeneration because they have the potential to differentiate into tooth tissues in vitro and in vivo. Whole tooth replacement therapy is considered to be an attractive concept for next generation regenerative therapy as a form of bioengineered organ replacement. For realization of whole tooth regeneration, we have developed a novel three-dimensional cell manipulation method designated the “organ germ method”. This method involves compartmentalisation of epithelial and mesenchymal cells at a high cell density to mimic multicellular assembly conditions and epithelial-mesenchymal interactions in organogenesis. The bioengineered tooth germ generates a structurally correct tooth in vitro, and erupted successfully with correct tooth structure when transplanted into the oral cavity. We have ectopically generated a bioengineered tooth unit composed of a mature tooth, periodontal ligament and alveolar bone, and that tooth unit was engrafted into an adult jawbone through bone integration. Bioengineered teeth were also able to perform physiological tooth functions such as mastication, periodontal ligament function and response to noxious stimuli. In this review, we describe recent findings and technologies underpinning whole tooth regenerative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arakaki M, Ishikawa M, Nakamura T et al (2012) Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 287:10590–10601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Atala A (2005) Tissue engineering, stem cells and cloning: current concepts and changing trends. Expert Opin Biol Ther 5:879–892

    Article  CAS  PubMed  Google Scholar 

  • Avery JK (2002) Oral development and histology. Thieme Press, New York

    Google Scholar 

  • Bei M (2009) Molecular genetics of tooth development. Curr Opin Genet Dev 19:504–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brenemark PI, Zarb GA (1985) Tissue-integrated prostheses. In: Albrektsson T (ed) Osseointegration in clinical dentistry. Quintessence Pub Co Press, Berlin, pp 211–232

    Google Scholar 

  • Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310:1919–1923

    Article  CAS  PubMed  Google Scholar 

  • Burns DR, Beck DA, Nelson SK (2003) A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent 90:474–497

    Article  PubMed  Google Scholar 

  • Cai J, Cho SW, Kim JY et al (2007) Patterning the size and number of tooth and its cusps. Dev Biol 304:499–507

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Vacanti JP, Paige KT et al (1997) Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 100:297–304

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264

    Article  CAS  PubMed  Google Scholar 

  • Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826

    Article  CAS  PubMed  Google Scholar 

  • Dawson PE (2006) Functional occlusion: from TMJ to smile design. Mosby, St. Louis

    Google Scholar 

  • Duailibi MT, Duailibi SE, Young CS et al (2004) Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 83:523–528

    Article  CAS  PubMed  Google Scholar 

  • Duailibi SE, Duailibi MT, Vacanti JP et al (2006) Prospects for tooth regeneration. Periodontol 2000 41:177–187

    Article  PubMed  Google Scholar 

  • Egusa H, Okita K, Kayashima H et al (2010) Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One 5:e12743

    Article  PubMed Central  PubMed  Google Scholar 

  • Egusa H, Sonoyama W, Nishimura M et al (2012) Stem cells in dentistry–part I: stem cell sources. J Prosthodont Res 56:151–165

    Article  PubMed  Google Scholar 

  • Egusa H, Sonoyama W, Nishimura M et al (2013) Stem cells in dentistry–part II: clinical applications. J Prosthodont Res 56:229–248

    Article  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  PubMed  Google Scholar 

  • Foster BL, Popowics TE, Fong HK et al (2007) Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 78:47–126

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto S, Yamada Y (2005) Review: extracellular matrix regulates tooth morphogenesis. Connect Tissue Res 46:220–226

    Article  CAS  PubMed  Google Scholar 

  • Gridelli B, Remuzzi G (2000) Strategies for making more organs available for transplantation. N Engl J Med 343:404–410

    Article  CAS  PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J et al (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97:13625–13630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Honda M, Morikawa N, Hata K et al (2003) Rat costochondral cell characteristics on poly (L-lactide-co-epsilon-caprolactone) scaffolds. Biomaterials 24:3511–3519

    Article  CAS  PubMed  Google Scholar 

  • Honda MJ, Tsuchiya S, Sumita Y et al (2007) The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials 28:680–689

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Nadiri A, Kuchler-Bopp S et al (2006) Tissue engineering of tooth crown, root, and periodontium. Tissue Eng 12:2069–2075

    Article  CAS  PubMed  Google Scholar 

  • Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ikeda E, Tsuji T (2008) Growing bioengineered teeth from single cells: potential for dental regenerative medicine. Expert Opin Biol Ther 8:735–744

    Article  CAS  PubMed  Google Scholar 

  • Ikeda E, Morita R, Nakao K et al (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A 106:13475–13480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishida K, Murofushi M, Nakao K et al (2011) The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of sonic hedgehog through epithelial-mesenchymal interactions. Biochem Biophys Res Commun 405:455–461

    Article  CAS  PubMed  Google Scholar 

  • Iwatsuki S, Honda MJ, Harada H et al (2006) Cell proliferation in teeth reconstructed from dispersed cells of embryonic tooth germs in a three-dimensional scaffold. Eur J Oral Sci 114:310–317

    Article  CAS  PubMed  Google Scholar 

  • Jussila M, Juuri E, Thesleff I (2013) Tooth morphogenesis and renewal. Stem cells in craniofacial development and regeneration. Wiley-Blackwell, Hoboken, New Jersey, pp 109–134

    Book  Google Scholar 

  • Kjaer M, Beyer N, Secher NH (1999) Exercise and organ transplantation. Scand J Med Sci Sports 9:1–14

    Article  CAS  PubMed  Google Scholar 

  • Korbling M, Estrov Z (2003) Adult stem cells for tissue repair – a new therapeutic concept? N Engl J Med 349:570–582

    Article  PubMed  Google Scholar 

  • Langer RS, Vacanti JP (1999) Tissue engineering: the challenges ahead. Sci Am 280:86–89

    Article  CAS  PubMed  Google Scholar 

  • Lindhe J, Lang NP, Karring T (2008) Clinical periodontology and implant dentistry, 5th edn. Blackwell Munksgaard, Oxford, UK

    Google Scholar 

  • Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  CAS  PubMed  Google Scholar 

  • Luukko K, Kvinnsland IH, Kettunen P (2005) Tissue interactions in the regulation of axon pathfinding during tooth morphogenesis. Dev Dyn 234:482–488

    Article  CAS  PubMed  Google Scholar 

  • Mantesso A, Sharpe P (2009) Dental stem cells for tooth regeneration and repair. Expert Opin Biol Ther 9:1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakao K, Morita R, Saji Y et al (2007) The development of a bioengineered organ germ method. Nat Methods 4:227–230

    Article  CAS  PubMed  Google Scholar 

  • Nakatomi M, Wang XP, Key D et al (2010) Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis. Dev Biol 340:438–449

    Article  CAS  PubMed  Google Scholar 

  • Nanci A (2012) Ten Cate’s oral histology: development, structure, and function. Mosby Press, St. Louis

    Google Scholar 

  • Ohazama A, Modino SA, Miletich I et al (2004) Stem-cell-based tissue engineering of murine teeth. J Dent Res 83:518–522

    Article  CAS  PubMed  Google Scholar 

  • Oshima M, Mizuno M, Imamura A et al (2011) Functional tooth regeneration using a bioengineered tooth unit as a mature organ replacement regenerative therapy. PLoS One 6:e21531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Otsu K, Kishigami R, Oikawa-Sasaki A et al (2012) Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells Dev 21:1156–1164

    Article  CAS  PubMed  Google Scholar 

  • Pokorny PH, Wiens JP, Litvak H (2008) Occlusion for fixed prosthodontics: a historical perspective of the gnathological influence. J Prosthet Dent 99:299–313

    Article  PubMed  Google Scholar 

  • Proffit WR, Fields HW Jr, Sarver DM (2004) Contemporary orthodontics. Mosby Press, St. Louis, pp 78–83

    Google Scholar 

  • Purnell B (2008) New release: the complete guide to organ repair. Introduction. Science 322:1489

    Article  CAS  PubMed  Google Scholar 

  • Quarto R, Mastrogiacomo M, Cancedda R et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  CAS  PubMed  Google Scholar 

  • Rosenstiel SF, Land MF, Fujimoto J (2001) Contemporary fixed prosthodontics. Mosby Press, Missouri, pp 209–430

    Google Scholar 

  • Sasai Y (2013) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12:520–530

    Article  CAS  PubMed  Google Scholar 

  • Sedohara A, Komazaki S, Asashima M (2003) In vitro induction and transplantation of eye during early Xenopus development. Dev Growth Differ 45:463–471

    Article  PubMed  Google Scholar 

  • Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942

    Article  CAS  PubMed  Google Scholar 

  • Seo BM, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  PubMed  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    Article  CAS  PubMed  Google Scholar 

  • Sharpe PT, Young CS (2005) Test-tube teeth. Sci Am 293:34–41

    Article  PubMed  Google Scholar 

  • Song Y, Zhang Z, Yu X et al (2006) Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Dev Dyn 235:1334–1344

    Article  CAS  PubMed  Google Scholar 

  • Sonoyama W, Liu Y, Yamaza T et al (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171

    Article  PubMed Central  PubMed  Google Scholar 

  • Suga H, Kadoshima T, Minaguchi M et al (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62

    Article  CAS  PubMed  Google Scholar 

  • Sumita Y, Honda MJ, Ohara T et al (2006) Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials 27:3238–3248

    Article  CAS  PubMed  Google Scholar 

  • Thesleff I (2003) Epithelial-mesenchymal signalling regulating tooth morphogenesis. J Cell Sci 116:1647–1648

    Article  CAS  PubMed  Google Scholar 

  • Tsukiboshi M (1993) Autogenous tooth transplantation: a reevaluation. Int J Periodontics Restorative Dent 13:120–149

    CAS  PubMed  Google Scholar 

  • Tucker A, Sharpe P (2004) The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5:499–508

    Article  CAS  PubMed  Google Scholar 

  • Tyler D, Baker NE (2003) Size isn’t everything. Bioessays 25:5–8

    Article  PubMed  Google Scholar 

  • Volponi AA, Pang Y, Sharpe PT (2010) Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 20:715–722

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2003) The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci U S A 100:11881–11888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Wise GE, King GJ (2008) Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res 87:414–434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wise GE, Frazier-Bowers S, D’Souza RN (2002) Cellular, molecular, and genetic determinants of tooth eruption. Crit Rev Oral Biol Med 13:323–334

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Kim EJ, Cho SW et al (2003) Analysis of tooth formation by reaggregated dental mesenchyme from mouse embryo. J Electron Microsc 52:559–566

    Article  CAS  Google Scholar 

  • Yan X, Qin H, Qu C et al (2010) iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19:469–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Z, Jin F, Zhang X et al (2009) Tissue engineering of cementum/periodontal-ligament complex using a novel three-dimensional pellet cultivation system for human periodontal ligament stem cells. Tissue Eng Part C Methods 15:571–581

    Article  CAS  PubMed  Google Scholar 

  • Yelick PC, Vacanti JP (2006) Bioengineered teeth from tooth bud cells. Dent Clin N Am 50:191–203

    Article  PubMed  Google Scholar 

  • Yen AH, Sharpe PT (2008) Stem cells and tooth tissue engineering. Cell Tissue Res 331:359–372

    Article  CAS  PubMed  Google Scholar 

  • Young CS, Terada S, Vacanti JP et al (2002) Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res 81:695–700

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Du X, Wang W et al (2005) Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J Invest Dermatol 124:867–876

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Health and Labour Sciences Research Grants from the Ministry of Health, Labour, and Welfare (no. 21040101) to Akira Yamaguchi (Tokyo Medical and Dental University), a Grant-in-Aid for Scientific Research (A) (no. 20249078) to T. Tsuji (2008–2010) and a Grant-in-Aid for Young Scientists (B) to M. Oshima from the Ministry of Education, Culture, Sports and Technology, Japan. This work was also partially supported by Organ Technologies Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Tsuji Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oshima, M., Tsuji, T. (2015). Whole Tooth Regeneration as a Future Dental Treatment. In: Bertassoni, L., Coelho, P. (eds) Engineering Mineralized and Load Bearing Tissues. Advances in Experimental Medicine and Biology, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-22345-2_14

Download citation

Publish with us

Policies and ethics