Skip to main content

Cerebral Arterial Time Constant Recorded from the MCA and PICA in Normal Subjects

  • Chapter
Intracranial Pressure and Brain Monitoring XV

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 122))

Abstract

Cerebral arterial time constant (τ) estimates how quickly the cerebral arterial bed distal to the point of insonation is filled with arterial blood following a cardiac contraction. It is not known how τ behaves in different vascular territories in the brain. We therefore investigated the differences in τ of two cerebral arteries: the posterior inferior cerebellar artery (PICA) and the middle cerebral artery (MCA).

Transcranial Doppler cerebral blood flow velocity (CBFV) in the PICA and left MCA along with Finapres arterial blood pressure (ABP) were simultaneously recorded in 35 young healthy volunteers. τ was estimated using mathematical transformations of pulse waveforms of ABP and the CBFV of the MCA and the PICA. Since τ is independent from the vessel radius, its comparison in different cerebral arteries was feasible. Mean ABP was 76.1 ± 9.6 mmHg. The CBFV of the MCA was higher than that of the PICA (59.7 ± 7.7 vs. 41.0 ± 4.5 cm/s; p < 0.000001). τ of the PICA was shorter than that of the MCA (0.15 ± 0.03 vs. 0.18 ± 0.03 s; p < 0.000001). The MCA-supplied vascular bed has a longer distal average length, measured from the place of insonation up to the small arterioles, than the PICA-supplied vascular bed. Therefore, a longer time is needed to fill it with arterial blood volume. This study thus confirms the physiological validity of the τ concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57(6):769–774

    Article  CAS  PubMed  Google Scholar 

  2. Czosnyka M, Richards HK, Reinhard M, Steiner LA, Budohoski K, Smielewski P et al (2012) Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res 34(1):17–24

    Article  CAS  PubMed  Google Scholar 

  3. Kasprowicz M, Diedler J, Reinhard M, Carrera E, Steiner LA, Smielewski P et al (2012) Time constant of the cerebral arterial bed in normal subjects. Ultrasound Med Biol 38(7):1129–1137

    Article  PubMed  Google Scholar 

  4. Kasprowicz M, Diedler J, Reinhard M, Carrera E, Smielewski P, Budohoski KP et al (2012) Time constant of the cerebral arterial bed. Acta Neurochir Suppl 114:17–21

    Article  PubMed  Google Scholar 

  5. Kasprowicz M, Czosnyka M, Soehle M, Smielewski P, Kirkpatrick PJ, Pickard JD et al (2012) Vasospasm shortens cerebral arterial time constant. Neurocrit Care 16(2):213–218

    Article  PubMed  Google Scholar 

  6. Ito H, Kanno I, Takahashi K, Ibaraki M, Miura S (2003) Regional distribution of human cerebral vascular mean transit time measured by positron emission tomography. Neuroimage 19(3):1163–1169

    Article  PubMed  Google Scholar 

  7. Chen Y, Wang DJ, Detre JA (2012) Comparison of arterial transit times estimated using arterial spin labeling. MAGMA 25(2):135–144

    Article  PubMed  Google Scholar 

  8. Reinhard M, Schork J, Allignol A, Weiller C, Kaube H (2012) Cerebellar and cerebral autoregulation in migraine. Stroke 43(4):987–993

    Article  PubMed  Google Scholar 

  9. Czosnyka M, Richards H, Pickard JD, Harris N, Iyer V (1994) Frequency-dependent properties of cerebral blood transport--an experimental study in anaesthetized rabbits. Ultrasound Med Biol 20(4):391–399

    Article  CAS  PubMed  Google Scholar 

  10. Kim DJ, Kasprowicz M, Carrera E, Castellani G, Zweifel C, Lavinio A et al (2009) The monitoring of relative changes in compartmental compliances of brain. Physiol Meas 30(7):647–659

    Article  CAS  PubMed  Google Scholar 

  11. Kontos HA (1989) Validity of cerebral arterial blood flow calculations from velocity measurements. Stroke 20(1):1–3

    Article  CAS  PubMed  Google Scholar 

  12. Aaslid R, Newell DW, Stooss R, Sorteberg W, Lindegaard KF (1991) Assessment of cerebral autoregulation dynamics from simultaneous arterial and venous transcranial Doppler recordings in humans. Stroke 22(9):1148–1154

    Article  CAS  PubMed  Google Scholar 

  13. Carrera E, Kim DJ, Castellani G, Zweifel C, Smielewski P, Pickard JD et al (2011) Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging 21(2):121–125

    Article  PubMed  Google Scholar 

  14. Panerai RB, Coughtrey H, Rennie JM, Evans DH (1993) A model of the instantaneous pressure–velocity relationships of the neonatal cerebral circulation. Physiol Meas 14(4):411–418

    Article  CAS  PubMed  Google Scholar 

  15. Avezaat CJ, van Eijndhoven JH (1986) The role of the pulsatile pressure variations in intracranial pressure monitoring. Neurosurg Rev 9(1–2):113–120

    Article  CAS  PubMed  Google Scholar 

  16. Ito H, Yokoyama I, Iida H, Kinoshita T, Hatazawa J, Shimosegawa E et al (2000) Regional differences in cerebral vascular response to PaCO2 changes in humans measured by positron emission tomography. J Cereb Blood Flow Metab 20(8):1264–1270

    Article  CAS  PubMed  Google Scholar 

  17. de Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA et al (2012) Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care 17(1):58–66

    Article  PubMed  Google Scholar 

  18. Czosnyka M, Richards HK, Whitehouse HE, Pickard JD (1996) Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg 84(1):79–84

    Article  CAS  PubMed  Google Scholar 

  19. Reinhard M, Waldkircher Z, Timmer J, Weiller C, Hetzel A (2008) Cerebellar autoregulation dynamics in humans. J Cereb Blood Flow Metab 28(9):1605–1612

    Article  PubMed  Google Scholar 

  20. Haubrich C, Wendt A, Diehl RR, Klotzsch C (2004) Dynamic autoregulation testing in the posterior cerebral artery. Stroke 35(4):848–852

    Article  CAS  PubMed  Google Scholar 

Download references

Grants

MK was supported by the Ministry of Polish Science and Higher Education.

Conflict of Interest Statement

ICM+ (www.neurosurg.cam.ac.uk/icmplus) is licensed by the University of Cambridge, UK. MC has an interest in part of the licensing fee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Kasprowicz PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kasprowicz, M., Czosnyka, M., Poplawska, K., Reinhard, M. (2016). Cerebral Arterial Time Constant Recorded from the MCA and PICA in Normal Subjects. In: Ang, BT. (eds) Intracranial Pressure and Brain Monitoring XV. Acta Neurochirurgica Supplement, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-319-22533-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22533-3_42

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22532-6

  • Online ISBN: 978-3-319-22533-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics