Skip to main content

Heterogeneity in Melanoma

  • Chapter
  • First Online:
Book cover Melanoma

Part of the book series: Cancer Treatment and Research ((CTAR,volume 167))

Abstract

Melanoma is among the most aggressive and therapy-resistant human cancers. While great strides in therapy have generated enthusiasm, many challenges remain. Heterogeneity is the most pressing issue for all types of therapy. This chapter summarizes the clinical classification of melanoma, of which the research community now adds additional layers of classifications for better diagnosis and prediction of therapy response. As the search for new biomarkers increases, we expect that biomarker analyses will be essential for all clinical trials to better select patient populations for optimal therapy. While individualized therapy that is based on extensive biomarker analyses is an option, we expect in the future genetic and biologic biomarkers will allow grouping of melanomas in such a way that we can predict therapy outcome. At this time, tumor heterogeneity continues to be the major challenge leading inevitably to relapse. To address heterogeneity therapeutically, we need to develop complex therapies that eliminate the bulk of the tumor and, at the same time, the critical subpopulations.

Batool Shannan and Michela Perego have equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABCB5:

ATP-binding cassette subfamily B5

AKT:

V-akt murine thymoma viral oncogene homolog

ALCAM:

Activated leukocyte cell adhesion molecule

ALDH1:

Aldehyde dehydrogenase 1

ARID1A:

AT-rich interactive domain-containing protein 1A

BRAF:

V-raf murine sarcoma viral oncogene homolog B1

CD:

Cluster differentiation

CDK:

Cyclin-dependent Kinase

CDKN2A:

Cyclin-dependent kinase inhibitor 2A

ERK:

Extracellular signal-regulated kinase

Fbxw-7:

F-box/WD repeat-containing protein 7

gp100:

Glycoprotein 100

HGF:

Hepatocyte growth factor

IGF:

Insulin-like growth factor

JARID1B:

Jumonji/ARID1 (JARID1) histone 3 K4 (H3K4) demethylases

Kit:

C-kit tyrosine kinase receptor

MAPK:

Mitogen-activated protein kinase

MART-1/Melan-A:

Melanoma antigen recognized by T cells-1/melanoma antigen A

MCAM:

Melanoma cell adhesion molecule

MEK:

MAPK/ERK Kinase

MITF:

Microphthalmia-associated transcription factor

mTOR:

Mammalian target of Rapamycin

NF:

Neurofibromatosis

NGF:

Nerve growth factor

NGFR:

Nerve growth factor receptor

NRAS:

Neuroblastoma RAS viral (v-ras) oncogene homolog

PI3K:

Phosphoinositide-3 Kinase

PTEN:

Phosphatase and tensin homolog

Rac1:

Ras-related C3 botulinum toxin substrate-1

RAF:

RAS viral (v-raf) oncogene homolog

RAS:

RAS viral (v-ras) oncogene homolog

SCF:

Stem cell factor

SEER:

Surveillance, epidemiology, end results

TGF-β:

Transforming growth factor beta

TICs:

Tumor-initiating cells

TME:

Tumor microenvironment

TNF:

Tumor necrosis factor

TP53:

Tumor protein p53

UV:

Ultraviolet

References

  1. Anderson K, Lutz C, van Delft FW et al (2011) Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469:356–361

    Article  CAS  PubMed  Google Scholar 

  2. Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL (2011) TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res 71:4707–4719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bailey CM, Morrison JA, Kulesa PM (2012) Melanoma revives an embryonic migration program to promote plasticity and invasion. Pigm Cell Melanoma Res 25:573–583

    Article  CAS  Google Scholar 

  4. Bastian BC (2014) The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Ann Rev Pathol 9:239–271

    Article  CAS  Google Scholar 

  5. Bittner M, Meltzer P, Chen Y et al (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  CAS  PubMed  Google Scholar 

  6. Boiko AD, Razorenova OV, van de Rijn M et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Boonyaratanakornkit JB, Yue L, Strachan LR et al (2010) Selection of tumorigenic melanoma cells using ALDH. J Invest Dermatol 130:2799–2808

    Article  CAS  PubMed  Google Scholar 

  8. Borrull A, Ghislin S, Deshayes F, Lauriol J, Alcaide-Loridan C, Middendorp S (2012) Nanog and Oct4 overexpression increases motility and transmigration of melanoma cells. J Cancer Res Clin Oncol 138:1145–1154

    Article  CAS  PubMed  Google Scholar 

  9. Campbell PJ, Yachida S, Mudie LJ et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cheli Y, Giuliano S, Fenouille N et al (2012) Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells. Oncogene 31:2461–2470

    Article  CAS  PubMed  Google Scholar 

  11. Civenni G, Walter A, Kobert N et al (2011) Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res 71:3098–3109

    Article  CAS  PubMed  Google Scholar 

  12. Ding L, Ellis MJ, Li S et al (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464:999–1005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ding L, Ley TJ, Larson DE et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fang D, Nguyen TK, Leishear K et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    Article  CAS  PubMed  Google Scholar 

  15. Frank NY, Schatton T, Kim S et al (2011) VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res 71:1474–1485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gerlinger M, Horswell S, Larkin J et al (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46:225–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ghislin S, Deshayes F, Lauriol J et al (2012) Plasticity of melanoma cells induced by neural cell crest conditions and three-dimensional growth. Melanoma Res 22:184–194

    Article  PubMed  Google Scholar 

  18. Gray-Schopfer V, Wellbrock C, Marais R (2007) Melanoma biology and new targeted therapy. Nature 445:851–857

    Article  CAS  PubMed  Google Scholar 

  19. Holzel M, Bovier A, Tuting T (2013) Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 13:365–376

    Article  PubMed  Google Scholar 

  20. Jandl T, Revskaya E, Jiang Z et al (2013) Melanoma stem cells in experimental melanoma are killed by radioimmunotherapy. Nucl Med Biol 40:177–181

    Article  CAS  PubMed  Google Scholar 

  21. Keats JJ, Chesi M, Egan JB et al (2012) Clonal competition with alternating dominance in multiple myeloma. Blood 120:1067–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR (2007) Increased expression of stem cell markers in malignant melanoma. Mod Pathol 20:102–107

    Article  CAS  PubMed  Google Scholar 

  23. Knutson KL, Lu H, Stone B et al (2006) Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol 177:1526–1533

    Article  CAS  PubMed  Google Scholar 

  24. Koefinger P, Wels C, Joshi S et al (2011) The cadherin switch in melanoma instigated by HGF is mediated through epithelial-mesenchymal transition regulators. Pigm Cell Melanoma Res 24:382–385

    Article  CAS  Google Scholar 

  25. Krepler C, Chunduru SK, Halloran MB et al (2013) The novel SMAC mimetic birinapant exhibits potent activity against human melanoma cells. Clin Cancer Res 19:1784–1794

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kulbe H, Chakravarty P, Leinster DA et al (2012) A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 72:66–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Landsberg J, Kohlmeyer J, Renn M et al (2012) Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490:412–416

    Article  CAS  PubMed  Google Scholar 

  28. Li L, Fukunaga-Kalabis M, Yu H et al (2010) Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci 123:853–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lin J, Goto Y, Murata H et al (2011) Polyclonality of BRAF mutations in primary melanoma and the selection of mutant alleles during progression. Br J Cancer 104:464–468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Long GV, Wilmott JS, Haydu LE et al (2013) Effects of BRAF inhibitors on human melanoma tissue before treatment, early during treatment, and on progression. Pigm Cell Melanoma Res 26:499–508

    Article  CAS  Google Scholar 

  31. Luo Y, Dallaglio K, Chen Y et al (2012) ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells 30:2100–2113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Maley CC, Galipeau PC, Finley JC et al (2006) Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet 38:468–473

    Article  CAS  PubMed  Google Scholar 

  33. Mar VJ, Wong SQ, Li J et al (2013) BRAF/NRAS wild-type melanomas have a high mutation load correlating with histologic and molecular signatures of UV damage. Clin Cancer Res 19:4589–4598

    Article  CAS  PubMed  Google Scholar 

  34. Monzani E, Facchetti F, Galmozzi E et al (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43:935–946

    Article  CAS  PubMed  Google Scholar 

  35. Mroz EA, Tward AD, Pickering CR, Myers JN, Ferris RL, Rocco JW (2013) High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer 119:3034–3042

    Article  PubMed Central  PubMed  Google Scholar 

  36. Nazarian R, Shi H, Wang Q et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Nickel GC, Barnholtz-Sloan J, Gould MP et al (2012) Characterizing mutational heterogeneity in a glioblastoma patient with double recurrence. PLoS ONE 7:e35262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. O’Connell MP, Marchbank K, Webster MR et al (2013) Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov 3:1378–1393

    Article  PubMed Central  PubMed  Google Scholar 

  39. O’Leary RE, Diehl J, Levins PC (2014) Update on tanning: more risks, fewer benefits. J Am Acad Dermatol 70:562–568

    Article  PubMed  Google Scholar 

  40. Piccirillo SG, Combi R, Cajola L et al (2009) Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 28:1807–1811

    Article  CAS  PubMed  Google Scholar 

  41. Pinc A, Somasundaram R, Wagner C et al (2012) Targeting CD20 in melanoma patients at high risk of disease recurrence. Mol Ther 20:1056–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Pinnix CC, Lee JT, Liu ZJ et al (2009) Active Notch1 confers a transformed phenotype to primary human melanocytes. Cancer Res 69:5312–5320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Prasmickaite L, Engesaeter BØ, Skrbo N et al (2010) Aldehyde dehydrogenase (ALDH) activity does not select for cells with enhanced aggressive properties in malignant melanoma. PLoS ONE 5:e10731

    Google Scholar 

  44. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Quintana E, Shackleton M, Foster HR et al (2010) Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18:510–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Roesch A, Fukunaga-Kalabis M, Schmidt EC et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Roesch A, Vultur A, Bogeski I et al (2013) Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell 23:811–825

    Article  CAS  PubMed  Google Scholar 

  48. Schadendorf D, Fisher DE, Garbe C et al (2015) Melanoma. Nature Rev Dis Primers 1:1–20

    Google Scholar 

  49. Schatton T, Schutte U, Frank NY et al (2010) Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res 70:697–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Schmidt P, Kopecky C, Hombach A, Zigrino P, Mauch C, Abken H (2011) Eradication of melanomas by targeted elimination of a minor subset of tumor cells. Proc Natl Acad Sci USA 108:2474–2479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Schwitalla S, Fingerle AA, Cammareri P et al (2013) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:25–38

    Article  CAS  PubMed  Google Scholar 

  53. Sensi M, Nicolini G, Petti C et al (2006) Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene 25:3357–3364

    Article  CAS  PubMed  Google Scholar 

  54. Shi H, Hugo W, Kong X et al (2014) Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov 4:80–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Slingluff CL Jr, Colella TA, Thompson L et al (2000) Melanomas with concordant loss of multiple melanocytic differentiation proteins: immune escape that may be overcome by targeting unique or undefined antigens. Cancer Immunol Immunother 48:661–672

    Article  CAS  PubMed  Google Scholar 

  56. Sottoriva A, Spiteri I, Piccirillo SG et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 110:4009–4014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Straussman R, Morikawa T, Shee K et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Sztiller-Sikorska M, Koprowska K, Jakubowska J et al (2012) Sphere formation and self-renewal capacity of melanoma cells is affected by the microenvironment. Melanoma Res 22:215–224

    Article  PubMed  Google Scholar 

  59. Terzian T, Torchia EC, Dai D et al (2010) P53 prevents progression of nevi to melanoma predominantly through cell cycle regulation. Pigm Cell Melanoma Res 23:781–794

    Article  CAS  Google Scholar 

  60. Tsao H, Goel V, Wu H, Yang G, Haluska FG (2004) Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 122:337–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Turke AB, Zejnullahu K, Wu YL et al (2010) Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17:77–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Vitale M (2013) Intratumor BRAFV600E heterogeneity and kinase inhibitors in the treatment of thyroid cancer: a call for participation. Thyroid 23:517–519

    Article  PubMed  Google Scholar 

  63. Wan PT, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  CAS  PubMed  Google Scholar 

  64. Wilmott JS, Tembe V, Howle JR et al (2012) Intratumoral molecular heterogeneity in a BRAF-mutant, BRAF inhibitor-resistant melanoma: a case illustrating the challenges for personalized medicine. Mol Cancer Ther 11:2704–2708

    Article  CAS  PubMed  Google Scholar 

  65. Wilson TR, Fridlyand J, Yan Y et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Yachida S, Jones S, Bozic I et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467:1114–1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Yancovitz M, Litterman A, Yoon J et al (2012) Intra- and inter-tumor heterogeneity of BRAF(V600E))mutations in primary and metastatic melanoma. PLoS ONE 7:e29336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Yu H, Kumar SM, Kossenkov AV, Showe L, Xu X (2010) Stem cells with neural crest characteristics derived from the bulge region of cultured human hair follicles. J Invest Dermatol 130:1227–1236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Yue L, Huang ZM, Fong S et al (2015) Targeting ALDH1 to decrease tumorigenicity, growth and metastasis of human melanoma. Melanoma Res 25:138–148

    Google Scholar 

  70. Zabierowski SE, Fukunaga-Kalabis M, Li L, Herlyn M (2011) Dermis-derived stem cells: a source of epidermal melanocytes and melanoma? Pigm Cell Melanoma Res 24:422–429

    Article  CAS  Google Scholar 

  71. Zhang M, Qureshi AA, Geller AC, Frazier L, Hunter DJ, Han J (2012) Use of tanning beds and incidence of skin cancer. J Clin Oncol 30:1588–1593

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jessica L. Kohn for editorial assistance. This work was partially funded by the PA Department of Health, NCI K01 CA175269, NIH grants P01 CA114046, P01 CA025874, P30 CA010815, and R01 CA047159, the V Foundation for Cancer Research (JV), and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.

Conflict of Interest

The authors declare no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenhard Herlyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shannan, B., Perego, M., Somasundaram, R., Herlyn, M. (2016). Heterogeneity in Melanoma. In: Kaufman, H., Mehnert, J. (eds) Melanoma. Cancer Treatment and Research, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-319-22539-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22539-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22538-8

  • Online ISBN: 978-3-319-22539-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics