Skip to main content

Medical Robotics and Computer-Integrated Surgery

  • Chapter
  • First Online:

Part of the book series: Springer Handbooks ((SHB))

Abstract

The growth of medical robotics since the mid-1980s has been striking. From a few initial efforts in stereotactic brain surgery, orthopaedics, endoscopic surgery, microsurgery, and other areas, the field has expanded to include commercially marketed, clinically deployed systems, and a robust and exponentially expanding research community. This chapter will discuss some major themes and illustrate them with examples from current and past research. Further reading providing a more comprehensive review of this rapidly expanding field is suggested in Sect. 63.4.

Medical robots may be classified in many ways: by manipulator design (e. g., kinematics, actuation); by level of autonomy (e. g., preprogrammed versus teleoperation versus constrained cooperative control), by targeted anatomy or technique (e. g., cardiac, intravascular, percutaneous, laparoscopic, microsurgical); or intended operating environment (e. g., in-scanner, conventional operating room). In this chapter, we have chosen to focus on the role of medical robots within the context of larger computer-integrated systems including presurgical planning, intraoperative execution, and postoperative assessment and follow-up.

First, we introduce basic concepts of computer-integrated surgery, discuss critical factors affecting the eventual deployment and acceptance of medical robots, and introduce the basic system paradigms of surgical computer-assisted planning, execution, monitoring, and assessment (surgical GlossaryTerm

CAD

/GlossaryTerm

CAM

) and surgical assistance. In subsequent sections, we provide an overview of the technology of medical robot systems and discuss examples of our basic system paradigms, with brief additional discussion topics of remote telesurgery and robotic surgical simulators. We conclude with some thoughts on future research directions and provide suggested further reading.

figure a

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

2-D:

two-dimensional

3-D:

three-dimensional

CAD:

computer-aided design

CAM:

computer-aided manufacturing

CIS:

computer-integrated surgery

CMOS:

complementary metal-oxide-semiconductor

CT:

computed tomography

DC:

direct current

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

GI:

gastrointestinal

GPU:

graphics processing unit

HMCS:

human–machine cooperative system

JHU:

Johns Hopkins University

JPL:

Jet Propulsion Laboratory

LED:

light-emitting diode

MEMS:

microelectromechanical system

MIS:

minimally invasive surgery

MRI:

magnetic resonance imaging

NOTES:

natural orifice transluminal surgery

OCT:

optical coherence tomography

OR:

operating room

PC:

personal computer

PET:

positron emission tomography

RAMS:

random access memory system

RCM:

remote center of motion

SMA:

shape memory alloy

SPL:

single port laparoscopy

THR:

total hip replacement

References

  1. R.H. Taylor, L. Joskowicz: Computer-integrated surgery and medical robotics. In: Standard Handbook of Biomedical Engineering and Design, ed. by M. Kutz (McGraw-Hill, New York 2003) pp. 325–353

    Google Scholar 

  2. J.R. Adler, M.J. Murphy, S.D. Chang, S.L. Hankock: Image guided robotic radiosurgery, Neurosurgery 44(6), 1299–1306 (1999)

    Google Scholar 

  3. G.S. Guthart, J.K. Salisbury: The intuitive telesurgery system: Overview and application, IEEE Int. Conf. Robot. Autom. (ICRA), San Francisco (2000) pp. 618–621

    Google Scholar 

  4. R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z.X. Wang, E. deJuan, L. Kavoussi: Steady-hand robotic system for microsurgical augmentation, Int. J. Robotics Res. 18, 1201–1210 (1999)

    Article  Google Scholar 

  5. D. Rothbaum, J. Roy, G. Hager, R. Taylor, L. Whitcomb: Task performance in stapedotomy: comparison between surgeons of different experience levels, Otolaryngol. Head Neck Surg. 128, 71–77 (2003)

    Article  Google Scholar 

  6. A. Uneri, M. Balicki, J. Handa, P. Gehlbach, R. Taylor, I. Iordachita: New steady-hand eye robot with microforce sensing for vitreoretinal surgery research, Proc. Int. Conf.Biomed. RoboticsBiomechatronics (BIOROB), Tokyo (2010) pp. 814–819

    Google Scholar 

  7. A. Amin, J. Grossman, P.J. Wang: Early experience with a computerized robotically controlled catheter system, J. Int. Card. Electrophysiol. 12, 199–202 (2005)

    Article  Google Scholar 

  8. B. Hagag, R. Abovitz, H. Kang, B. Schmidtz, M. Conditt: RIO: Robotic-arm interactive orthopedic system MAKOplasty: User interactive haptic orthopedic robotics. In: Surgical Robotics: Systems Applications and Visions, ed. by J. Rosen, B. Hannaford, R. Satava (New York, Springer 2011) pp. 219–246

    Chapter  Google Scholar 

  9. R. Konietschke, D. Zerbato, R. Richa, A. Tobergte, P. Poignet, F. Froehlich, D. Botturi, P. Fiorini, G. Hirzinger: Of new features for telerobotic surgery into the MiroSurge System, J. Appl. Bionics Biomech. Integr. 8(2), 116 (2011)

    Google Scholar 

  10. L. Mettler, M. Ibrahim, W. Jonat: One year of experience working with the aid of a robotic assistant (the voice-controlled optic holder AESOP) in gynaecological endoscopic surgery, Hum. Reprod. 13, 2748–2750 (1998)

    Article  Google Scholar 

  11. N. Simaan, R. Taylor, P. Flint: High dexterity snake-like robotic slaves for minimally invasive telesurgery of the throat, Proc. Int. Symp. Med. Image Comput. Comput. Interv. (2004) pp. 17–24

    Google Scholar 

  12. N. Suzuki, M. Hayashibe, A. Hattori: Development of a downsized master-slave surgical robot system for intragastic surgery, Proc. ICRA Surg. Robotics Workshop, Barcelona (2005)

    Google Scholar 

  13. K. Ikuta, K. Yamamoto, K. Sasaki: Development of remote microsurgery robot and new surgical procedure for deep and narrow space, Proc. IEEE Conf. Robot. Autom. (ICRA) (2003) pp. 1103–1108

    Google Scholar 

  14. R.J. Webster, J.M. Romano, N.J. Cowan: Mechanics of precurved-tube continuum robots, IEEE Trans.Robotics 25(1), 67–78 (2009)

    Article  Google Scholar 

  15. R.J. Webster, B.A. Jones: Design and kinematic modeling of constant curvature continuum robots: A review, Int. J. Robotics Res. 29(13), 1661–1683 (2010)

    Article  Google Scholar 

  16. J. Ding, R.E. Goldman, K. Xu, P.K. Allen, D.L. Fowler, N. Simaan: Design and coordination kinematics of an insertable robotic effectors platform for single-port access surgery, IEEE/ASME Trans. Mechatron. 99, 1–13 (2012)

    Google Scholar 

  17. R.H. Taylor, H.A. Paul, P. Kazandzides, B.D. Mittelstadt, W. Hanson, J.F. Zuhars, B. Williamson, B.L. Musits, E. Glassman, W.L. Bargar: An image-directed robotic system for precise orthopaedic surgery, IEEE Trans. Robot. Autom. 10, 261–275 (1994)

    Article  Google Scholar 

  18. P. Kazanzides, B.D. Mittelstadt, B.L. Musits, W.L. Bargar, J.F. Zuhars, B. Williamson, P.W. Cain, E.J. Carbone: An integrated system for cementless hip replacement, IEEE Eng. Med. Biol. 14, 307–313 (1995)

    Article  Google Scholar 

  19. Q. Li, L. Zamorano, A. Pandya, R. Perez, J. Gong, F. Diaz: The application accuracy of the NeuroMate robot – A quantitative comparison with frameless and frame-based surgical localization systems, Comput. Assist. Surg. 7(2), 90–98 (2002)

    Article  Google Scholar 

  20. P. Cinquin, J. Troccaz, J. Demongeot, S. Lavallee, G. Champleboux, L. Brunie, F. Leitner, P. Sautot, B. Mazier, A. Perez, M. Djaid, T. Fortin, M. Chenic, A. Chapel: IGOR: image guided operating robot, Innov. Technonogie Biol. Med. 13, 374–394 (1992)

    Google Scholar 

  21. H. Reichenspurner, R. Demaino, M. Mack, D. Boehm, H. Gulbins, C. Detter, B. Meiser, R. Ellgass, B. Reichart: Use of the voice controlled and computer-assisted surgical system Zeus for endoscopic coronary artery surgery bypass grafting, J. Thorac. Cardiovasc. Surg. 118, 11–16 (1999)

    Article  Google Scholar 

  22. Y.S. Kwoh, J. Hou, E.A. Jonckheere, S. Hayati: A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery, IEEE Trans. Biomed. Eng. 35, 153–161 (1988)

    Article  Google Scholar 

  23. J.M. Sackier, Y. Wang: Robotically assisted laparoscopic surgery. From concept to development, Surg. Endosc. 8, 63–66 (1994)

    Article  Google Scholar 

  24. D. Stoianovici, L. Whitcomb, J. Anderson, R. Taylor, L. Kavoussi: A modular surgical robotic system for image-guided percutaneous procedures, Proc. Med. Image Comput. Comput. Interv. (MICCAI), Cambridge (1998) pp. 404–410

    Google Scholar 

  25. R.H. Taylor, J. Funda, B. Eldridge, K. Gruben, D. LaRose, S. Gomory, M. Talamini, L.R. Kavoussi, J. Anderson: A telerobotic assistant for laparoscopic surgery, IEEE Eng. Med. Biol. Mag. 14, 279–287 (1995)

    Article  Google Scholar 

  26. M. Mitsuishi, T. Watanabe, H. Nakanishi, T. Hori, H. Watanabe, B. Kramer: A telemicrosurgery system with colocated view and operation points and rotational-force-feedback-free master manipulator, Proc. 2nd Int. Symp. Med. Robot. Comput. Assist. Surg., Baltimore (1995) pp. 111–118

    Google Scholar 

  27. K. Ikuta, M. Tsukamoto, S. Hirose: Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. In: Computer-Integrated Surgery, ed. by R.H. Taylor, S. Lavallee, G. Burdea, R. Mosges (MIT Press, Cambridge 1996) pp. 277–282

    Google Scholar 

  28. A. Menciassi, C. Stefanini, S. Gorini, G. Pernorio, P. Dario, B. Kim, J.O. Park: Legged locomotion in the gastrointestinal tract problem analysis and preliminary technological activity, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2004) pp. 937–942

    Google Scholar 

  29. K. Ikuta, H. Ichikawa, K. Suzuki, D. Yajima: Multi-degree of freedom hydraulic pressure driven safety active catheter, Proc. IEEE Int. Conf. Robotics Autom. (ICRA), Orlando (2006) pp. 4161–4166

    Google Scholar 

  30. S. Guo, J. Sawamoto, Q. Pan: A novel type of microrobot for biomedical application, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2005) pp. 1047–1052

    Google Scholar 

  31. N. Patronik, C. Riviere, S.E. Qarra, M.A. Zenati: The heartlander: A novel epicardial crawling robot for myocardial injections, Proc. 19th Int. Congr. Comput. Assist. Radiol. Surg. (2005) pp. 735–739

    Google Scholar 

  32. P. Dario, B. Hannaford, A. Menciassi: Smart surgical tools and augmenting devices, IEEE Trans. Robotics Autom. 19, 782–792 (2003)

    Article  Google Scholar 

  33. L. Phee, D. Accoto, A. Menciassi, C. Stefanini, M.C. Carrozza, P. Dario: Analysis and development of locomotion devices for the gastrointestinal tract, IEEE Trans. Biomed. Eng. 49, 613–616 (2002)

    Article  Google Scholar 

  34. N. Kalloo, V.K. Singh, S.B. Jagannath, H. Niiyama, S.L. Hill, C.A. Vaughn, C.A. Magee, S.V. Kantsevoy: Flexible transgastricperitoneoscopy: A novel approach to diagnostic and therapeutic interventions in the peritoneal cavity, Gastrointest. Endosc. 60, 114–117 (2004)

    Article  Google Scholar 

  35. S.N. Shaikh, C.C. Thompson: Natural orifice translumenal surgery: Flexible platform review, World J. Gastrointest. Surg. 2(6), 210–216 (2010)

    Article  Google Scholar 

  36. M. Neto, A. Ramos, J. Campos: Single port laparoscopic access surgery, Tech. Gastrointest. Endosc. 11, 84–93 (2009)

    Article  Google Scholar 

  37. Karl Storz Endoskope - Anubis: https://www.karlstorz.com/cps/rde/xchg/SID-8BAF6233-DF3FFEB4/karlstorz-en/hs.xsl/8872.htm (2012)

  38. S.J. Phee, K.Y. Ho, D. Lomanto, S.C. Low, V.A. Huynh, A.P. Kencana, K. Yang, Z.L. Sun, S.C. Chung: Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave transluminal endoscopic robot (MASTER), Surg. Endosc. 24, 2293–2298 (2010)

    Article  Google Scholar 

  39. M. Piccigallo, U. Scarfogliero, C. Quaglia, G. Petroni, P. Valdastri, A. Menciassi, P. Dario: Design of a novel bimanual robotic system for single-port laparoscopy, IEEE/ASME Trans. Mechatron. 15(6), 871–878 (2012)

    Google Scholar 

  40. D.J. Scott, S.J. Tang, R. Fernandez, R. Bergs, M.T. Goova, I. Zeltser, F.J. Kehdy, J.A. Cadeddu: Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments, Surg. Endosc. 21, 2308–2316 (2007)

    Article  Google Scholar 

  41. S. Tognarelli, M. Salerno, G. Tortora, C. Quaglia, P. Dario, A. Menciassi: An endoluminal robotic platform for Minimally Invasive Surgery, Proc. IEEE Int. Conf. Biomed. Robotics Biomechatronics (BIOROB), Pisa (2012) pp. 7–12

    Google Scholar 

  42. M. Simi, R. Pickens, A. Menciassi, S.D. Herrell, P. Valdastri: Fine tilt tuning of a laparoscopic camera by local magnetic actuation: Two-Port Nephrectomy Experience on Human Cadavers, Surg. Innov. 20(4), 385–394 (2013)

    Article  Google Scholar 

  43. T. Leuth: MIMED: 3D printing - Rapid technologies, http://www.mimed.mw.tum.de/research/3d-printing-rapid-technologies/ (2013)

  44. S. G. O’Reilly: Medical manufacturing technology: 3D printing and medical-device development, Medical Design, http://medicaldesign.com/Medical-Manufacturing-Technology-3D-printing-medical-device-development/index.html (2012)

  45. C. Plaskos, P. Cinquin, S. Lavallee, A.J. Hodgson: Praxiteles: A miniature bone-mounted robot for minimal access total knee arthroplasty, Int. J. Med. Robot. Comput. Assist. Surg. 1, 67–79 (2005)

    Article  Google Scholar 

  46. P.J. Berkelman, L. Whitcomb, R. Taylor, P. Jensen: A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation, IEEE Trans. Robot. Autom. 19, 917–922 (2003)

    Article  Google Scholar 

  47. D.P. Devito, L. Kaplan, R. Dietl, M. Pfeiffer, D. Horne, B. Silberstein, M. Hardenbrook, G. Kiriyanthan, Y. Barzilay, A. Bruskin, D. Sackerer, V. Alexandrovsky, C. Stüer, R. Burger, J. Maeurer, D.G. Gordon, R. Schoenmayr, A. Friedlander, N. Knoller, K. Schmieder, I. Pechlivanis, I.-S. Kim, B. Meyer, M. Shoham: Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot -- Retrospective study, Spine 35(24), 2109–2115 (2010)

    Article  Google Scholar 

  48. K. Chinzei, R. Gassert, E. Burdet: Workshop on MRI/fMRI compatible robot technology - A critical tool for neuroscience and image guided intervention, Proc. IEEE Int. Conf.Robotics Autom. (ICRA), Orlando (2006)

    Google Scholar 

  49. M. Jakopec, S.J. Harris, F.R.Y. Baena, P. Gomes, J. Cobb, B.L. Davies: The first clinical application of a hands-on robotic knee surgery system, Comput. Aided Surg. 6, 329–339 (2001)

    Article  Google Scholar 

  50. D.F. Louw, T. Fielding, P.B. McBeth, D. Gregoris, P. Newhook, G.R. Sutherland: Surgical robotics: A review and neurosurgical prototype development, Neurosurgery 54, 525–537 (2004)

    Article  Google Scholar 

  51. J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix, S.E. Butner, M.K. Smith: Transatlantic robot-assisted telesurgery, Nature 413, 379–380 (2001)

    Article  Google Scholar 

  52. M. Anvari, T. Broderick, H. Stein, T. Chapman, M. Ghodoussi, D.W. Birch, C. Mckinley, P. Trudeau, S. Dutta, C.H. Goldsmith: The impact of latency on surgical precision and task completion during robotic-assisted remote telepresence surgery, Comput. Aided Surg. 10, 93–99 (2005)

    Article  Google Scholar 

  53. M. Li, M. Ishii, R.H. Taylor: Spatial motion constraints in medical robot using virtual fixtures generated by anatomy, IEEE Trans. Robotics 23, 4–19 (2007)

    Article  Google Scholar 

  54. S. Park, R.D. Howe, D.F. Torchiana: Virtual fixtures for robotic cardiac surgery, Proc. 4th Int. Conf. Med. Image Comput. Comput. Interv. (2001)

    Google Scholar 

  55. B. Davies: A discussion of safety issues for medical robots. In: Computer-Integrated Surgery, ed. by R. Taylor, S. Lavallée, G. Burdea, R. Moesges (MIT Press, Cambridge 1996) pp. 287–296

    Google Scholar 

  56. P. Varley: Techniques of development of safety-related software in surgical robots, IEEE Trans. Inform. Technol. Biomed. 3, 261–267 (1999)

    Article  Google Scholar 

  57. R. Muradore, D. Bresolin, L. Geretti, P. Fiorini, T. Villa: Robotic surgery – Formal verification of plans, IEEE RoboticsAutom. Mag. 18(3), 24–32 (2011)

    Article  MATH  Google Scholar 

  58. J.B. Maintz, M.A. Viergever: A survey of medical image registration, Med. Image Anal. 2, 1–37 (1998)

    Article  Google Scholar 

  59. S. Lavallee: Registration for computer-integrated surgery: methodology, state of the Art. In: Computer-Integrated Surgery, ed. by R.H. Taylor, S. Lavallee, G. Burdea, R. Mosges (MIT Press, Cambridge 1996) pp. 77–98

    Google Scholar 

  60. P.J. Besl, N.D. McKay: A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  61. R.J. Maciunas: Interactive Image-Guided Neurosurgery (AANS, Park Ridge 1993)

    Google Scholar 

  62. G. Fichtinger, A. Degeut, K. Masamune, E. Balogh, G. Fischer, H. Mathieu, R.H. Taylor, S. Zinreich, L.M. Fayad: Image overlay guidance for needle insertion on CT scanner, IEEE Trans. Biomed. Eng. 52, 1415–1424 (2005)

    Article  Google Scholar 

  63. T. Akinbiyi, C.E. Reiley, S. Saha, D. Burschka, C.J. Hasser, D.D. Yuh, A.M. Okamura: Dynamic augmented reality for sensory substitution in robot-assisted surgical systems, Proc. 28th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (2006) pp. 567–570

    Google Scholar 

  64. J. Leven, D. Burschka, R. Kumar, G. Zhang, S. Blumenkranz, X. Dai, M. Awad, G. Hager, M. Marohn, M. Choti, C. Hasser, R.H. Taylor: DaVinci canvas: A telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability, Proc. Med. Image Comput. Comput. Interv. Palm Springs (2005)

    Google Scholar 

  65. R.H. Taylor, H.A. Paul, C.B. Cutting, B. Mittelstadt, W. Hanson, P. Kazanzides, B. Musits, Y.Y. Kim, A. Kalvin, B. Haddad, D. Khoramabadi, D. Larose: Augmentation of human precision in computer-integrated surgery, Innov. Technol. Biol. Med. 13, 450–459 (1992)

    Google Scholar 

  66. J. Troccaz, M. Peshkin, B. Davies: The use of localizers, robots and synergistic devices in CAS, Lect. Notes Comput. Sci. 1205, 727–736 (1997)

    Google Scholar 

  67. G. Brisson, T. Kanade, A.M. DiGioia, B. Jaramaz: Precision freehand sculptig of bone, Proc. Med. Image Comput. Comput.-Assist. Interv. (MICCAI) (2004) pp. 105–112

    Google Scholar 

  68. R.A. Beasley: Medical Robots: Current systems and research directions, J. Robotics 2012, 401613 (2012)

    Article  Google Scholar 

  69. S. Kuang, K.S. Leung, T. Wang, L. Hu, E. Chui, W. Liu, Y. Wang: A novel passive/active hybrid robot for orthopaedic trauma surgery, Int. J. Med. Robotics Comput. Assist, Surg. 8, 458–467 (2012)

    Google Scholar 

  70. S. Solomon, A. Patriciu, R.H. Taylor, L. Kavoussi, D. Stoianovici: CT guided robotic needle biopsy: A precise sampling method minimizing radiation exposure, Radiology 225, 277–282 (2002)

    Article  Google Scholar 

  71. K. Masamune, G. Fichtinger, A. Patriciu, R. Susil, R. Taylor, L. Kavoussi, J. Anderson, I. Sakuma, T. Dohi, D. Stoianovici: System for robotically assisted percutaneous procedures with computed tomography guidance, J. Comput. Assist. Surg. 6, 370–383 (2001)

    Article  Google Scholar 

  72. A. Krieger, R.C. Susil, C. Menard, J.A. Coleman, G. Fichtinger, E. Atalar, L.L. Whitcomb: Design of a novel MRI compatible manipulator for image guided prostate intervention, IEEE Trans. Biomed. Eng. 52, 306–313 (2005)

    Article  Google Scholar 

  73. T. Ungi, P. Abolmaesumi, R. Jalal, M. Welch, I. Ayukawa, S. Nagpal, A. Lasso, M. Jaeger, D. Borschneck, G. Fichtinger, P. Mousavi: Spinal needle navigation by tracked ultrasound snapshots, IEEE Trans. Biomed. Eng. 59(10), 2766–2772 (2012)

    Article  Google Scholar 

  74. D. DallAlba, B. Maris, P. Fiorini: A compact navigation system for free hand needle placement in percutaneous procedures, Proc. IEEE/RSI Int. Conf. Intell. Robots Syst. (IROS), Vilamoura (2012) pp. 2013–2018

    Google Scholar 

  75. G.A. Krombach, T. Schmitz-Rode, B.B. Wein, J. Meyer, J.E. Wildberger, K. Brabant, R.W. Gunther: Potential of a new laser target system for percutaneous CT-guided nerve blocks: Technical note, Neuroradiology 42, 838–841 (2000)

    Article  Google Scholar 

  76. M. Rosenthal, A. State, J. Lee, G. Hirota, J. Ackerman, K. Keller, E.D. Pisano, M. Jiroutek, K. Muller, H. Fuchs: Augmented reality guidance for needle biopsies: A randomized, controlled trial in phantoms, Proc. 4th Int. Conf. Med. Image Comput. Comput. Interv. (2001) pp. 240–248

    Google Scholar 

  77. G. Stetten, V. Chib: Overlaying ultrasound images on direct vision, J. Ultrasound Med. 20, 235–240 (2001)

    Article  Google Scholar 

  78. H.F. Reinhardt: Neuronagivation: A ten years review. In: Computer-Integrated Surgery, ed. by R. Taylor, S. Lavallée, G. Burdea, R. Moegses (MIT Press, Cambridge 1996) pp. 329–342

    Google Scholar 

  79. E. Hempel, H. Fischer, L. Gumb, T. Hohn, H. Krause, U. Voges, H. Breitwieser, B. Gutmann, J. Durke, M. Bock, A. Melzer: An MRI-compatible surgical robot for precise radiological interventions, Comput. Aided Surg. 8, 180–191 (2003)

    Article  Google Scholar 

  80. Z. Wei, G. Wan, L. Gardi, G. Mills, D. Downey, A. Fenster: Robot-assisted 3D-TRUS guided prostate brachytherapy: system integration and validation, Med. Phys. 31, 539–548 (2004)

    Article  Google Scholar 

  81. E. Boctor, G. Fischer, M. Choti, G. Fichtinger, R.H. Taylor: Dual-armed robotic system for intraoperative ultrasound guided hepatic ablative therapy: A prospective study, Proc. IEEE Int. Conf. Robot. Autom. (ICRA) (2004) pp. 377–382

    Google Scholar 

  82. J. Hong, T. Dohi, M. Hashizume, K. Konishi, N. Hata: An ultrasound-driven needle-insertion robot for percutaneous cholecystostomy, Phys. Med. Biol. 49, 441–455 (2004)

    Article  Google Scholar 

  83. G. Megali, O. Tonet, C. Stefanini, M. Boccadoro, V. Papaspyropoulis, L. Angelini, P. Dario: A computer-assisted robotic ultrasound-guided biopsy system for video-assisted surgery, Proc. Med. Image Comput. Comput. Interv. (MICCAI), Utrecht (2001) pp. 343–350

    Google Scholar 

  84. R.J. Webster III, J.S. Kim, N.J. Cowan, G.S. Chirikjian, A.M. Okamura: Nonholonomic modeling of needle steering, Int. J. Robotics Res. 25(5-6), 509–525 (2006)

    Article  Google Scholar 

  85. J.A. Engh, D.S. Minhas, D. Kondziolka, C.N. Riviere: Percutaneous intracerebral navigation by duty-cycled spinning of flexible bevel-tipped needles, Neurosurgery 67(4), 1117–1122 (2010)

    Article  Google Scholar 

  86. N. Cowan, K. Goldberg, G. Chirikjian, G. Fichtinger, R. Alterovitz, K. Reed, V. Kallem, W. Park, S. Misra, A.M. Okamura: Robotic needle steering: Design, modeling, planning, and image guidance. In: Surgical Robotics – Systems Applications and Visions, ed. by J. Rosen, B. Hannaford, R.M. Satava (New York, Springer 2011)

    Google Scholar 

  87. S. Okazawa, R. Ebrahimi, J. Chuang, S. Salcudean, R. Rohling: Hand-held steerable needle device, IEEE/ASME Trans. Mechatron. 10, 285–296 (2005)

    Article  Google Scholar 

  88. P.E. Dupont, J. Lock, B. Itkowitz, E. Butler: Design and control of concentric-tube robots, IEEE Trans.Robotics 26(2), 209–225 (2010)

    Article  Google Scholar 

  89. G.H. Ballantyne: Robotic surgery, telerobotic surgery, telepresence and telementoring, Surg, Endosc. 16, 1389 (2002)

    Article  Google Scholar 

  90. A. Rovetta, R. Sala, R. Cosmi, X. Wen, S. Milassesi, D. Sabbadini, A. Togno, L. Angelini, A.K. Bejczy: A new telerobotic application: Remote laparscopic surgery using satellites and optical figer networks for data exchange, Int. J. Robotics Res. 15(3), 267–279 (1996)

    Article  Google Scholar 

  91. J. Arata, H. Takahashi, S. Yasunaka, K. Onda, K. Tanaka, N. Sugita, K. Tanoue, K. Konishi, S. Ieiri, Y. Fujino, Y. Ueda, H. Fujimoto, M. Mitsuishi, M. Hashizume: Impact of network time-delay and force feedback on tele-surgery, Int. J.Comput. Assist. Radiol.Surg. 3(3–4), 371–378 (2008)

    Article  Google Scholar 

  92. J.A. McEwen, C.R. Bussani, G.F. Auchinleck, M.J. Breault: Development and initial clinical evaluation of pre-robotic and robotic retraction systems for surgery, Proc. 2nd Workshop Med. Health Care Robotics, Newcastle (1989) pp. 91–101

    Google Scholar 

  93. P. Berkelman, P. Cinquin, J. Troccaz, J. Ayoubi, C. Letoublon, F. Bouchard: A compact, compliant laparoscopic endoscope manipulator, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 1870–1875

    Google Scholar 

  94. K. Olds, A. Hillel, J. Kriss, A. Nair, H. Kim, E. Cha, M. Curry, L. Akst, R. Yung, J. Richmon, R. Taylor: A robotic assistant for trans-oral surgery: The robotic endo-laryngeal fexible (Robo-ELF) scope, J. Robotic. Surg. 6(1), 13–18 (2012)

    Article  Google Scholar 

  95. G.R. Sutherland, S. Lama, L.S. Gan, S. Wolfsberger, K. Zareinia: Merging machines with microsurgery: Clinical experience with neuroArm, J. Neurosurg. 118, 521–529 (2013)

    Article  Google Scholar 

  96. A. Nishikawa, T. Hosoi, K. Koara, T. Dohi: FAce MOUSe: A novel human-machine interface for controlling the position of a laparoscope, IEEE Trans Robot. Autom. 19, 825–841 (2003)

    Article  Google Scholar 

  97. A. Krupa, J. Gangloff, C. Doignon, M.F. deMathelin, G. Morel, J. Leroy, L. Soler, J. Marescaux: Autonomous 3-D positioning of surgical instruments in robotized laparoscopic surgery using visual servoing, IEEE Trans. Robotics Autom. 19, 842–853 (2003)

    Article  MATH  Google Scholar 

  98. P. Green, R. Satava, J. Hill, I. Simon: Telepresence: Advanced teleoperator technology of minimally invasive surgery (abstract), Surg. Endosc. 6, 90 (1992)

    Article  Google Scholar 

  99. T. Ahlering, D. Woo, L. Eichel, D. Lee, R. Edwards, D. Skarecky: Robot-assisted versus open radical prostatectomy: A comparison of one surgeon’s outcomes, Urology 63, 819–822 (2004)

    Article  Google Scholar 

  100. J.D. Wright, C.V. Ananth, S.N. Lewin, W.M. Burke, Y.-S. Lu, A.I. Neugut, T.J. Herzog, D.L. Hershman: Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease, J. Am. Med. Assoc. 309(7), 689–698 (2013)

    Article  Google Scholar 

  101. J. Rosen, J.D. Brown, L. Chang, M. Barreca, M. Sinanan, B. Hannaford: The BlueDRAGON – a system for measuring the kinematics and the dynamics of minimally invasive surgical tools in-vivo, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (2002) pp. 1876–1881

    Google Scholar 

  102. H.C. Lin, I. Shafran, T.E. Murphy, A.M. Okamura, D.D. Yuh, G.D. Hager: Automatic detection and segmentation of robot-assisted surgical motions, Proc. Med. Image Comput. Comput.-Assist. Interv. (MICCAI) (2005) pp. 802–810

    Google Scholar 

  103. H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll, J. Schmidhuber: A system for robotic heart surgery that learns to tie knots using recurrent neural networks, Proc. Int. Conf. Intell. Robots Syst. (IROS) (2006) pp. 543–548

    Google Scholar 

  104. C.E. Reiley, H.C. Lin, D.D. Yuh, G.D. Hager: A review of methods for objective surgical skill evaluation, Surg. Endosc. 25(2), 356–366 (2011)

    Article  Google Scholar 

  105. N. Padoy, G. Hager: Human-machine collaborative surgery using learned models, Proc. IEEE Int. ConfRoboticsAutom. (ICRA) (2011) pp. 5285–5292

    Google Scholar 

  106. L.-M. Su, B.P. Vagvolgyi, R. Agarwal, C.E. Reiley, R.H. Taylor, G.D. Hager: Augmented reality during robot-assisted laparoscopic partial nephrectomy: Toward real-time 3D-CT to stereoscopic video registration, Urology 73(4), 896–900 (2009)

    Article  Google Scholar 

  107. F. Volonté, N.C. Buchs, F. Pugin, J. Spaltenstein, B. Schiltz, M. Jung, M. Hagen, O. Ratib, P. Morel: Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci robotic console, Int. J.Med. Robotics Comput. Assist. Surg. 3(9), 34–38 (2013)

    Article  Google Scholar 

  108. D. Cohen, E. Mayer, D. Chen, A. Anstee, J. Vale, G.-Z. Yang, A. Darzi, P.Ä.Ä. Edwards: Augmented reality image guidance in minimally invasive prostatectomy, Lect. Notes Comput. Sci. 6367, 101–110 (2010)

    Article  Google Scholar 

  109. Y. Ida, N. Sugita, T. Ueta, Y. Tamaki, K. Tanimoto, M. Mitsuishi: Microsurgical robotic system for vitreoretinal surgery, Int. J. Comput. Assist. Radiol. Surg. 7(1), 27–34 (2012)

    Article  Google Scholar 

  110. R. Taylor, J. Kang, I. Iordachita, G. Hager, P. Kazanzides, C. Riviere, E. Gower, R. Richa, M. Balicki, X. He, X. Liu, K. Olds, R. Sznitman, B. Vagvolgyi, P. Gehlbach, J. Handa: Recent work toward a microsurgical assistant for retinal surgery, Proc. Hamlyn Symp.Med. Robotics, London (2011) pp. 3–4

    Google Scholar 

  111. B. Becker, S. Yang, R. MacLachlan, C. Riviere: Towards vision-based control of a handheld micromanipulator for retinal cannulation in an eyeball phantom, Proc. IEEE RAS EMBS Int. Conf. Biomed. Robotics Biomechatronics (BIOROB) (2012) pp. 44–49

    Google Scholar 

  112. M. Balicki, T. Xia, M.Y. Jung, A. Deguet, B. Vagvolgyi, P. Kazanzides, R. Taylor: Prototyping a hybrid cooperative and tele-robotic surgical system for retinal microsurgery, Proc. MICCAI WorkshopSyst.Archit. Comput. Assist. Interv. Tor. (2011), Insight, http://www.midasjournal.org/browse/publication/815

    Google Scholar 

  113. C. Bergeles, B.E. Kratochvil, B.J. Nelson: Visually servoing magnetic intraocular microdevices, IEEE Trans. Robotics 28(4), 798–809 (2012)

    Article  Google Scholar 

  114. Patent N. Simaan, J. T. Handa, R. H. Taylor: A system for macro-micro distal dexterity enhancement in microsurgery of the eye, Patent US 20110125165 A1 (2011)

    Google Scholar 

  115. X. He, D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, J. Handa, P. Gehlbach, R.H. Taylor, I. Iordachita: Toward a clinically applicable steady-hand eye robot for vitreoretinal surgery, Proc. ASME Int. Mech. Eng. Congr., Houston (2012) p. 88384

    Google Scholar 

  116. J.K. Niparko, W.W. Chien, I. Iordachita, J.U. Kang, R.H. Taylor: Robot-assisted, sensor-guided cochlear implant electrode insertion (Abstract in Proceedings), Proc. 12th Int. Conf. Cochlear Implant. Other Implant. Auditory Technol., Baltimore (2012)

    Google Scholar 

  117. D. Schurzig, R.F. Labadie, A. Hussong, T.S. Rau, R.J. Webster: Design of a tool integrating force sensing with automated insertion in cochlear implantation, IEEE/ASME Trans. Mechatron. 17(2), 381–389 (2012)

    Article  Google Scholar 

  118. B. Bell, C. Stieger, N. Gerber, A. Arnold, C. Nauer, V. Hamacher, M. Kompis, L. Nolte, M. Caversaccio, S. Weber: A self-developed and constructed robot for minimally invasive cochlear implantation, Acta Oto-Laryngol. 132(4), 355–360 (2012)

    Article  Google Scholar 

  119. J.R. Clark, L. Leon, F.M. Warren, J.J. Abbott: Magnetic guidance of cochlear implants: Proof-of-concept and initial feasibility study, Trans. ASME-W-J. Medical Devices 6(4), 35002 (2012)

    Article  Google Scholar 

  120. J. Schiff, P. Li, M. Goldstein: Robotic microsurgical vasovasostomy and vasoepididymostomy: A prospective randomized study in a rat model, J. Urol. 171, 1720–1725 (2004)

    Article  Google Scholar 

  121. S. Parekattil, M. Cohen: Robotic microsurgery. In: Robotic Urologic Surgery, ed. by V.R. Patel (Springer, London 2012) pp. 461–470

    Google Scholar 

  122. P.S. Jensen, K.W. Grace, R. Attariwala, J.E. Colgate, M.R. Glucksberg: Toward robot assisted vascular microsurgery in the retina, Graefes Arch. Clin. Exp. Ophthalmol. 235, 696–701 (1997)

    Article  Google Scholar 

  123. H. Das, H. Zak, J. Johnson, J. Crouch, D. Frambaugh: Evaluation of a telerobotic system to assist surgeons in microsurgery, Comput. Aided Surg. 4, 15–25 (1999)

    Article  Google Scholar 

  124. K. Hongo, S. Kobayashi, Y. Kakizawa, J.I. Koyama, T. Goto, H. Okudera, K. Kan, M.G. Fujie, H. Iseki, K. Takakura: NeuRobot: Telecontrolled micromanipulator system for minimally invasive microneurosurgery-preliminary results, Neurosurgery 51, 985–988 (2002)

    Google Scholar 

  125. A. Kapoor, R. Kumar, R. Taylor: Simple biomanipulation tasks with a steady hand cooperative manipulator, Proc. 6th Int. Conf. Med. Image Comput. Comput. Assist. Interv. (MICCAI), Montreal (2003) pp. 141–148

    Google Scholar 

  126. R. MacLachlan, B. Becker, J. Cuevas-Tabarés, G. Podnar, L. Lobes, C. Riviere: Micron: An actively stabilized handheld tool for microsurgery, IEEE Trans. Robotics 28(1), 195–212 (2012)

    Article  Google Scholar 

  127. B. Becker, R. MacLachlan, L. Lobes, G. Hager, C. Riviere: Vision-based control of a handheld surgical micromanipulator with virtual fixtures, IEEE Trans. Robotics 29(3), 674–683 (2013)

    Article  Google Scholar 

  128. C. Riviere, J. Gangloff, M. de Mathelin: Robotic compensation of biological motion to enhance surgical accuracy, Proceedings IEEE 94(9), 1705–1716 (2006)

    Article  Google Scholar 

  129. W. Armstrong, A. Karamzadeh, R. Crumley, T. Kelley, R. Jackson, B. Wong: A novel laryngoscope instrument stabilizer for operative microlaryngoscopy, Otolaryngol. Head Neck Surg. 132, 471–477 (2004)

    Article  Google Scholar 

  130. L. Ascari, C. Stefanini, A. Menciassi, S. Sahoo, P. Rabischong, P. Dario: A new active microendoscope for exploring the sub-arachnoid space in the spinal cord, Proc. IEEE Conf. Robotics Autom. (ICRA) (2003) pp. 2657–2662

    Google Scholar 

  131. U. Bertocchi, L. Ascari, C. Stefanini, C. Laschi, P. Dario: Human-robot shared control for robot-assisted endoscopy of the spinal cord, Proc. IEEE/RAS/EMBS Int. Conf. Biomed. Robot. Biomechatronics (2006) pp. 543–548

    Google Scholar 

  132. A. Cuschieri, G. Buess, J. Perissat: Operative Manual of Endoscopic Surgery (Springer, Berlin, Heidleberg 1992)

    Book  Google Scholar 

  133. Stereotaxis: The epoch (TM) solution: The heart of innovation, http://www.stereotaxis.com/ (2013)

  134. Endosense, TactiCath Quartz – The First Contact Force Ablation Catheter: http://neomed.net/portfolio/endosense_sa (2013)

  135. K.J. Rebello: Applications of MEMS in surgery, Proceedings IEEE 92(1), 43–55 (2004)

    Article  Google Scholar 

  136. I. Kassim, W.S. Ng, G. Feng, S.J. Phee: Review of locomotion techniques for robotic colonoscopy, Proc. Int. Conf. Robotics Autom. (ICRA), Taipei (2003) pp. 1086–1091

    Google Scholar 

  137. Endotics: The endotics system, http://www.endotics.com/en/product (2012)

  138. Gi-View: The AeroScope, http://www.giview.com/ (2013)

  139. Invendo-Medical: Gentle colonoscopy with invendoscopy, http://www.invendo-medical.com/ (2013)

  140. A. Loeve, P. Breeveld, J. Dankelman: Scopes too flexible … and too stiff, IEEE Pulse 1(3), 26–41 (2010)

    Article  Google Scholar 

  141. G. Ciuti, A. Menciassi, P. Dario: Capsule endoscopy: From current achievements to open challenges, IEEE Rev.Biomed. Eng. 4, 59–72 (2011)

    Article  Google Scholar 

  142. C. Stefanini, A. Menciassi, P. Dario: Modeling and experiments on a legged microrobot locomoting in a tubular, compliant and slippery environment, Int. J. Robotics Res. 25, 551–560 (2006)

    Article  Google Scholar 

  143. G. Ciuti, P. Valdastri, A. Menciassi, P. Dario: Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures, Robotica 28, 199–207 (2010)

    Article  Google Scholar 

  144. J.F. Rey, H. Ogata, N. Hosoe, K. Ohtsuka, N. Ogata, K. Ikeda, H. Aihara, I. Pangtay, T. Hibi, S. Kudo, H. Tajiri: Feasibility of stomach exploration with a guided capsule endoscope, Endoscopy 42, 541–545 (2010)

    Article  Google Scholar 

  145. R.C. Ritter, M.S. Grady, M.A. Howard, G.T. Gilles: Magnetic stereotaxis: Computer assisted, image guided remote movement of implants in the brain. In: Computer Integrated Surgery, ed. by R.H. Taylor, S. Lavallee, G.C. Burdea, R. Mosges (MIT Press, Cambridge 1995) pp. 363–369

    Google Scholar 

  146. C.R. Wagner, N. Stylopoulos, P.G. Jackson, R.D. Howe: The benefit of force feedback in surgery: Examination of blunt dissection, Presence: Teleoperators Virtual Environ. 16(3), 252–262 (2007)

    Article  Google Scholar 

  147. P.F. Hokayem, M.W. Spong: Bilateral teleoperation: A historical survey, Automatica 42, 2035–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  148. M. Quirini, A. Menciassi, S. Scapellato, C. Stefanini, P. Dario: Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract, IEEE/ASME Trans. Mechatron. 13(1), 169–179 (2008)

    Article  Google Scholar 

  149. A.M. Okamura: Methods for haptic feedback in teleoperated robot-assisted surgery, Ind. Robot 31, 499–508 (2004)

    Article  Google Scholar 

  150. M.J. Massimino: Improved force perception through sensory substitution, Contr. Eng. Pract. 3, 215–222 (1995)

    Article  Google Scholar 

  151. P. Gupta, P. Jensen, E. de Juan: Quantification of tactile sensation during retinal microsurgery, Proc. 2nd Int. Conf. Med. Image Comput. Comput.-Assist. Interv. (MICCAI), Cambridge (1999)

    Google Scholar 

  152. P.K. Poulose, M.F. Kutka, M. Mendoza-Sagaon, A.C. Barnes, C. Yang, R.H. Taylor, M.A. Talamini: Human versus robotic organ retraction during laparoscopic nissen fundoplication, Surg. Endosc. 13, 461–465 (1999)

    Article  Google Scholar 

  153. J. Rosen, B. Hannaford, M. MacFarlane, M. Sinanan: Force controlled and teleoperated endoscopic grasper for minimally invasive surgery – Experimental performance evaluation, IEEE Trans. Biomed. Eng. 46, 1212–1221 (1999)

    Article  Google Scholar 

  154. M. Siemionow, K. Ozer, W. Siemionow, G. Lister: Robotic assistance in microsurgery, J.Reconstr. Microsurg. 16(8), 643–649 (2000)

    Article  Google Scholar 

  155. P.D.L. Roux, H. Das, S. Esquenazi, P.J. Kelly: Robot-assisted microsurgery: A feasibility study in the rat, Neurosurgery 48(3), 584–589 (2001)

    Article  Google Scholar 

  156. A. Menciassi, A. Eisinberg, M.C. Carrozza, P. Dario: Force sensing microinstrument for measuring tissue properties and pulse in microsurgery, IEEE/ASME Trans. Mechatron. 8, 10–17 (2003)

    Article  Google Scholar 

  157. S. Sunshine, M. Balicki, X. He, K. Olds, J. Kang, P. Gehlbach, R. Taylor, I. Iordachita, J. Handa: A Force-sensing microsurgical instruments that detects forces below human tactile sensation, Retina 33(1), 200–206 (2013)

    Article  Google Scholar 

  158. I. Iordachita, Z. Sun, M. Balicki, J.U. Kang, S.J. Phee, J. Handa, P. Gehlbach, R. Taylor: A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery, Int. J. Comput. Assist. Radiol.Surg. 4(4), 383–390 (2009)

    Article  Google Scholar 

  159. I. Kuru, B. Gonenc, M. Balicki, J. Handa, P. Gehlbach, R.H. Taylor, I. Iordachita: Force sensing micro-forceps for robot assisted retinal surgery, Proc. Eng.Med. Biol., San Diego (2012) pp. 1401–1404

    Google Scholar 

  160. X. Liu, I.I. Iordachita, X. He, R.H. Taylor, J.U. Kang: Miniature fiber-optic force sensor for vitreoretinal microsurgery based on low-coherence Fabry-Perot interferometry, Biomed. Opt. Express 3, 1062–1076 (2012)

    Article  Google Scholar 

  161. M. Balicki, J.-H. Han, I. Iordachita, P. Gehlbach, J. Handa, R.H. Taylor, J. Kang: Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery, Proc. Med. Image Comput. Comput.-Assist. Interv. (MICCAI), London (2009) pp. 108–115

    Google Scholar 

  162. M. Balicki, R. Richa, B. Vagvolgyi, J. Handa, P. Gehlbach, J. Kang, P. Kazanzides, R. Taylor: Interactive OCT annotation and visualization system for vitreoretinal surgery, Proc. MICCAI WorkshopAugment. Environ.Comput. Interv. (AE-CAI), Nice (2012)

    Google Scholar 

  163. X. Liu, Y. Huang, J.U. Kang: Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction, Opt. Express 20(15), 16567–16583 (2012)

    Article  Google Scholar 

  164. N. Cutler, M. Balicki, M. Finkelstein, J. Wang, P. Gehlbach, J. McGready, I. Iordachita, R. Taylor, J. Handa: Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery, Investig. Ophthalmol. Vis. Sci. 4(2), 1316–1324 (2013)

    Article  Google Scholar 

  165. R.D. Howe, W.J. Peine, D.A. Kontarinis, J.S. Son: Remote palpation technology, IEEE Eng. Med. Biol. 14(3), 318–323 (1995)

    Article  Google Scholar 

  166. G. Fischer, T. Akinbiyi, S. Saha, J. Zand, M. Talamini, M. Marohn, R. Taylor: Ischemia and force sensing surgical instruments for augmenting available surgeon information, Proc. IEEE Int. Conf. Biomed. Robot. Biomechatronics (BioRob), Pisa (2006)

    Google Scholar 

  167. F.J. Carter, M.P. Schijven, R. Aggarwal, T. Grantcharov, N.K. Francis, G.B. Hanna, J.J. Jakimowicz: Consensus guidelines for validation of virtual reality surgical simulators, Surg. Endosc. 19, 1523–1532 (2005)

    Article  Google Scholar 

  168. A. Gavazzi, W.V. Haute, K. Ahmed, O. Elhage, P. Jaye, M.S. Khan, P. Dasgupta: Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP Robot), Ann. R. Coll.Surg.Engl. 93, 146–150 (2011)

    Article  Google Scholar 

  169. F.H. Halvorsen, O.J. Elle, E. Fosse: Simulators in surgery, Minim. Invasive Ther. 14, 214–223 (2005)

    Article  Google Scholar 

  170. T. Ungi, D. Sargent, E. Moult, A. Lasso, C. Pinter, R. McGraw, G. Fichtinger: Perk Tutor: An open-source training platform for ultrasound-guided needle insertions, IEEE Trans. Biomed. Eng. 59(12), 3475–3481 (2012)

    Article  Google Scholar 

  171. E. Moult, T. Ungi, M. Welch, J. Lu, R. McGraw, G. Fichtinger: Ultrasound-guided facet joint injection training using Perk Tutor, Int. J.Comput. Assist. Radiol.Surg. 8(5), 831–836 (2013)

    Article  Google Scholar 

  172. T.K.A. Kesavadas, G. Srimathveeravalli, S. Karimpuzha, R. Chandrasekhar, G. Wilding, G.K.Z. Butt: Efficacy of robotic surgery simulator (RoSS) for the davinci surgical system, J. Urol. 181(4), 823 (2009)

    Article  Google Scholar 

  173. C. Perrenot, M. Perez, N. Tran, J.-P. Jehl, J. Felblinger, L. Bresler, J. Hubert: The virtual reality simulator dV-Trainer is a valid assessment tool for robotic surgical skills, Surg. Endosc. 26(9), 2587–2593 (2012)

    Article  Google Scholar 

  174. R. Korets, J. Graversen, M. Gupta, J. Landman, K. Badani: Comparison of robotic surgery skill acquisition between DV-Trainer and da Vinci surgical system: A randomized controlled study, J. Urol. 185(4), e593 (2011)

    Google Scholar 

  175. K. Moorthy, Y. Munz, S.K. Sarker, A. Darzi: Objective assessment of technical skills in surgery, Br. Med. J. 327, 1032–1037 (2003)

    Article  Google Scholar 

  176. C. Basdogan, S. De, J. Kim, M. Muniyandi, H. Kim, M.A. Srinivasan: Haptics in minimally invasive surgical simulation and training, IEEE Comput. Graph. Appl. 24(2), 56–64 (2004)

    Article  Google Scholar 

  177. M. Altomonte, D. Zerbato, S. Galvan, P. Fiorini: Organ modeling and simulation using graphical processing, Poster Sess. Comput. Assist. Radiol. Surg., Berlin (2007)

    Google Scholar 

  178. D. Zerbato, L. Vezzaro, L. Gasperotti, P. Fiorini: Virtual training for US guided needle insertion, Proc. Comput. Assist Radiol. Surg., Berlin (2012) pp. 27–30

    Google Scholar 

  179. Lapmentor: http://www.simbionix.com

  180. Surgical Education platform: http://www.meti.com

  181. LapSim: http://www.surgical-science.com

  182. MIST: http://www.mentice.com

  183. EndoTower: http://www.verifi.com

  184. Laparoscopic Trainer: http://www.reachin.se

  185. Simendo: http://www.simendo.nl

  186. Vest System: http://www.select-it.de

  187. EYESI: http://www.vrmagic.com/

  188. U. Verona: Xron - Surgical simulator by ALTAIR lab, http://metropolis.scienze.univr.it/xron/ (2013)

  189. F. Cavallo, G. Megali, S. Sinigaglia, O. Tonet, P. Dario: A biomechanical analysis of surgeon’s gesture in a laparoscopic virtual scenario. In: Medicine Meets Virtual Reality, Vol. 14, ed. by J.D. Westwood, R.S. Haluck, H.M. Hoffmann, G.T. Mogel, R. Phillips, R.A. Robb, K.G. Vosburgh (IOS, Amsterdam 2006) pp. 79–84

    Google Scholar 

  190. S. Yule, R. Flin, S. Paterson-Brown, N. Maran: Non-technical skills for surgeons: A review of the literature, Surgery 139, 140–149 (2006)

    Article  Google Scholar 

  191. K.T. Kavanagh: Applications of image-directed robotics in otolaryngologic surgery, Laryngoscope 194, 283–293 (1994)

    Google Scholar 

  192. J. Wurm, H. Steinhart, K. Bumm, M. Vogele, C. Nimsky, H. Iro: A novel robot system for fully automated paranasal sinus surgery, Proc. Comput. Assist. Radiol. Surg. (CARS) (2003) pp. 633–638

    Google Scholar 

  193. M. Li, M. Ishii, R.H. Taylor: Spatial motion constraints in medical robot using virtual fixtures generated by anatomy, IEEE Trans. Robot. 2, 1270–1275 (2006)

    Google Scholar 

  194. G. Strauss, K. Koulechov, R. Richter, A. Dietz, C. Trantakis, T. Lueth: Navigated control in functional endoscopic sinus surgery, Int. J. Med. Robot. Comput. Assist. Surg. 1, 31–41 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell H. Taylor .

Editor information

Editors and Affiliations

Video-References

Video-References

:

Da Vinci Surgery on a grape available from http://handbookofrobotics.org/view-chapter/63/videodetails/823

:

Da Vinci Xi introduction | Engadget available from http://handbookofrobotics.org/view-chapter/63/videodetails/824

:

Intuitive surgical Da Vinci single port robotic system available from http://handbookofrobotics.org/view-chapter/63/videodetails/825

:

SPORT system by Titan Medical available from http://handbookofrobotics.org/view-chapter/63/videodetails/826

:

Robot for single port surgery by Nebraska University available from http://handbookofrobotics.org/view-chapter/63/videodetails/827

:

Magnetic and needlescopic instruments for surgical procedures available from http://handbookofrobotics.org/view-chapter/63/videodetails/828

:

CardioArm available from http://handbookofrobotics.org/view-chapter/63/videodetails/829

:

Snake robot for surgery in tight spaces available from http://handbookofrobotics.org/view-chapter/63/videodetails/830

:

IREP robot – Insertable robotic effectors in single port surgery available from http://handbookofrobotics.org/view-chapter/63/videodetails/831

:

Variable stiffness manipulator based on layer jamming available from http://handbookofrobotics.org/view-chapter/63/videodetails/832

:

Reconfigurable and modular robot for NOTES applications available from http://handbookofrobotics.org/view-chapter/63/videodetails/833

:

SPRINT robot for single port surgery available from http://handbookofrobotics.org/view-chapter/63/videodetails/834

:

A micro-robot operating inside eye available from http://handbookofrobotics.org/view-chapter/63/videodetails/835

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, R.H., Menciassi, A., Fichtinger, G., Fiorini, P., Dario, P. (2016). Medical Robotics and Computer-Integrated Surgery. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32552-1_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32550-7

  • Online ISBN: 978-3-319-32552-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics