Skip to main content

Regulation of LRRK2 by Phosphatases

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 14))

Abstract

LRRK2 is a highly phosphorylated protein, and evidence of a physiological role for LRRK2 phosphorylation has accumulated in recent years for cellular phosphosites, many of which are found in the ANK-LRR interdomain region, i.e., the S910/S935/S955/S973 sites as well as recently for autophosphorylation sites, at least one of which has been confirmed in cells, S1292. LRRK2 phosphorylation is modulated in several disease or potential therapy relevant conditions such as in disease mutant variants of LRRK2 or following LRRK2 kinase inhibitor treatment. This chapter will focus on the regulation of LRRK2 phosphorylation and more specifically the role of phosphatases in LRRK2 dephosphorylation. This will include reviewing the conditions in which LRRK2 is found to be dephosphorylated, the molecular partners and phosphatases involved in regulating LRRK2 phosphorylation, as well as discussing how LRRK2 phosphatases may be therapeutic targets or biomarkers in their own right.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Taymans J (2014) Can the increasing number of newly developed leucine-rich repeat kinase 2 inhibitors validate or invalidate a potential disease-modifying therapeutic approach for Parkinson’s disease? Expert Opin Ther Pat 24:727–730. doi:10.1517/13543776.2014.915945

    Article  CAS  PubMed  Google Scholar 

  2. Galatsis P, Henderson JL, Kormos BL, Hirst WD (2014) Leucine-rich repeat kinase 2 (LRRK2) inhibitors. Top Med Chem 18:111–148. doi:10.1007/7355_2014_69

    Article  Google Scholar 

  3. Taymans JM, Greggio E (2016) LRRK2 kinase inhibition as a therapeutic strategy for Parkinson’s disease, where do we stand? Curr Neuropharmacol 14(3):214–225

    Google Scholar 

  4. Tsika E, Moore DJ (2013) Contribution of GTPase activity to LRRK2-associated Parkinson disease. Small GTPases 4:164–170. doi:10.4161/sgtp.25130

    Article  PubMed  PubMed Central  Google Scholar 

  5. Taymans J-M (2012) The GTPase function of LRRK2. Biochem Soc Trans 40:1063–1069. doi:10.1042/BST20120133

    Article  CAS  PubMed  Google Scholar 

  6. Hong L, Sklar LA (2014) Targeting GTPases in Parkinson’s disease: comparison to the historic path of kinase drug discovery and perspectives. Front Mol Neurosci 7:1–10. doi:10.3389/fnmol.2014.00052

    Article  Google Scholar 

  7. Greggio E, Zambrano I, Kaganovich A et al (2008) The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem 283:16906–16914. doi:10.1074/jbc.M708718200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Civiero L, Vancraenenbroeck R, Belluzzi E et al (2012) Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers. PLoS One 7, e43472. doi:10.1371/journal.pone.0043472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao J, Hermanson SB, Carlson CB et al (2012) Pharmacological inhibition of LRRK2 cellular phosphorylation sites provides insight into LRRK2 biology. Biochem Soc Trans 40:1158–1162. doi:10.1042/BST20120137

    Article  CAS  PubMed  Google Scholar 

  10. Taymans J-M, Baekelandt V (2014) Phosphatases of α-synuclein, LRRK2, and tau: important players in the phosphorylation-dependent pathology of Parkinsonism. Front Genet 5:382. doi:10.3389/fgene.2014.00382

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lobbestael E, Baekelandt V, Taymans J-M (2012) Phosphorylation of LRRK2: from kinase to substrate. Biochem Soc Trans 40:1102–1110. doi:10.1042/BST20120128

    Article  CAS  PubMed  Google Scholar 

  12. Lobbestael E, Zhao J, Rudenko IN et al (2013) Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle. Biochem J 456:119–128. doi:10.1042/BJ20121772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nichols RJ, Dzamko N, Morrice NA et al (2010) 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem J 430:393–404. doi:10.1042/BJ20100483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reynolds A, Doggett EA, Riddle SM et al (2014) LRRK2 kinase activity and biology are not uniformly predicted by its autophosphorylation and cellular phosphorylation site status. Front Mol Neurosci 7:54. doi:10.3389/fnmol.2014.00054

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li X, Wang QJ, Pan N et al (2011) Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson’s disease. PLoS One 6, e17153. doi:10.1371/journal.pone.0017153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doggett EA, Zhao J, Mork CN et al (2012) Phosphorylation of LRRK2 serines 955 and 973 is disrupted by Parkinson’s disease mutations and LRRK2 pharmacological inhibition. J Neurochem 120:37–45. doi:10.1111/j.1471-4159.2011.07537.x

    Article  CAS  PubMed  Google Scholar 

  17. Sheng Z, Zhang S, Bustos D et al (2012) Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med 4, 164ra161. doi:10.1126/scitranslmed.3004485

    Article  PubMed  Google Scholar 

  18. West AB, Moore DJ, Choi C et al (2007) Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 16:223–232. doi:10.1093/hmg/ddl471

    Article  CAS  PubMed  Google Scholar 

  19. Reyniers L, Del Giudice MG, Civiero L et al (2014) Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways. J Neurochem 131:239–250. doi:10.1111/jnc.12798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gloeckner CJ, Boldt K, von Zweydorf F et al (2010) Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. J Proteome Res 9:1738–1745. doi:10.1021/pr9008578

    Article  CAS  PubMed  Google Scholar 

  21. Greggio E, Taymans J, Zhen EY et al (2009) The Parkinson’s disease kinase LRRK2 autophosphorylates its GTPase domain at multiple sites. Biochem Biophys Res Commun 389:449–454. doi:10.1016/j.bbrc.2009.08.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pungaliya PP, Bai Y, Lipinski K et al (2010) Identification and characterization of a leucine-rich repeat kinase 2 (LRRK2) consensus phosphorylation motif. PLoS One 5, e13672. doi:10.1371/journal.pone.0013672

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kamikawaji S, Ito G, Iwatsubo T, Accepted J (2009) Identification of the autophosphorylation sites of LRRK2. Biochemistry 48:10963–10975. doi:10.1021/bi9011379

    Article  CAS  PubMed  Google Scholar 

  24. Greggio E, Lewis PA, van der Brug MP et al (2007) Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. J Neurochem 102:93–102. doi:10.1111/j.1471-4159.2007.04523.x

    Article  CAS  PubMed  Google Scholar 

  25. Taymans J-M, Vancraenenbroeck R, Ollikainen P et al (2011) LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS One 6, e23207. doi:10.1371/journal.pone.0023207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ito G, Okai T, Fujino G et al (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry 46:1380–1388. doi:10.1021/bi061960m

    Article  CAS  PubMed  Google Scholar 

  27. Ito G, Fujimoto T, Kamikawaji S et al (2014) Lack of correlation between the kinase activity of LRRK2 harboring kinase-modifying mutations and its phosphorylation at Ser910, 935, and Ser955. PLoS One 9, e97988. doi:10.1371/journal.pone.0097988

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dzamko N, Deak M, Hentati F et al (2010) Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochem J 430:405–413. doi:10.1042/BJ20100784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi HG, Zhang J, Deng X et al (2012) Brain penetrant LRRK2 inhibitor. ACS Med Chem Lett 3:658–662. doi:10.1021/ml300123a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reith AD, Bamborough P, Jandu K et al (2012) GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorg Med Chem Lett 22:5625–5629. doi:10.1016/j.bmcl.2012.06.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deng X, Dzamko N, Prescott A et al (2011) Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat Chem Biol 7:203–205. doi:10.1038/nchembio.538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang J, Deng X, Choi HG et al (2012) Characterization of TAE684 as a potent LRRK2 kinase inhibitor. Bioorg Med Chem Lett 22:1864–1869. doi:10.1016/j.bmcl.2012.01.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vancraenenbroeck R, De Raeymaecker J, Lobbestael E et al (2014) In silico, in vitro and cellular analysis with a kinome-wide inhibitor panel correlates cellular LRRK2 dephosphorylation to inhibitor activity on LRRK2. Front Mol Neurosci 7:51. doi:10.3389/fnmol.2014.00051

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dzamko N, Chua G, Ranola M et al (2013) Measurement of LRRK2 and Ser910/935 phosphorylated LRRK2 in peripheral blood mononuclear cells from idiopathic Parkinson’s disease patients. J Parkinsons Dis 3:145–152. doi:10.3233/JPD-130174

    CAS  PubMed  Google Scholar 

  35. Chia R, Haddock S, Beilina A et al (2014) Phosphorylation of LRRK2 by casein kinase 1α regulates trans-Golgi clustering via differential interaction with ARHGEF7. Nat Commun 5:5827. doi:10.1038/ncomms6827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mamais A, Chia R, Beilina A et al (2014) Arsenite stress down-regulates phosphorylation and 14-3-3 binding of leucine-rich repeat kinase 2 (LRRK2), promoting self-association and cellular redistribution. J Biol Chem 289:21386–21400. doi:10.1074/jbc.M113.528463

    Article  PubMed  PubMed Central  Google Scholar 

  37. Moorhead GBG, Trinkle-Mulcahy L, Ulke-Lemee A (2007) Emerging roles of nuclear protein phosphatases. Nat Rev Mol Cell Biol 8:234–244. doi:10.1038/nrm2126

    Article  CAS  PubMed  Google Scholar 

  38. Virshup DM, Shenolikar S (2009) From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33:537–545. doi:10.1016/j.molcel.2009.02.015

    Article  CAS  PubMed  Google Scholar 

  39. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934. doi:10.1126/science.1075762

    Article  CAS  PubMed  Google Scholar 

  40. Kett LR, Boassa D, Ho CC-Y et al (2012) LRRK2 Parkinson disease mutations enhance its microtubule association. Hum Mol Genet 21:890–899. doi:10.1093/hmg/ddr526

    Article  CAS  PubMed  Google Scholar 

  41. Zhao J, Molitor TP, Langston JW, Nichols RJ (2015) LRRK2 dephosphorylation increases its ubiquitination. Biochem J 496:107–120. doi:10.1042/BJ20141305

    Article  Google Scholar 

  42. Henry AG, Aghamohammadzadeh S, Samaroo H et al (2015) Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. Hum Mol Genet 24(21):6013–6028. doi:10.1093/hmg/ddv314

    Article  CAS  PubMed  Google Scholar 

  43. De Munter S, Köhn M, Bollen M (2013) Challenges and opportunities in the development of protein phosphatase-directed therapeutics. ACS Chem Biol 8:36–45. doi:10.1021/cb300597g

    Article  PubMed  Google Scholar 

  44. Tsaytler P, Harding HP, Ron D, Bertolotti A (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332:91–94. doi:10.1126/science.1201396

    Article  CAS  PubMed  Google Scholar 

  45. Das I, Krzyzosiak A, Schneider K et al (2015) Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348:239–242. doi:10.1126/science.aaa4484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galter D, Westerlund M, Carmine A et al (2006) LRRK2 expression linked to dopamine-innervated areas. Ann Neurol 59:714–719. doi:10.1002/ana.20808

    Article  CAS  PubMed  Google Scholar 

  47. Taymans J, Van den Haute C, Baekelandt V (2006) Distribution of PINK1 and LRRK2 in rat and mouse brain. J Neurochem 98:951–961. doi:10.1111/j.1471-4159.2006.03919.x

    Article  CAS  PubMed  Google Scholar 

  48. Fraser KB, Moehle MS, Daher JPL et al (2013) LRRK2 secretion in exosomes is regulated by 14-3-3. Hum Mol Genet 22(24):4988–5000. doi:10.1093/hmg/ddt346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cho HJ, Liu G, Jin SM et al (2013) MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 22:608–620. doi:10.1093/hmg/dds470

    Article  CAS  PubMed  Google Scholar 

  50. Fraser KB, Moehle MS, Alcalay RN et al (2016) Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S LRRK2 carriers. Neurology 86(11):994–999. doi:10.1212/WNL.0000000000002436

Download references

Conflict of Interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Taymans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Taymans, JM. (2017). Regulation of LRRK2 by Phosphatases. In: Rideout, H. (eds) Leucine-Rich Repeat Kinase 2 (LRRK2). Advances in Neurobiology, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-49969-7_8

Download citation

Publish with us

Policies and ethics