Skip to main content

Stem Cell Regulation by Death Ligands and Their Use in Cell Therapy

  • Chapter
  • First Online:
TRAIL, Fas Ligand, TNF and TLR3 in Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 12))

Abstract

Stem cells are an essential to repair damaged tissues. Their functions, proliferation and differentiation need to be tightly controlled, as impairments can lead to various diseases including cancer. Induction of apoptosis is one way to control the number of stem cells and to eliminate rogue and/or precancerous cells. One way of triggering apoptosis, and probably the physiologically most important one, is via binding of death ligand to their cognate receptors. The death receptor–ligand family encompasses five pairs: FAS/FASL; TNF-R1/TNF; DR3/TL1A and TWEAK; DR4 and DR5/TRAIL; and DR6/unknown ligand. Of these, FASL and TRAIL and to a lesser extent TNF are strong inducers of apoptosis, whereas the others possess relative weak cell-death-inducing activity. Interestingly, these death receptors and ligands also have non-canonical functions and in specific cellular and molecular contexts can regulate cell proliferation, differentiation, chemokine production and inflammatory responses. Some of these non-apoptotic functions have been shown to be of relevance in stem and progenitor cells.

Stem cells have also been used as part of cell therapies in connection with delivery of death ligands to target their respective receptors, in particular in experimental anti-cancer therapies. Stem cells, at least some types, are attractive in these approaches because they are capable to infiltrate certain tissues including tumours to deliver their therapeutic payload. This way of cellular delivery can be more efficacious and specific compared to recombinant proteins or direct gene therapy.

This chapter summarises our current understanding of stem cell regulation by death receptor–ligand signalling and in the second part how certain types of stem cells have been used to deliver death-ligand gene therapies in the laboratory and increasingly in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23(6):1625–1637. doi:10.1096/fj.08-111005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268(15):10932–10937

    CAS  PubMed  Google Scholar 

  3. Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75(6):1169–1178

    Article  CAS  PubMed  Google Scholar 

  4. Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W, Debatin KM, Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245(4915):301–305

    Article  CAS  PubMed  Google Scholar 

  5. Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC, Mathison J, Ulevitch R, Cerami A (1985) Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316(6028):552–554

    Article  CAS  PubMed  Google Scholar 

  6. Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W (1990) Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61(2):351–359

    Article  CAS  PubMed  Google Scholar 

  7. Schall TJ, Lewis M, Koller KJ, Lee A, Rice GC, Wong GH, Gatanaga T, Granger GA, Lentz R, Raab H et al (1990) Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61(2):361–370

    Article  CAS  PubMed  Google Scholar 

  8. Chicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, Garcia I, Browning JL (1997) TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 272(51):32401–32410

    Article  CAS  PubMed  Google Scholar 

  9. Marsters SA, Sheridan JP, Donahue CJ, Pitti RM, Gray CL, Goddard AD, Bauer KD, Ashkenazi A (1996) Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B. Curr Biol 6(12):1669–1676

    Article  CAS  PubMed  Google Scholar 

  10. Wang EC (2012) On death receptor 3 and its ligands. Immunology 137(1):114–116. doi:10.1111/j.1365-2567.2012.03606.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16(17):5386–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997) The receptor for the cytotoxic ligand TRAIL. Science 276(5309):111–113

    Article  CAS  PubMed  Google Scholar 

  13. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3(6):673–682

    Article  CAS  PubMed  Google Scholar 

  14. Pan G, Bauer JH, Haridas V, Wang S, Liu D, Yu G, Vincenz C, Aggarwal BB, Ni J, Dixit VM (1998) Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett 431(3):351–356

    Article  CAS  PubMed  Google Scholar 

  15. Mohr A, Zwacka RM, Jarmy G, Buneker C, Schrezenmeier H, Dohner K, Beltinger C, Wiesneth M, Debatin KM, Stahnke K (2005) Caspase-8L expression protects CD34+ hematopoietic progenitor cells and leukemic cells from CD95-mediated apoptosis. Oncogene 24(14):2421–2429

    Article  CAS  PubMed  Google Scholar 

  16. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3(9):745–756

    Article  CAS  PubMed  Google Scholar 

  17. Bryder D, Ramsfjell V, Dybedal I, Theilgaard-Monch K, Hogerkorp CM, Adolfsson J, Borge OJ, Jacobsen SE (2001) Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation. J Exp Med 194(7):941–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dybedal I, Bryder D, Fossum A, Rusten LS, Jacobsen SE (2001) Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood 98(6):1782–1791

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Harada A, Bluethmann H, Wang JB, Nakao S, Mukaida N, Matsushima K (1995) Tumor necrosis factor (TNF) is a physiologic regulator of hematopoietic progenitor cells: increase of early hematopoietic progenitor cells in TNF receptor p55-deficient mice in vivo and potent inhibition of progenitor cell proliferation by TNF alpha in vitro. Blood 86(8):2930–2937

    Google Scholar 

  20. Mori T, Nishimura T, Ikeda Y, Hotta T, Yagita H, Ando K (1998) Involvement of Fas-mediated apoptosis in the hematopoietic progenitor cells of graft-versus-host reaction-associated myelosuppression. Blood 92(1):101–107

    CAS  PubMed  Google Scholar 

  21. Vinci G, Chouaib S, Autran B, Vernant JP (1991) Evidence that residual host cells surviving the conditioning regimen to allogeneic bone marrow transplantation inhibit donor hematopoiesis in vitro—the role of TNF-alpha. Transplantation 52(3):406–411

    Google Scholar 

  22. Richards M, Tan SP, Tan JH, Chan WK, Bongso A (2004) The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22(1):51–64. doi:10.1634/stemcells.22-1-51

    Article  CAS  PubMed  Google Scholar 

  23. Desbarats J, Newell MK (2000) Fas engagement accelerates liver regeneration after partial hepatectomy. Nat Med 6(8):920–923. doi:10.1038/78688

    Article  CAS  PubMed  Google Scholar 

  24. Corsini NS, Sancho-Martinez I, Laudenklos S, Glagow D, Kumar S, Letellier E, Koch P, Teodorczyk M, Kleber S, Klussmann S, Wiestler B, Brustle O, Mueller W, Gieffers C, Hill O, Thiemann M, Seedorf M, Gretz N, Sprengel R, Celikel T, Martin-Villalba A (2009) The death receptor CD95 activates adult neural stem cells for working memory formation and brain repair. Cell Stem Cell 5(2):178–190. doi:10.1016/j.stem.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  25. Ceppi P, Hadji A, Kohlhapp FJ, Pattanayak A, Hau A, Liu X, Liu H, Murmann AE, Peter ME (2014) CD95 and CD95L promote and protect cancer stem cells. Nat Commun 5:5238. doi:10.1038/ncomms6238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Teodorczyk M, Kleber S, Wollny D, Sefrin JP, Aykut B, Mateos A, Herhaus P, Sancho-Martinez I, Hill O, Gieffers C, Sykora J, Weichert W, Eisen C, Trumpp A, Sprick MR, Bergmann F, Welsch T, Martin-Villalba A (2015) CD95 promotes metastatic spread via Sck in pancreatic ductal adenocarcinoma. Cell Death Differ 22(7):1192–1202. doi:10.1038/cdd.2014.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li X, Ling W, Khan S, Yaccoby S (2012) Therapeutic effects of intrabone and systemic mesenchymal stem cell cytotherapy on myeloma bone disease and tumor growth. J Bone Miner Res 27(8):1635–1648. doi:10.1002/jbmr.1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li X, Ling W, Pennisi A, Wang Y, Khan S, Heidaran M, Pal A, Zhang X, He S, Zeitlin A, Abbot S, Faleck H, Hariri R, Shaughnessy JD Jr, van Rhee F, Nair B, Barlogie B, Epstein J, Yaccoby S (2011) Human placenta-derived adherent cells prevent bone loss, stimulate bone formation, and suppress growth of multiple myeloma in bone. Stem Cells 29(2):263–273. doi:10.1002/stem.572

    Article  PubMed  CAS  Google Scholar 

  29. Atsuta I, Liu S, Miura Y, Akiyama K, Chen C, An Y, Shi S, Chen FM (2013) Mesenchymal stem cells inhibit multiple myeloma cells via the Fas/Fas ligand pathway. Stem Cell Res Ther 4(5):111. doi:10.1186/scrt322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ming L, Jin F, Huang P, Luo H, Liu W, Zhang L, Yuan W, Zhang Y, Jin Y (2014) Licochalcone a up-regulates of FasL in mesenchymal stem cells to strengthen bone formation and increase bone mass. Sci Rep 4:7209. doi:10.1038/srep07209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rippo MR, Babini L, Prattichizzo F, Graciotti L, Fulgenzi G, Tomassoni Ardori F, Olivieri F, Borghetti G, Cinti S, Poloni A, Fazioli F, Procopio AD (2013) Low FasL levels promote proliferation of human bone marrow-derived mesenchymal stem cells, higher levels inhibit their differentiation into adipocytes. Cell Death Dis 4:e594. doi:10.1038/cddis.2013.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodrigues M, Blair H, Stockdale L, Griffith L, Wells A (2013) Surface tethered epidermal growth factor protects proliferating and differentiating multipotential stromal cells from FasL-induced apoptosis. Stem Cells 31(1):104–116. doi:10.1002/stem.1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tian Y, Wang J, Wang W, Ding Y, Sun Z, Zhang Q, Wang Y, Xie H, Yan S, Zheng S (2016) Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Res Ther 7(1):157. doi:10.1186/s13287-016-0416-y

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mizrahi K, Stein J, Pearl-Yafe M, Kaplan O, Yaniv I, Askenasy N (2010) Regulatory functions of TRAIL in hematopoietic progenitors: human umbilical cord blood and murine bone marrow transplantation. Leukemia 24(7):1325–1334. doi:10.1038/leu.2010.97

    Article  CAS  PubMed  Google Scholar 

  35. Tao W, Hangoc G, Hawes JW, Si Y, Cooper S, Broxmeyer HE (2003) Profiling of differentially expressed apoptosis-related genes by cDNA arrays in human cord blood CD34+ cells treated with etoposide. Exp Hematol 31(3):251–260

    Article  CAS  PubMed  Google Scholar 

  36. Zauli G, Secchiero P (2006) The role of the TRAIL/TRAIL receptors system in hematopoiesis and endothelial cell biology. Cytokine Growth Factor Rev 17(4):245–257. doi:10.1016/j.cytogfr.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  37. Fischer U, Ruckert C, Hubner B, Eckermann O, Binder V, Bakchoul T, Schuster FR, Merk S, Klein HU, Fuhrer M, Dugas M, Borkhardt A (2012) CD34+ gene expression profiling of individual children with very severe aplastic anemia indicates a pathogenic role of integrin receptors and the proapoptotic death ligand TRAIL. Haematologica 97(9):1304–1311. doi:10.3324/haematol.2011.056705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giovarelli M, Musiani P, Garotta G, Ebner R, Di Carlo E, Kim Y, Cappello P, Rigamonti L, Bernabei P, Novelli F, Modesti A, Coletti A, Ferrie AK, Lollini PL, Ruben S, Salcedo T, Forni G (1999) A “stealth effect”: adenocarcinoma cells engineered to express TRAIL elude tumor-specific and allogeneic T cell reactions. J Immunol 163(9):4886–4893

    Google Scholar 

  39. Grimm M, Kim M, Rosenwald A, von Raden BH, Tsaur I, Meier E, Heemann U, Germer CT, Gasser M, Waaga-Gasser AM (2010) Tumour-mediated TRAIL-receptor expression indicates effective apoptotic depletion of infiltrating CD8+ immune cells in clinical colorectal cancer. Eur J Cancer 46(12):2314–2323. doi:10.1016/j.ejca.2010.05.025

    Article  CAS  PubMed  Google Scholar 

  40. Shiraki K, Yamanaka T, Inoue H, Kawakita T, Enokimura N, Okano H, Sugimoto K, Murata K, Nakano T (2005) Expression of TNF-related apoptosis-inducing ligand in human hepatocellular carcinoma. Int J Oncol 26(5):1273–1281

    CAS  PubMed  Google Scholar 

  41. Zhao S, Asgary Z, Wang Y, Goodwin R, Andreeff M, Younes A (1999) Functional expression of TRAIL by lymphoid and myeloid tumour cells. Br J Haematol 106(3):827–832

    Article  CAS  PubMed  Google Scholar 

  42. Secchiero P, Melloni E, Heikinheimo M, Mannisto S, Di Pietro R, Iacone A, Zauli G (2004) TRAIL regulates normal erythroid maturation through an ERK-dependent pathway. Blood 103(2):517–522

    Article  CAS  PubMed  Google Scholar 

  43. Campioni D, Secchiero P, Corallini F, Melloni E, Capitani S, Lanza F, Zauli G (2005) Evidence for a role of TNF-related apoptosis-inducing ligand (TRAIL) in the anemia of myelodysplastic syndromes. Am J Pathol 166(2):557–563. doi:10.1016/S0002-9440(10)62277-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pigullo S, Ferretti E, Lanciotti M, Bruschi M, Candiano G, Svahn J, Haneline L, Dufour C, Pistoia V, Corcione A (2007) Human Fanconi a cells are susceptible to TRAIL-induced apoptosis. Br J Haematol 136(2):315–318. doi:10.1111/j.1365-2141.2006.06432.x

    Article  CAS  PubMed  Google Scholar 

  45. Schmidt U, van den Akker E, Parren-van Amelsvoort M, Litos G, de Bruijn M, Gutierrez L, Hendriks RW, Ellmeier W, Lowenberg B, Beug H, von Lindern M (2004) Btk is required for an efficient response to erythropoietin and for SCF-controlled protection against TRAIL in erythroid progenitors. J Exp Med 199(6):785–795. doi:10.1084/jem.20031109. jem.20031109 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H, Sarosiek K, Wang L, Stewart C, Fan J, Hoellenriegel J, Sivina M, Dubuc AM, Fraser C, Han Y, Li S, Livak KJ, Zou L, Wan Y, Konoplev S, Sougnez C, Brown JR, Abruzzo LV, Carter SL, Keating MJ, Davids MS, Wierda WG, Cibulskis K, Zenz T, Werner L, Dal Cin P, Kharchencko P, Neuberg D, Kantarjian H, Lander E, Gabriel S, O’Brien S, Letai A, Weitz DA, Nowak MA, Getz G, Wu CJ (2016) Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun 7:11589. doi:10.1038/ncomms11589

  47. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5(2):157–163

    Google Scholar 

  48. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  49. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  50. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49. doi:10.1038/nature00870. nature00870 [pii]

    Article  CAS  PubMed  Google Scholar 

  51. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705. doi:10.1038/35070587. 35070587 [pii]

    Article  CAS  PubMed  Google Scholar 

  52. Prockop DJ (2017) The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy 19(1):1–8. doi:10.1016/j.jcyt.2016.09.008

    Article  PubMed  Google Scholar 

  53. Roelants V, Labar D, de Meester C, Havaux X, Tabilio A, Gambhir SS, Di Ianni M, Bol A, Bertrand L, Vanoverschelde JL (2008) Comparison between adenoviral and retroviral vectors for the transduction of the thymidine kinase PET reporter gene in rat mesenchymal stem cells. J Nucl Med 49(11):1836–1844. doi:10.2967/jnumed.108.052175. 49/11/1836 [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Rasmusson I (2006) Immune modulation by mesenchymal stem cells. Exp Cell Res 312(12):2169–2179. doi:10.1016/j.yexcr.2006.03.019. S0014-4827(06)00122-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  55. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11–20. doi:1176 [pii]

    Article  PubMed  Google Scholar 

  56. Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 13(3):263–271. doi:10.1089/154732804323099190

    Article  CAS  PubMed  Google Scholar 

  57. Chen X, Armstrong MA, Li G (2006) Mesenchymal stem cells in immunoregulation. Immunol Cell Biol 84(5):413–421. doi:10.1111/j.1440-1711.2006.01458.x. ICB1458 [pii]

    Article  CAS  PubMed  Google Scholar 

  58. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347. doi:10.1002/jcp.21200

    Article  CAS  PubMed  Google Scholar 

  59. Momin EN, Vela G, Zaidi HA, Quinones-Hinojosa A (2010) The oncogenic potential of Mesenchymal stem cells in the treatment of cancer: directions for future research. Curr Immunol Rev 6(2):137–148. doi:10.2174/157339510791111718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mao W, Zhu X, Tang D, Zhao Y, Zhao B, Ma G, Zhang X, An G, Li Y (2012) TNF-alpha expression in the UCB-MSCs as stable source inhibits gastric cancers growth in nude mice. Cancer Invest 30(6):463–472. doi:10.3109/07357907.2012.675385

    Article  CAS  PubMed  Google Scholar 

  61. Roberts NJ, Zhou S, Diaz LA Jr, Holdhoff M (2011) Systemic use of tumor necrosis factor alpha as an anticancer agent. Oncotarget 2(10):739–751. doi:10.18632/oncotarget.344

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yu P, Fu YX (2008) Targeting tumors with LIGHT to generate metastasis-clearing immunity. Cytokine Growth Factor Rev 19(3–4):285–294. doi:10.1016/j.cytogfr.2008.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ward-Kavanagh LK, Lin WW, Sedy JR, Ware CF (2016) The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity 44(5):1005–1019. doi:10.1016/j.immuni.2016.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zou W, Zheng H, He TC, Chang J, Fu YX, Fan W (2012) LIGHT delivery to tumors by mesenchymal stem cells mobilizes an effective antitumor immune response. Cancer Res 72(12):2980–2989. doi:10.1158/0008-5472.CAN-11-4216. 0008-5472.CAN-11-4216 [pii]

    Article  CAS  PubMed  Google Scholar 

  65. Zhu X, Su D, Xuan S, Ma G, Dai Z, Liu T, Tang D, Mao W, Dong C (2012) Gene therapy of gastric cancer using LIGHT-secreting human umbilical cord blood-derived mesenchymal stem cells. Gastric Cancer. doi:10.1007/s10120-012-0166-1

    Google Scholar 

  66. Gonzalvez F, Ashkenazi A (2010) New insights into apoptosis signaling by Apo2L/TRAIL. Oncogene 29(34):4752–4765. doi:10.1038/onc.2010.221

    Article  CAS  PubMed  Google Scholar 

  67. Ashkenazi A (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 7(12):1001–1012. doi:10.1038/nrd2637. nrd2637 [pii]

    Article  CAS  PubMed  Google Scholar 

  68. Zhang L, Gu J, Lin T, Huang X, Roth JA, Fang B (2002) Mechanisms involved in development of resistance to adenovirus-mediated proapoptotic gene therapy in DLD1 human colon cancer cell line. Gene Ther 9(18):1262–1270

    Article  CAS  PubMed  Google Scholar 

  69. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104(2):155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mohr A, Lyons M, Deedigan L, Harte T, Shaw G, Howard L, Barry F, O'Brien T, Zwacka R (2008) Mesenchymal stem cells expressing TRAIL lead to tumour growth inhibition in an experimental lung cancer model. J Cell Mol Med 12(6B):2628–2643. doi:10.1111/j.1582-4934.2008.00317.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim SM, Lim JY, Park SI, Jeong CH, Oh JH, Jeong M, Oh W, Park SH, Sung YC, Jeun SS (2008) Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 68(23):9614–9623. doi:10.1158/0008-5472.CAN-08-0451

    Article  CAS  PubMed  Google Scholar 

  72. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, Figueiredo JL, Martuza RL, Weissleder R, Shah K (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 106(12):4822–4827. doi:10.1073/pnas.0806647106. 0806647106 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Loebinger MR, Eddaoudi A, Davies D, Janes SM (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69(10):4134–4142. doi:10.1158/0008-5472.CAN-08-4698. 0008-5472.CAN-08-4698 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang B, Wu X, Mao Y, Bao W, Gao L, Zhou P, Xie R, Zhou L, Zhu J (2009) Dual-targeted antitumor effects against brainstem glioma by intravenous delivery of tumor necrosis factor-related, apoptosis-inducing, ligand-engineered human mesenchymal stem cells. Neurosurgery 65 (3):610–624.; discussion 624. doi:10.1227/01.NEU.0000350227.61132.A7

    Article  PubMed  Google Scholar 

  75. Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, De Santis G, Spano C, Tagliazzucchi M, Barti-Juhasz H, Scarabelli L, Bambi F, Frassoldati A, Rossi G, Casali C, Morandi U, Horwitz EM, Paolucci P, Conte P, Dominici M (2010) Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 70(9):3718–3729. doi:10.1158/0008-5472.CAN-09-1865. 0008-5472.CAN-09-1865 [pii]

    Article  CAS  PubMed  Google Scholar 

  76. Mohr A, Albarenque SM, Deedigan L, Yu R, Reidy M, Fulda S, Zwacka RM (2010) Targeting of XIAP combined with systemic mesenchymal stem cell-mediated delivery of sTRAIL ligand inhibits metastatic growth of pancreatic carcinoma cells. Stem Cells 28(11):2109–2120

    Article  CAS  PubMed  Google Scholar 

  77. Kim SM, Oh JH, Park SA, Ryu CH, Lim JY, Kim DS, Chang JW, Oh W, Jeun SS (2010) Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells 28(12):2217–2228. doi:10.1002/stem.543

    Article  PubMed  Google Scholar 

  78. Mueller LP, Luetzkendorf J, Widder M, Nerger K, Caysa H, Mueller T (2011) TRAIL-transduced multipotent mesenchymal stromal cells (TRAIL-MSC) overcome TRAIL resistance in selected CRC cell lines in vitro and in vivo. Cancer Gene Ther 18(4):229–239. doi:10.1038/cgt.2010.68. cgt201068 [pii]

  79. Ciavarella S, Grisendi G, Dominici M, Tucci M, Brunetti O, Dammacco F, Silvestris F (2012) In vitro anti-myeloma activity of TRAIL-expressing adipose-derived mesenchymal stem cells. Br J Haematol 157(5):586–598. doi:10.1111/j.1365-2141.2012.09082.x

    Article  CAS  PubMed  Google Scholar 

  80. Moniri MR, Sun XY, Rayat J, Dai D, Ao Z, He Z, Verchere CB, Dai LJ, Warnock GL (2012) TRAIL-engineered pancreas-derived mesenchymal stem cells: characterization and cytotoxic effects on pancreatic cancer cells. Cancer Gene Ther 19(9):652–658. doi:10.1038/cgt.2012.46. cgt201246 [pii]

    Article  CAS  PubMed  Google Scholar 

  81. Kim SM, Woo JS, Jeong CH, Ryu CH, Lim JY, Jeun SS (2012) Effective combination therapy for malignant glioma with TRAIL-secreting mesenchymal stem cells and lipoxygenase inhibitor MK886. Cancer Res 72(18):4807–4817. doi:10.1158/0008-5472.CAN-12-0123. 0008-5472.CAN-12-0123 [pii]

    Article  CAS  PubMed  Google Scholar 

  82. Kim CY, Jeong M, Mushiake H, Kim BM, Kim WB, Ko JP, Kim MH, Kim M, Kim TH, Robbins PD, Billiar TR, Seol DW (2006) Cancer gene therapy using a novel secretable trimeric TRAIL. Gene Ther 13(4):330–338

    Article  CAS  PubMed  Google Scholar 

  83. Kim MH, Billiar TR, Seol DW (2004) The secretable form of trimeric TRAIL, a potent inducer of apoptosis. Biochem Biophys Res Commun 321(4):930–935. doi:10.1016/j.bbrc.2004.07.046

    Article  CAS  PubMed  Google Scholar 

  84. Yu R, Deedigan L, Albarenque SM, Mohr A, Zwacka RM (2013) Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects. Cell Death Dis 4:e503. doi:10.1038/cddis.2013.19. cddis201319 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Menon LG, Kelly K, Yang HW, Kim SK, Black PM, Carroll RS (2009) Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 27(9):2320–2330. doi:10.1002/stem.136

    Article  CAS  PubMed  Google Scholar 

  86. van der Sloot AM, Tur V, Szegezdi E, Mullally MM, Cool RH, Samali A, Serrano L, Quax WJ (2006) Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. Proc Natl Acad Sci U S A 103(23):8634–8639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kelley RF, Totpal K, Lindstrom SH, Mathieu M, Billeci K, DeForge L, Pai R, Hymowitz SG, Ashkenazi A (2005) Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. J Biol Chem 280(3):2205–2212

    Article  CAS  PubMed  Google Scholar 

  88. MacFarlane M, Kohlhaas SL, Sutcliffe MJ, Dyer MJ, Cohen GM (2005) TRAIL receptor-selective mutants signal to apoptosis via TRAIL-R1 in primary lymphoid malignancies. Cancer Res 65(24):11265–11270

    Google Scholar 

  89. Tur V, van der Sloot AM, Reis CR, Szegezdi E, Cool RH, Samali A, Serrano L, Quax WJ (2008) DR4-selective tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) variants obtained by structure-based design. J Biol Chem 283(29):20560–20568

    Article  CAS  PubMed  Google Scholar 

  90. Duiker EW, de Vries EG, Mahalingam D, Meersma GJ, Boersma-van Ek W, Hollema H, Lub-de Hooge MN, van Dam GM, Cool RH, Quax WJ, Samali A, van der Zee AG, de Jong S (2009) Enhanced antitumor efficacy of a DR5-specific TRAIL variant over recombinant human TRAIL in a bioluminescent ovarian cancer xenograft model. Clin Cancer Res 15(6):2048–2057

    Article  CAS  PubMed  Google Scholar 

  91. Reis CR, van der Sloot AM, Natoni A, Szegezdi E, Setroikromo R, Meijer M, Sjollema K, Stricher F, Cool RH, Samali A, Serrano L, Quax WJ (2010) Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants. Cell Death Dis 1:e83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Szegezdi E, Reis CR, van der Sloot AM, Natoni A, O'Reilly A, Reeve J, Cool RH, O'Dwyer M, Knapper S, Serrano L, Quax WJ, Samali A (2011) Targeting AML through DR4 with a novel variant of rhTRAIL. J Cell Mol Med 15(10):2216–2231. doi:10.1111/j.1582-4934.2010.01211.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. van Geelen CM, Pennarun B, Le PT, de Vries EG, de Jong S (2011) Modulation of TRAIL resistance in colon carcinoma cells: different contributions of DR4 and DR5. BMC Cancer 11:39. doi:10.1186/1471-2407-11-39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yu R, Albarenque SM, Cool RH, Quax WJ, Mohr A, Zwacka RM (2014) DR4 specific TRAIL variants are more efficacious than wild-type TRAIL in pancreatic cancer. Cancer Biol Ther 15(12):1658–1666. doi:10.4161/15384047.2014.972183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kurbanov BM, Fecker LF, Geilen CC, Sterry W, Eberle J (2007) Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-kappaB but is related to downregulation of initiator caspases and DR4. Oncogene 26(23):3364–3377

    Article  CAS  PubMed  Google Scholar 

  96. Dyer MJ, MacFarlane M, Cohen GM (2007) Barriers to effective TRAIL-targeted therapy of malignancy. J Clin Oncol 25(28):4505–4506. doi:10.1200/JCO.2007.13.1011. 25/28/4505 [pii]

    Article  PubMed  Google Scholar 

  97. Kim SW, Kim SJ, Park SH, Yang HG, Kang MC, Choi YW, Kim SM, Jeun SS, Sung YC (2013) Complete regression of metastatic renal cell carcinoma by multiple injections of engineered Mesenchymal stem cells expressing Dodecameric TRAIL and HSV-TK. Clin Cancer Res 19(2):415–427. doi:10.1158/1078-0432.CCR-12-1568. 1078-0432.CCR-12-1568 [pii]

    Article  CAS  PubMed  Google Scholar 

  98. Nesterenko I, Wanningen S, Bagci-Onder T, Anderegg M, Shah K (2012) Evaluating the effect of therapeutic stem cells on TRAIL resistant and sensitive medulloblastomas. PLoS One 7(11):e49219. doi:10.1371/journal.pone.0049219. PONE-D-12-07471 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S (1999) Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 59(3):734–741

    CAS  PubMed  Google Scholar 

  100. Gibson SB, Oyer R, Spalding AC, Anderson SM, Johnson GL (2000) Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol 20(1):205–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu XX, Kakehi Y, Mizutani Y, Nishiyama H, Kamoto T, Megumi Y, Ito N, Ogawa O (2003) Enhancement of TRAIL/Apo2L-mediated apoptosis by adriamycin through inducing DR4 and DR5 in renal cell carcinoma cells. Int J Cancer 104(4):409–417. doi:10.1002/ijc.10948

  102. Cheung HH, Mahoney DJ, Lacasse EC, Korneluk RG (2009) Down-regulation of c-FLIP enhances death of cancer cells by smac mimetic compound. Cancer Res 69(19):7729–7738. doi:10.1158/0008-5472.CAN-09-1794

    Article  CAS  PubMed  Google Scholar 

  103. Ge R, Wang Z, Zeng Q, Xu X, Olumi AF (2011) F-box protein 10, an NF-kappaB-dependent anti-apoptotic protein, regulates TRAIL-induced apoptosis through modulating c-Fos/c-FLIP pathway. Cell Death Differ 18(7):1184–1195. doi:10.1038/cdd.2010.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ray S, Almasan A (2003) Apoptosis induction in prostate cancer cells and xenografts by combined treatment with Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand and CPT-11. Cancer Res 63(15):4713–4723

    CAS  PubMed  Google Scholar 

  105. Yin D, Zhou H, Kumagai T, Liu G, Ong JM, Black KL, Koeffler HP (2005) Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene 24(3):344–354. doi:10.1038/sj.onc.1208225. 1208225 [pii]

    Article  CAS  PubMed  Google Scholar 

  106. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15(4):1126–1132. doi:10.1158/1078-0432.CCR-08-0144. 15/4/1126 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A 97(13):7124–7129. doi:97/13/7124 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sinicrope FA, Penington RC, Tang XM (2004) Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis is inhibited by Bcl-2 but restored by the small molecule Bcl-2 inhibitor, HA 14-1, in human colon cancer cells. Clin Cancer Res 10(24):8284–8292. doi:10.1158/1078-0432.CCR-04-1289. 10/24/8284 [pii]

    Article  CAS  PubMed  Google Scholar 

  109. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681

    Article  CAS  PubMed  Google Scholar 

  110. Cristofanon S, Fulda S (2012) ABT-737 promotes tBid mitochondrial accumulation to enhance TRAIL-induced apoptosis in glioblastoma cells. Cell Death Dis 3:e432. doi:10.1038/cddis.2012.163. cddis2012163 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huang S, Sinicrope FA (2008) BH3 mimetic ABT-737 potentiates TRAIL-mediated apoptotic signaling by unsequestering Bim and Bak in human pancreatic cancer cells. Cancer Res 68(8):2944–2951. doi:10.1158/0008-5472.CAN-07-2508. 68/8/2944 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Song JH, Kandasamy K, Kraft AS (2008) ABT-737 induces expression of the death receptor 5 and sensitizes human cancer cells to TRAIL-induced apoptosis. J Biol Chem 283(36):25003–25013. doi:10.1074/jbc.M802511200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bockbrader KM, Tan M, Sun Y (2005) A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene 24(49):7381–7388. doi:10.1038/sj.onc.1208888

    Article  CAS  PubMed  Google Scholar 

  114. Guo F, Nimmanapalli R, Paranawithana S, Wittman S, Griffin D, Bali P, O'Bryan E, Fumero C, Wang HG, Bhalla K (2002) Ectopic overexpression of second mitochondria-derived activator of caspases (Smac/DIABLO) or cotreatment with N-terminus of Smac/DIABLO peptide potentiates epothilone B derivative-(BMS 247550) and Apo-2L/TRAIL-induced apoptosis. Blood 99(9):3419–3426

    Article  CAS  PubMed  Google Scholar 

  115. Braeuer SJ, Buneker C, Mohr A, Zwacka RM (2006) Constitutively activated nuclear factor-kappaB, but not induced NF-kappaB, leads to TRAIL resistance by up-regulation of X-linked inhibitor of apoptosis protein in human cancer cells. Mol Cancer Res 4(10):715–728. doi:10.1158/1541-7786.MCR-05-0231

    Article  CAS  PubMed  Google Scholar 

  116. Vogler M, Walczak H, Stadel D, Haas TL, Genze F, Jovanovic M, Bhanot U, Hasel C, Moller P, Gschwend JE, Simmet T, Debatin KM, Fulda S (2009) Small molecule XIAP inhibitors enhance TRAIL-induced apoptosis and antitumor activity in preclinical models of pancreatic carcinoma. Cancer Res 69(6):2425–2434

    Article  CAS  PubMed  Google Scholar 

  117. Stadel D, Mohr A, Ref C, MacFarlane M, Zhou S, Humphreys R, Bachem M, Cohen G, Moller P, Zwacka RM, Debatin KM, Fulda S (2010) TRAIL-induced apoptosis is preferentially mediated via TRAIL receptor 1 in pancreatic carcinoma cells and profoundly enhanced by XIAP inhibitors. Clin Cancer Res 16(23):5734–5749. doi:10.1158/1078-0432.CCR-10-0985. 1078-0432.CCR-10-0985 [pii]

  118. Fulda S, Wick W, Weller M, Debatin KM (2002) Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8(8):808–815

    Google Scholar 

  119. Fingas CD, Blechacz BR, Smoot RL, Guicciardi ME, Mott J, Bronk SF, Werneburg NW, Sirica AE, Gores GJ (2010) A smac mimetic reduces TNF related apoptosis inducing ligand (TRAIL)-induced invasion and metastasis of cholangiocarcinoma cells. Hepatology 52(2):550–561. doi:10.1002/hep.23729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fulda S, Debatin KM (2004) Modulation of TRAIL signaling for cancer therapy. Vitam Horm 67:275–290. doi:10.1016/S0083-6729(04)67015-4. S0083672904670154 [pii]

    Article  CAS  PubMed  Google Scholar 

  121. Khanbolooki S, Nawrocki ST, Arumugam T, Andtbacka R, Pino MS, Kurzrock R, Logsdon CD, Abbruzzese JL, McConkey DJ (2006) Nuclear factor-kappaB maintains TRAIL resistance in human pancreatic cancer cells. Mol Cancer Ther 5(9):2251–2260. doi:10.1158/1535-7163.MCT-06-0075. 5/9/2251 [pii]

    Article  CAS  PubMed  Google Scholar 

  122. Romagnoli M, Desplanques G, Maiga S, Legouill S, Dreano M, Bataille R, Barille-Nion S (2007) Canonical nuclear factor kappaB pathway inhibition blocks myeloma cell growth and induces apoptosis in strong synergy with TRAIL. Clin Cancer Res 13(20):6010–6018. doi:10.1158/1078-0432.CCR-07-0140. 13/20/6010 [pii]

    Article  CAS  PubMed  Google Scholar 

  123. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71. doi:009.001.07 [pii]

    Article  CAS  PubMed  Google Scholar 

  124. Secchiero P, Gonelli A, Carnevale E, Milani D, Pandolfi A, Zella D, Zauli G (2003) TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation 107(17):2250–2256

    Article  PubMed  Google Scholar 

  125. Tazzari PL, Tabellini G, Ricci F, Papa V, Bortul R, Chiarini F, Evangelisti C, Martinelli G, Bontadini A, Cocco L, McCubrey JA, Martelli AM (2008) Synergistic proapoptotic activity of recombinant TRAIL plus the Akt inhibitor Perifosine in acute myelogenous leukemia cells. Cancer Res 68(22):9394–9403. doi:10.1158/0008-5472.CAN-08-2815. 68/22/9394 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Dieterle A, Orth R, Daubrawa M, Grotemeier A, Alers S, Ullrich S, Lammers R, Wesselborg S, Stork B (2009) The Akt inhibitor triciribine sensitizes prostate carcinoma cells to TRAIL-induced apoptosis. Int J Cancer 125(4):932–941. doi:10.1002/ijc.24374

    Article  CAS  PubMed  Google Scholar 

  127. Ricci MS, Kim SH, Ogi K, Plastaras JP, Ling J, Wang W, Jin Z, Liu YY, Dicker DT, Chiao PJ, Flaherty KT, Smith CD, El-Deiry WS (2007) Reduction of TRAIL-induced mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 12(1):66–80

    Article  CAS  PubMed  Google Scholar 

  128. Kruyt FA (2008) TRAIL and cancer therapy. Cancer Lett 263(1):14–25. doi:10.1016/j.canlet.2008.02.003. S0304-3835(08)00084-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  129. Rosato RR, Almenara JA, Dai Y, Grant S (2003) Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2(12):1273–1284

    CAS  PubMed  Google Scholar 

  130. Zopf S, Neureiter D, Bouralexis S, Abt T, Glaser KB, Okamoto K, Ganslmayer M, Hahn EG, Herold C, Ocker M (2007) Differential response of p53 and p21 on HDAC inhibitor-mediated apoptosis in HCT116 colon cancer cells in vitro and in vivo. Int J Oncol 31(6):1391–1402

    Google Scholar 

  131. Song K, Benhaga N, Anderson RL, Khosravi-Far R (2006) Transduction of tumor necrosis factor-related apoptosis-inducing ligand into hematopoietic cells leads to inhibition of syngeneic tumor growth in vivo. Cancer Res 66(12):6304–6311

    Google Scholar 

  132. Uzzaman M, Keller G, Germano IM (2009) In vivo gene delivery by embryonic-stem-cell-derived astrocytes for malignant gliomas. Neuro Oncol 11(2):102–108. doi:10.1215/15228517-2008-056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sabapathy V, Kumar S (2016) hiPSC-derived iMSCs: NextGen MSCs as an advanced therapeutically active cell resource for regenerative medicine. J Cell Mol Med 20(8):1571–1588. doi:10.1111/jcmm.12839

    Article  PubMed  PubMed Central  Google Scholar 

  134. Zhao Q, Gregory CA, Lee RH, Reger RL, Qin L, Hai B, Park MS, Yoon N, Clough B, McNeill E, Prockop DJ, Liu F (2015) MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs. Proc Natl Acad Sci U S A 112(2):530–535. doi:10.1073/pnas.1423008112

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Mohr or Ralf Zwacka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mohr, A., Zwacka, R. (2017). Stem Cell Regulation by Death Ligands and Their Use in Cell Therapy. In: Micheau, O. (eds) TRAIL, Fas Ligand, TNF and TLR3 in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-56805-8_6

Download citation

Publish with us

Policies and ethics