Skip to main content

Bone Material Quality

  • Chapter
  • First Online:
Principles of Bone and Joint Research

Abstract

One important role of our skeleton is to fulfil mechanical functions and therefore be the mechanical support of our body enabling complex movement and locomotion as well as safety housing for sensitive organs. In this book chapter, you will learn about the characteristics of the bone material and their role for the mechanical performance of the bone at organ level. First, we give an overview of the hierarchical organization of the bone, the heterogeneity of bone material structure and the composition from microscale to nanoscale. Second, we describe important technical terms related to bone deformation; we present bone material quality parameters and discuss their role in bone deformation. Third, we briefly explain the most important current techniques for the characterization of the bone material quality light and electron microscopy methods, X-ray scattering and fluorescence, vibrational spectroscopic techniques, etc. Forth, we present material characteristics in clinical examples of bone fragility including postmenopausal osteoporosis and treatment and osteogenesis imperfecta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscope

AGEs:

Advanced glycation end products

BMD:

Bone mineral density

BMDD:

Bone mineralization density distribution

BSU:

Bone structural unit

CLSM:

Confocal laser scanning microscopy

ERF:

X-ray fluorescence induced by electrons

FTIR:

Fourier transform infrared

OI:

Osteogenesis imperfecta

OLCN:

Osteocyte lacunar-canalicular network

qBEI:

Quantitative backscattered electron imaging

qMR:

Quantitative microradiography

RM:

Raman microspectroscopy

SAM:

Scanning acoustic microscopy

SR-XRF:

X-ray at the synchrotron

SRμCT:

Synchrotron radiation microtomography

sSAXS:

Scanning small-angle X-ray scattering

sWAXS:

Scanning wide-angle X-ray scattering

TEM:

Transmission electron microscopy

References

  1. Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. 2007;52:1263–334.

    Article  CAS  Google Scholar 

  2. Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem. 2004;14:2115–23.

    Article  CAS  Google Scholar 

  3. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB. Aging of microstructural compartments in human compact bone. J Bone Miner Res. 2003;18:1012–9.

    Article  CAS  PubMed  Google Scholar 

  4. Fuchs RK, Allen MR, Ruppel ME, Diab T, Phipps RJ, Miller LM, Burr DB. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Matrix Biol. 2008;27:34–41.

    Article  CAS  PubMed  Google Scholar 

  5. Kerschnitzki M, Wagermaier W, Roschger P, Seto J, Shahar R, Duda GN, Mundlos S, Fratzl P. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol. 2011;173(2):303–11.

    Article  CAS  PubMed  Google Scholar 

  6. Dong P, Haupert S, Hesse B, Langer M, Gouttenoire P, Bousson V, Peyrin F. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bone. 2014;60:172–85.

    Article  PubMed  Google Scholar 

  7. Ebacher V, Guy P, Oxland TR, Wang R. Sub-lamellar microcracking and roles of canaliculi in human cortical bone. Acta Biomater. 2012;8:1093–100.

    Article  PubMed  Google Scholar 

  8. Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–50.

    Article  CAS  PubMed  Google Scholar 

  9. Gupta HS, Seto J, Wagermaier W, Zaslansky P, Boesecke P, Fratzl P. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci U S A. 2006;103(47):17741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P. Spiral twisting of fiber orientation inside bone lamellae. Biointerphases. 2006;1:1–5.

    Article  CAS  PubMed  Google Scholar 

  11. Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett. 1986;206:262–6.

    Article  CAS  PubMed  Google Scholar 

  12. Hodge AJ, Petruska JA. Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In: Ramachandran GN, editor. Aspects of protein structure. New York: Academic Press; 1963. p. 289–300.

    Google Scholar 

  13. Arsenault AL, Grynpas MD. Crystals in calcified cartilage and cortical bone of the rat. Calcif Tissue Int. 1988;43:219–25.

    Article  CAS  PubMed  Google Scholar 

  14. Fratzl P, Groschner M, Vogl G, Plenk H, Eschberger J, Fratzl-Zelman N, Koller K, Klaushofer K. Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res. 1992;9:1651–5.

    Google Scholar 

  15. Landis WJ, Silver FH. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs. 2009;189:20–4.

    Article  CAS  PubMed  Google Scholar 

  16. Boskey AL. Matrix proteins and mineralization: an overview. Connect Tissue Res. 1996;35:357–63.

    Article  CAS  PubMed  Google Scholar 

  17. Glimcher MJ. The nature of the mineral component of bone and the mechanism of calcification. Instr Course Lect. 1987;36:49–69.

    CAS  PubMed  Google Scholar 

  18. Paschalis EP, Mendelsohn R, Boskey AL. Infrared assessment of bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2170–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharir A, Barak MM, Shahar R. Whole bone mechanics and mechanical testing. Veter J. 2008;177:8–17.

    Article  Google Scholar 

  20. Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969;2:1–11.

    Article  CAS  PubMed  Google Scholar 

  21. Landis WJ, Librizzi JJ, Dunn MG, Silver FH. A study of the relationship between mineral content and mechanical properties of turkey gastrocnemius tendon. J Bone Miner Res. 1995;10:859–67.

    Article  CAS  PubMed  Google Scholar 

  22. Turner CH. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int. 2002;13(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  23. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42:456–66.

    Article  CAS  PubMed  Google Scholar 

  24. Jäger I, Fratzl P. Mineralized collagen fibrils – a mechanical model with a staggered arrangement of mineral particles. Biophys J. 2000;79:1737–46.

    Google Scholar 

  25. Misof K, Landis WJ, Klaushofer K, Fratzl P. Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J Clin Invest. 1997;100:40–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone. 1998;22:181–7.

    Article  CAS  PubMed  Google Scholar 

  27. Karim L, Vashishth D. Heterogeneous glycation of cancellous bone and its association with bone quality and fragility. PLoS One. 2012;7:e35047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.

    Article  CAS  PubMed  Google Scholar 

  29. Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL. Bone fragility and collagen cross-links. J Bone Miner Res. 2004;19:2000–4.

    Google Scholar 

  30. Garnero P. The contribution of collagen crosslinks to bone strength. Bonekey Rep. 2012;1:182.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K. Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle x-ray-scattering study. J Bone Miner Res. 1994;9:1541–9.

    Article  CAS  PubMed  Google Scholar 

  32. Nalla RK, Kruzic JJ, Ritchie RO. On the origin of the toughness of mineralized tissue: microcracking or crack bridging? Bone. 2004;34:790–8.

    Article  CAS  PubMed  Google Scholar 

  33. Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater. 2006;5:52–5.

    Article  CAS  PubMed  Google Scholar 

  34. Fratzl-Zelman N, Valenta A, Roschger P, Nader A, Gelb BD, Fratzl P, Klaushofer K. Decreased bone turnover and deterioration of bone structure in two cases of pycnodysostosis. J Clin Endocrinol Metab. 2004;89:1538–47.

    Article  CAS  PubMed  Google Scholar 

  35. Koester KJ, Ager JW 3rd, Ritchie RO. The true toughness of human cortical bone measured with realistically short cracks. Nat Mater. 2008;7(8):672–7.

    Article  CAS  PubMed  Google Scholar 

  36. Fratzl P. Bone fracture: when the cracks begin to show. Nat Mater. 2008;7(8):610–2.

    Article  CAS  PubMed  Google Scholar 

  37. Yao H, Dao M, Carnelli D, Tai K, Ortiz C. Size-dependent heterogeneity benefits the mechanical performance of bone. J Mech Phys Solids. 2011;59:64–74.

    Article  Google Scholar 

  38. Tai K, Dao M, Suresh S, Plazoglu A, Ortiz C. Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater. 2007;6:454–62.

    Article  CAS  PubMed  Google Scholar 

  39. Chapurlat RD, Delmas PD. Bone microdamage: a clinical perspective. Osteoporos Int. 2009;20:1299–308.

    Article  CAS  PubMed  Google Scholar 

  40. Misof B, Roschger P, Fratzl P. Imaging mineralized tissues in vertebrates. In: Ducheyne P, Healy KE, Hutmacher DW, Grainger DW, Kirkpatrick CJ, editors. Comprehensive biomaterials, vol. 3. Amsterdam: Elsevier; 2011. p. 407–26.

    Chapter  Google Scholar 

  41. Gamsjaeger S, Mendelsohn R, Boskey A, Gourion-Arsiquaud S, Klaushofer K, Paschalis EP. Vibrational spectroscopic imaging for the evaluation of matrix and mineral chemistry. Curr Osteoporos Rep. 2014;12(4):454–64. doi:10.1007/s11914-014-0238-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gamsjaeger S, Mendelsohn R, Klaushofer K, Paschalis EP. Vibrational spectroscopic imaging of hard tissues. In: Salzer R, Siesler HW, editors. Infrared and Raman spectroscopic imaging. Weinheim: Wiley-VCH; 2014.

    Google Scholar 

  43. Paschalis EP, Fratzl P, Gamsjaeger S, Hassler N, Brozek W, Eriksen EF, Rauch F, Glorieux FH, Shane E, Dempster D, Cohen A, Recker R, Klaushofer K. Aging versus postmenopausal osteoporosis: bone composition and maturation kinetics at actively-forming trabecular surfaces of female subjects aged 1 to 84 years. J Bone Miner Res. 2016;31:347–57.

    Article  CAS  PubMed  Google Scholar 

  44. Montagner F, Kaftandjian V, Farlay D, Brau D, Boivin G, Follet H. Validation of a novel microradiography device for characterization of bone mineralization. J Xray Sci Technol. 2015;23:201–11.

    CAS  PubMed  Google Scholar 

  45. Fratzl P. Imaging techniques: extra dimension for bone analysis. Nature. 2015;527:308–9.

    Article  CAS  PubMed  Google Scholar 

  46. Roschger A, Hofstaetter JG, Pemmer B, Zoeger N, Wobrauschek P, Falkenberg G, Simon R, Berzlanovich A, Thaler HW, Roschger P, Klaushofer K, Streli C. Differential accumulation of lead and zinc in double-tidemarks of articular cartilage. Osteoarthr Cartil. 2013;21:1707–15.

    Article  CAS  PubMed  Google Scholar 

  47. Roschger P, Misof B, Paschalis E, Fratzl P, Klaushofer K. Changes in the degree of mineralization with osteoporosis and its treatment. Curr Osteoporos Rep. 2014;12:338–50.

    Article  PubMed  Google Scholar 

  48. Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep. 2013;2:447. eCollection 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lindahl K, Langdahl B, Ljunggren Ö, Kindmark A. Treatment of osteogenesis imperfecta in adults. Eur J Endocrinol. 2014;171:R79–90.

    Article  CAS  PubMed  Google Scholar 

  50. Fratzl-Zelman N, Misof BM, Klaushofer K, Roschger P. Bone mass and mineralization in osteogenesis imperfecta. Wien Med Wochenschr. 2015;165:271–7. Review.

    Article  PubMed  Google Scholar 

  51. Rauch F, Travers R, Glorieux FH. Pamidronate in children with osteogenesis imperfecta: histomorphometric effects of long-term therapy. J Clin Endocrinol Metab. 2006;91:511–6.

    Article  CAS  PubMed  Google Scholar 

  52. Weber M, Roschger P, Fratzl-Zelman N, Schöberl T, Rauch F, Glorieux FH, Fratzl P, Klaushofer K. Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone. 2006;39(3):616–22.

    Article  CAS  PubMed  Google Scholar 

  53. Blouin S, Puchegger S, Roschger A, Berzlanovich A, Fratzl P, Klaushofer K, Roschger P. Mapping dynamical mechanical properties of osteonal bone by scanning acoustic microscopy in time-of-flight mode. Microsc Microanal. 2014;20:924–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Misof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Roschger, P., Blouin, S., Paschalis, E., Gamsjaeger, S., Klaushofer, K., Misof, B. (2017). Bone Material Quality. In: Pietschmann, P. (eds) Principles of Bone and Joint Research. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-58955-8_1

Download citation

Publish with us

Policies and ethics