Skip to main content

Osteoclasts: Essentials and Methods

  • Chapter
  • First Online:

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

Osteoclasts are monocyte/macrophage arising cells with the classical function of bone resorption, thus fulfilling the bone remodelling process in concert with osteoblasts. The correct balance between osteogenic functions and osteoclast activity is mandatory to prevent skeletal diseases. While an exacerbated bone resorption is associated with bone loss, eventually leading to osteoporosis, the lack of osteoclast activity is responsible for osteopetrosis, a rare genetic disorder characterised by increased bone density and a wide heterogeneity in terms of severity, ranging from asymptomatic to fatal in infancy. Besides this well-established role in bone resorption, new functions have been recently attributed to the osteoclast. Indeed there is a reciprocal crosstalk between osteoclasts and osteoblasts which influence each other, in case of osteoclasts by releasing factors from the resorbing matrix and by secreting the so-called clastokines. Another recently discovered function of osteoclasts is haematopoiesis regulation. This draws to the obvious consequence that any osteoclast dysfunction would not cause exclusively a bone phenotype. As for other cell types, the knowledge of osteoclast biology has benefited from the study of skeletal diseases in which their formation and function are compromised. Furthermore, well-established methods are available to perform osteoclast primary cultures, and the identification of macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor ĸB ligand (RANKL) as pro-osteoclastogenic factors fostered their employment. Therefore, nowadays the preferential way to obtain purified differentiated osteoclasts is to isolate osteoclast precursors from the bone marrow or peripheral blood mononuclear cells and treat with the above-mentioned pro-osteoclastogenic cytokines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cappariello A, Maurizi A, Veeriah V, Teti A. The Great Beauty of the osteoclast. Archiv Biochem Biophys. 2014;558:70–8.

    Article  CAS  Google Scholar 

  2. Del Fattore A, Cappariello A, Teti A. Genetics, pathogenesis and complications of osteopetrosis. Bone. 2008;42(1):19–29.

    Article  PubMed  CAS  Google Scholar 

  3. Walker DG. Bone resorption restored in osteopetrotic mice by transplant of normal bone marrow and spleen cells. Science. 1975;190(4216):784–5.

    Article  CAS  PubMed  Google Scholar 

  4. Rasmussen H, Bordier P. The cellular basis of metabolic bone disease. New Engl J Med. 1973;289(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  5. Chambers TJ. The birth of the osteoclast. Ann N Y Acad Sci. 2010;1192:19–26.

    Article  CAS  PubMed  Google Scholar 

  6. Tondravi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R, et al. Osteopetrosis in mice lacking hematopoietic transcription factor PU.1. Nature. 1997;386(6620):81–4.

    Article  CAS  PubMed  Google Scholar 

  7. Van de Wijngaert FP, Tas MC, Burger EH. Conditioned medium of fetal mouse long bone rudiments stimulates the formation of osteoclast precursor-like cells from mouse bone marrow. Bone. 1989;10(1):61–8.

    Article  PubMed  Google Scholar 

  8. Menaa C, Kurihara N, Roodman GD. CFU-GM-derived cells from osteoclasts at a very high efficiency. Biochem Biophys Res Commun. 2000;267(3):943–6.

    Article  CAS  PubMed  Google Scholar 

  9. Biskobing DM, Fan X, Rubin J. Characterization of MCSF-induced proliferation and subsequent osteoclast formation in murine marrow culture. J Bone Miner Res. 1995;10(7):1025–32.

    Article  CAS  PubMed  Google Scholar 

  10. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.

    Article  CAS  PubMed  Google Scholar 

  11. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.

    Article  CAS  PubMed  Google Scholar 

  12. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teitelbaum SL. Osteoclasts: what do they do and how they do it? Am J Pathol. 2007;170(2):427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, et al. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 1997;11(24):3482–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kukita T, Wada N, Kukita A, Kakimoto T, Sandra F, Toh K, et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med. 2004;200(7):941–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab. 2012;23(11):582–90.

    Article  CAS  PubMed  Google Scholar 

  18. Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teti A, Zambonin Zallone A. Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol. 1984;99(5):1696–705.

    Article  CAS  PubMed  Google Scholar 

  19. Saltel F, Chabadel A, Bonnelye E, Jurdic P. Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation. Eur J Cell Biol. 2008;87(8–9):459–68.

    Article  CAS  PubMed  Google Scholar 

  20. Supanchart C, Kornak U. Ion channels and transporters in osteoclasts. Arch Biochem Biophys. 2008;47(2):161–5.

    Article  CAS  Google Scholar 

  21. Vääräniemi J, Halleen JM, Kaarlonen K, Ylipahkala H, Alatalo SL, Andersson G, et al. Intracellular machinery for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res. 2004;19(9):1432–40.

    Article  PubMed  CAS  Google Scholar 

  22. Hirvonen MJ, Fagerlund K, Lakkakorpi P, Väänänen HK, Mulari MT. Novel perspectives on transcytotic route in osteoclasts. Bonekey Rep. 2013;2:306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Teti A, Blair HC, Teitelbaum SL, Kahn AJ, Koziol C, Konsek J, et al. Cytoplasmic pH regulation and chloride/bicarbonate exchange in avian osteoclasts. J Clin Invest. 1989;83(1):227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lindsey AE, Schneider K, Simmons DM, Baron R, Lee BS, Kopito RR. Functional expression and subcellular localization of an anion exchanger cloned from choroid plexus. Proc Natl Acad Sci U S A. 1990;87(14):5278–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Henriksen K, Sorensen MG, Nielsen RH, Gram J, Schaller S, Dziegel MH, et al. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomial acidification. J Bone Miner Res. 2006;21(1):58–88.

    Article  CAS  PubMed  Google Scholar 

  26. Nesbitt SA, Horton MA. Trafficking of matrix collagens through bone-resorbing osteoclasts. Science. 1997;276(5310):266–9.

    Article  CAS  PubMed  Google Scholar 

  27. Van Wesenbeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117(4):919–30.

    Google Scholar 

  28. Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature. 2006;440(7081):220–3.

    Article  CAS  PubMed  Google Scholar 

  29. Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 2012;18(7):1095–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pfeilschifter J, D’Souza SM, Mundy GR. Effect of transforming growth factor-beta on osteoblastic osteosarcoma cells. Endocrinology. 1987;121(1):212–8.

    Article  CAS  PubMed  Google Scholar 

  31. Lotinun S, Kiviranta R, Matsubara T, Alzare JA, Neff L, Luth A, et al. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest. 2013;123(2):666–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Teti A. Mechanisms of osteoclast-dependent bone formation. Bonekey Rep. 2013;2:449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Drissi H, Sanjay A. The multifaceted osteoclast; far and beyond bone resorption. J Cell Biochem. 2016;117(8):1753–6.

    Article  CAS  PubMed  Google Scholar 

  34. Dai XM, Zong XH, Akhter MP, Stanley ER. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res. 2004;19(9):1441–51.

    Article  CAS  PubMed  Google Scholar 

  35. Sakagami N, Amizuka N, Li M, Takeuchi K, Hoshino M, Nakamura M, et al. Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice. Micron. 2005;36(7–8):688–95.

    Article  CAS  PubMed  Google Scholar 

  36. Del Fattore A, Peruzzi B, Rucci N, Recchia I, Cappariello A, Longo M, et al. Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implication for diagnosis and treatment. J Med Genet. 2006;43(4):315–25.

    Article  PubMed  CAS  Google Scholar 

  37. Pennypacker B, Shea M, Liu Q, Masarachia P, Saftig P, Rodan S, et al. Bone density, strength, and formation in adult cathepsin K−/− mice. Bone. 2009;44(2):199–207.

    Article  CAS  PubMed  Google Scholar 

  38. Ruy J, Kim HJ, Chang EJ, Huang H, Banno Y, Kim HH, et al. Sphingosine 1-phosphatase as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J. 2006;25(24):5840–51.

    Article  CAS  Google Scholar 

  39. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphatase. Proc Natl Acad Sci U S A. 2008;105(52):29764–9.

    Article  Google Scholar 

  40. Hayman AR, Cox TM. Tartrate-resistant acid phosphatase knockout mice. J Bone Miner Res. 2003;18(10):1905–7.

    Article  CAS  PubMed  Google Scholar 

  41. Kimura H, Kwan KM, Zhang Z, Deng JM, Darnay BG, Behringer RR, et al. Cthrc1 is a positive regulator of osteoblastic bone formation. PLoS One. 2008;3(9):e3174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Takeshita S, Fumoto T, Matsuoka K, Park KA, Aburatani H, Kato S, et al. Osteoclast-secreted CTHRC1 in the coupling of bone resorption and bone formation. J Clin Invest. 2013;123(9):3914–24.

    Google Scholar 

  43. Matsuoka K, Park KA, Ito M, Ikeda K, Takeshita S. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J Bone Miner Res. 2014;29(7):1522–30.

    Article  CAS  PubMed  Google Scholar 

  44. Charles JF, Aliprantis AO. Osteoclasts, more than «bone eaters». Trends in Mol Med. 2014;20(8):449–59.

    Article  CAS  Google Scholar 

  45. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med. 2006;12(6):657–64.

    Article  CAS  PubMed  Google Scholar 

  46. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109(5):625–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006;439(7076):599–603.

    Article  CAS  PubMed  Google Scholar 

  48. Takamatsu Y, Simmons PJ, Moore RJ, Morris HA, To IB, Lè Vesque JP. Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood. 1998;92(9):3465–73.

    CAS  PubMed  Google Scholar 

  49. Sim HJ, Kook SH, Yun CY, Bhattarai G, Cho ES, Lee JC. Brief report: consecutive alendronate administration-mediated inhibition of osteoclasts improves long-term engraftment potential and stress resistance of HSCs. Stem Cells. 2016;34(10):2601–7.

    Article  CAS  PubMed  Google Scholar 

  50. Lymperi S, Horwood N, Marley S, Gordon MY, Cope AP, Dazzi F. Strontium can increase some osteoblasts without increasing hematopoietic stem cells. Blood. 2008;111(3):1173–8.

    Article  CAS  PubMed  Google Scholar 

  51. Frisch BJ, Porter RL, Gigliotti BJ, Olm-Shipman AJ, Weber JM, O’Keefe RJ, et al. In vivo prostaglandin E2 treatment alters the bone marrow microenvironment and preferentially expands short-term hematopoietic stem cells. Blood. 2009;114(19):4054–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miyamoto T. Role of osteoclasts in regulating hematopoietic stem and progenitor cells. World J Orthop. 2013;4(4):198–206.

    Article  PubMed  PubMed Central  Google Scholar 

  53. O’Connor KM. Evolution and treatment of osteoporosis. Med Clin North Am. 2016;100(4):807–26.

    Article  PubMed  Google Scholar 

  54. Kruger MC, Wolber FM. Osteoporosis: modern paradigms for last century’s bones. Forum Nutr. 2016;8(6):E376.

    Google Scholar 

  55. Compston J. Pathophysiology of atypical femoral fractures and osteonecrosis of the jaw. Osteoporos Int. 2011;22(12):2951–61.

    Article  CAS  PubMed  Google Scholar 

  56. Sattui SE, Saag KG. Fracture mortality: associations with epidemiology and osteoporosis treatment. Nat Rev Endocrinol. 2014;10(10):592–602.

    Article  PubMed  Google Scholar 

  57. Hendrickx G, Boudin E, Van Hul W. A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol. 2015;11(8):462–74.

    Article  PubMed  Google Scholar 

  58. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med. 1996;2(10):1132–6.

    Article  CAS  PubMed  Google Scholar 

  59. Xing L, Boyce BF. Regulation of apoptosis in osteoclasts and osteoblastic cells. Biochem Biophys Res Commun. 2005;328(3):709–20.

    Article  CAS  PubMed  Google Scholar 

  60. Hofbauer LC, Khosla S, Dunstain CR, Lacey DL, Spelsberg TC, Riggs BL. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology. 1999;140(9):4367–70.

    Article  CAS  PubMed  Google Scholar 

  61. Shevde NK, Bendixen AC, Dienger KM, Pike JW. Estrogens suppress rankl-induced osteoclast differentiation via a stromal cell independent mechanism involving c-jun repression. Proc Natl Acad Sci U S A. 2000;97(14):7829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Diab DL, Watts NB. Secondary osteoporosis: differential diagnosis and workup. Clin Obstet Gynecol. 2013;56(4):686–93.

    Article  PubMed  Google Scholar 

  63. Seibel MJ, Cooper MS, Zhou H. Glucocorticoid-induced osteoporosis: mechanisms, management and future perspectives. Lancet Diabetes Endocrinol. 2013;1(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  64. Sapre S, Thakur R. Lifestyle and dietary factors determine age at natural menopause. J Midlife Health. 2014;5(1):3–5.

    PubMed  PubMed Central  Google Scholar 

  65. Węgierska M, Dura M, Blumfield E, Żuchowski P, Waszczak M, Jeka S. Osteoporosis diagnostics in patients with rheumatoid arthritis. Rheumatologia. 2016;54(1):29–34.

    Article  Google Scholar 

  66. Edwards WB, Schnitzer TJ, Troy KL. The mechanical consequence of actual bone loss and simulated bone recovery in acute spinal cord injury. Bone. 2014;60:141–7.

    Article  PubMed  Google Scholar 

  67. Rucci N, Rufo A, Alamanou M, Teti A. Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J Cell Biochem. 2007;100(2):464–73.

    Article  CAS  PubMed  Google Scholar 

  68. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008;58(5):424–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rucci N, Rufo A, Alamanou M, Capulli M, Del Fattore A, Åhrman E, et al. The glycosaminoglycan-binding domain of PRELP acts as a cell type-specific NF-κB inhibitor that impairs osteoclastogenesis. J Cell Biol. 2009;187(5):669–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sakata T, Sakai A, Tsurukami H, Okimoto N, Okazaki Y, Ikeda S, et al. Trabecular bone turnover and bone marrow cell development in tail-suspended mice. J Bone Miner Res. 1999;14(9):1596–604.

    Article  CAS  PubMed  Google Scholar 

  71. Rucci N, Capulli M, Piperni SG, Cappariello A, Lau P, Frings-Meuthen P, et al. Lipocalin 2: a new mechanoresponding gene regulating bone homeostasis. J Bone Miner Res. 2015;30(2):357–68.

    Article  CAS  PubMed  Google Scholar 

  72. Warner SE, Sanford DA, Becker BA, Bain SD, Srinivasan S, Gross TS. Botox induced muscle paralysis rapidly degrades bone. Bone. 2006;38(2):257–64.

    Article  CAS  PubMed  Google Scholar 

  73. Kan C, Vargas G, Pape FL, Clézardin P. Cancer cell colonisation in the bone microenvironment. Int J Mol Sci. 2016;17(10):E1674.

    Article  PubMed  CAS  Google Scholar 

  74. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20 Pt 2):6243s–9s.

    Article  PubMed  Google Scholar 

  75. Roodman GD. Mechanisms of bone metastasis. New Engl J Med. 2004;350(16):1655–64.

    Article  CAS  PubMed  Google Scholar 

  76. Clézardin P, Teti A. Bone metastasis: pathogenesis and therapeutic implications. Clin Exp Metastasis. 2007;24(8):599–608.

    Article  PubMed  CAS  Google Scholar 

  77. Jehn CF, Diel IJ, Overkamp F, Kurth A, Schaefer R, Miller K, et al. Management of metastatic bone disease algorithms for diagnostics and treatment. Anticancer Res. 2016;36(6):2631–7.

    PubMed  Google Scholar 

  78. Arguello F, Baggs RB, Frantz CN. A murine model of experimental metastasis to bone and bone marrow. Cancer Res. 1988;48(3):6876–81.

    CAS  PubMed  Google Scholar 

  79. Yoneda T, Sasaki A, Dunstan C, Williams PJ, Bauss F, De Clerck YA, et al. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest. 1997;99(10):2509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rucci N, Recchia I, Angelucci A, Alamanou M, Del Fattore A, Fortunati D, et al. Inhibition of protein kinase c-Src reduces the incidence of breast cancer metastases and increases survival in mice: implications for therapy. J Pharmacol Exp Ther. 2006;318(1):161–72.

    Article  CAS  PubMed  Google Scholar 

  81. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest. 1996;98(7):1544–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest. 1999;103(2):197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weilbaecher KN, Guise TA, McCauley LK. Cancer and bone: a fatal attraction. Nat Rev Cancer. 2011;11(7):411–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang Y, Fujita N, Oh-hara T, Morinaga Y, Nakagawa T, Yamada M, et al. Production of interleukin-11 in bone-derived endothelial cells and its role in the formation of osteolytic bone metastases. Oncogene. 1998;16(3):693–703.

    Google Scholar 

  85. Bendre MS, Montague DC, Peer T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastastic bone disease. Bone. 2003;33(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  86. Singh B, Berry JA, Shoher A, Ayers GD, Wei C, Lucci A. COX-2 involvement in breast cancer metastasis to bone. Oncogene. 2007;26(26):3789–96.

    Article  CAS  PubMed  Google Scholar 

  87. Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T. Hypoxia and hypoxia- inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res. 2007;67(9):4157–63.

    Article  CAS  PubMed  Google Scholar 

  88. Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastases of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 2011;19(2):192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tolar J, Teitelbaum SL, Orchad PJ. Osteopetrosis. N Engl J Med. 2004;351(27):2839–49.

    Article  PubMed  Google Scholar 

  90. Albers-Schönberg HE. Röntgenbilder einer seltenen Knock-enerkrankung. Munch Med Wochenscher. 1904;5:365–8.

    Google Scholar 

  91. Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int. 2009;84(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  92. Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Human Mol Genet. 2001;10(17):1767–73.

    Article  CAS  Google Scholar 

  93. Taranta A, Migliaccio S, Recchia I, Caniglia M, Luciani M, De Rossi G, et al. Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol. 2003;162(1):57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  95. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A. 1983;80(9):2752–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pangrazio A, Poliani PL, Megarbane A, Lefranc G, Lanino E, Di Rocco M, et al. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J Bone Miner Res. 2006;21(7):1098–105.

    Article  CAS  PubMed  Google Scholar 

  97. Pangrazio A, Fasth A, Sbardellati A, Orchard PJ, Kasow KA, Raza J, et al. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J Bone Miner Res. 2013;28(5):1041–9.

    Article  CAS  PubMed  Google Scholar 

  98. Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007;39(8):960–2.

    Article  CAS  PubMed  Google Scholar 

  99. Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, et al. Human osteoclast-poor osteopetrosis with hypogamma-globulinemia due to TNFRSF11A (RANK) mutations. Am J Human Genet. 2008;83(1):64–76.

    Article  CAS  Google Scholar 

  100. Zhou J, Ma X, Wang T, Zhai S. Comparative efficacy of bisphosphonates in short-term fracture prevention for primary osteoporosis: a systemic review with network meta-analyses. Osteoporosis Int. 2016;27(11):3289–300.

    Article  CAS  Google Scholar 

  101. Rogers MJ. New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des. 2003;9(32):2643–58.

    Article  CAS  PubMed  Google Scholar 

  102. Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49(16):34–41.

    Article  CAS  PubMed  Google Scholar 

  103. Eriksen EF, Diez-Perez A, Boonen S. Update of long-term treatment with bisphosphonates for postmenopausal osteoporosis: a systematic review. Bone. 2014;58:126–35.

    Article  CAS  PubMed  Google Scholar 

  104. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY, et al. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005;90(3):1294–301.

    Article  CAS  PubMed  Google Scholar 

  105. Pazianas M, van der Geest S, Miller P. Bisphosphonates and bone quality. Bonekey Rep. 2014;3:529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Young RJ, Coleman RE. Zoledronic acid to prevent and treat cancer metastasis: new perspects for an old drug. Future Oncol. 2013;9(5):633–43.

    Article  CAS  PubMed  Google Scholar 

  107. Filleul O, Crompot E, Saussez S. Bisphosphonate-induced osteonecrosis of the jaw: a review of 2400 patient cases. J Cancer Res Clin Oncol. 2010;136(8):1117–24.

    Article  CAS  PubMed  Google Scholar 

  108. Kostenuik PJ, Nguyen HQ, McCabe J, Warmington KS, Kurahara C, Sun N, et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-out mice that express chimeric (murine/human) RANKL. J Bone Miner Res. 2009;24(2):182–95.

    Article  CAS  PubMed  Google Scholar 

  109. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354(8):821–31.

    Article  CAS  PubMed  Google Scholar 

  110. Lewiecki EM, Miller PD, McClung MR, Cohen SB, Bolognese MA, Liu Y, et al. Two-year treatment with denosumab (AMG162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res. 2007;22(12):1832–41.

    Article  CAS  PubMed  Google Scholar 

  111. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    Article  CAS  PubMed  Google Scholar 

  112. Beck TJ, Lewiecki EM, Miller PD, Felsenberg D, Liu Y, Ding B, et al. Effects of denosumab on the geometry of the proximal femur in postmenopausal women in comparison with alendronate. J Clin Densitom. 2008;11(3):351–9.

    Article  PubMed  Google Scholar 

  113. Farrier AJ, Sanchez Franco LC, Shoaib A, Gulati V, Johnson N, Uzoigwe CE, et al. New anti-resorptives and antibody mediated anti-resorptive therapy. Bone Joint J. 2016;98-B(2):160–5.

    Article  CAS  PubMed  Google Scholar 

  114. Trouvin AP, Goëb V. Receptor activator of nuclear factor-kB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin Interv Aging. 2010;5:345–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Harslof T, Langdahl BL. New horizons in osteoporosis therapies. Curr Opin Pharmacol. 2016;28:38–42.

    Article  PubMed  CAS  Google Scholar 

  116. Hodder A, Huntley C, Aronson JK, Ramachandran M. Pycnodysostosis and the making of an artist. Gene. 2014;119(14):1109–13.

    Google Scholar 

  117. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.

    Article  CAS  PubMed  Google Scholar 

  118. Mukherjee K, Chattopadhyay N. Pharmacological inhibition of cathepsin K: a promising novel approach for postmenopausal osteoporosis therapy. Biochem Pharmacol. 2016;117:10–9.

    Article  CAS  PubMed  Google Scholar 

  119. Jensen AB, Wynne C, Ramirez G, He W, Song Y, Berd Y, et al. The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: results of a 4 week, double-bind, randomized, controlled trial. Clin Breast Cancer. 2010;10(6):452–8.

    Article  CAS  PubMed  Google Scholar 

  120. Eastell R, Nagase S, Ohyama M, Small M, Sawyer J, Boonen S, et al. Safety and efficacy of the cathepsin K inhibitor ONO-5334 in postmenopausal osteoporosis: the OCEAN study. J Bone Miner Res. 2012;26(6):1303–12.

    Google Scholar 

  121. Zou W, Kitaura H, Reeve J, Long F, Tybulewicz VLJ, Shattil SJ, et al. Syk, c-Src, the αvβ3 integrin, and ITAM immunoreceptors, in concert, regulate osteoclastic bone resorption. J Cell Biol. 2007;176(6):877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Clézardin P. Integrins in bone metastasis formation and potential therapeutic implications. Curr Cancer Drug Targets. 2009;9(7):801–6.

    Article  PubMed  Google Scholar 

  123. Murphy MG, Cerchio K, Stoch SA, Gottesdiener K, Wu M, Recker R. Effect of L-0845704, an aVb3 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. J Clin Endocrinol Metab. 2005;90(4):2022–8.

    Article  CAS  PubMed  Google Scholar 

  124. Chambers TJ. Phagocytosis and trypsin-resistant glass adhesion by osteoclasts in culture. J Pathol. 1979;127(2):55–60.

    Article  CAS  PubMed  Google Scholar 

  125. Chambers TJ. Resorption of bone by mouse peritoneal macrophages. J Pathol. 1981;135(4):295–9.

    Article  CAS  PubMed  Google Scholar 

  126. Zambonin ZA, Teti A, Primavera MV. Isolated osteoclasts in primary culture: first observations on structure and survival in culture media. Anat Embryol (Berl). 1982;165(3):405–13.

    Article  Google Scholar 

  127. David JP, Neff L, Chen Y, Rincon M, Horne W, Baron R. A new method to isolate large numbers of rabbit osteoclasts and osteoclast like cells: application to the characterization of serum response element binding proteins during osteoclast differentiation. J Bone Miner Res. 1998;13(11):1730–8.

    Article  CAS  PubMed  Google Scholar 

  128. Teti A, Taranta A, Villanova I, Recchia I, Migliaccio S. Osteoclast isolation: new developments and methods. J Bone Miner Res. 1999;14(7):1251–2.

    Article  CAS  PubMed  Google Scholar 

  129. Matayoshi A, Brown C, Di Persio JF, Haug J, Abu-Amer Y, Liapis H, et al. Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci U S A. 1996;93(20):10785–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Caselli G, Mantovanini M, Gandolfi CA, Allegretti M, Fiorentino S, Pellegrini L, et al. Tartronates: a new generation of drugs affecting bone metabolism. J Bone Miner Res. 1997;12(6):972–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Teti PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rucci, N., Teti, A. (2017). Osteoclasts: Essentials and Methods. In: Pietschmann, P. (eds) Principles of Bone and Joint Research. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-58955-8_3

Download citation

Publish with us

Policies and ethics