Skip to main content

The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1019))

Abstract

The Mycobacterium tuberculosis Complex (MTBC) consists of a clonal group of several mycobacterial lineages pathogenic to a range of different mammalian hosts. In this chapter, we discuss the origins and the evolutionary forces shaping the genomic diversity of the human-adapted MTBC. Advances in whole-genome sequencing have brought invaluable insights into the macro-evolution of the MTBC, and the biogeographical distribution of the different MTBC lineages, the phylogenetic relationships between these lineages. Moreover, micro-evolutionary processes start to be better understood, including those influencing bacterial mutation rates and those governing the fate of new mutations emerging within patients during treatment. Current genomic and epidemiological evidence reflect the fact that, through ecological specialization, the MTBC affecting humans became an obligate and extremely well-adapted human pathogen. Identifying the adaptive traits of human-adapted MTBC and unraveling the bacterial loci that interact with human genomic variation might help identify new targets for developing better vaccines and designing more effective treatments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E (2014) Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc B 369(1645). doi:ARTN 20130428. 10.1098/rstb.2013.0428

  • Achtman M (2008) Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol 62:53–70. doi:10.1146/annurev.micro.62.081307.162832

    Article  CAS  PubMed  Google Scholar 

  • Ansari MA, Pedergnana V, C LCI, Magri A, Von Delft A, Bonsall D, Chaturvedi N, Bartha I, Smith D, Nicholson G, McVean G, Trebes A, Piazza P, Fellay J, Cooke G, Foster GR, Consortium S-H, Hudson E, McLauchlan J, Simmonds P, Bowden R, Klenerman P, Barnes E, Spencer CCA (2017) Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nat Genet 49(5):666–673. doi:10.1038/ng.3835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asante-Poku A, Yeboah-Manu D, Otchere ID, Aboagye SY, Stucki D, Hattendorf J, Borrell S, Feldmann J, Danso E, Gagneux S (2015) Mycobacterium africanum is associated with patient ethnicity in Ghana. PLoS Negl Trop Dis 9(1):e3370. doi:10.1371/journal.pntd.0003370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asante-Poku A, Otchere ID, Osei-Wusu S, Sarpong E, Baddoo A, Forson A, Laryea C, Borrell S, Bonsu F, Hattendorf J, Ahorlu C, Koram KA, Gagneux S, Yeboah-Manu D (2016) Molecular epidemiology of Mycobacterium africanum in Ghana. BMC Infect Dis 16:385. doi:10.1186/s12879-016-1725-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azad AK, Sadee W, Schlesinger LS (2012) Innate immune gene polymorphisms in tuberculosis. Infect Immun 80(10):3343–3359. doi:10.1128/IAI.00443-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker L, Brown T, Maiden MC, Drobniewski F (2004) Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 10(9):1568–1577. doi:10.3201/eid1009.040046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker O, Lee OY, Wu HH, Besra GS, Minnikin DE, Llewellyn G, Williams CM, Maixner F, O'Sullivan N, Zink A, Chamel B, Khawam R, Coqueugniot E, Helmer D, Le Mort F, Perrin P, Gourichon L, Dutailly B, Palfi G, Coqueugniot H, Dutour O (2015) Human tuberculosis predates domestication in ancient Syria. Tuberculosis (Edinb) 95(Suppl 1):S4–S12. doi:10.1016/j.tube.2015.02.001

    Article  Google Scholar 

  • Barnes I, Duda A, Pybus OG, Thomas MG (2011) Ancient urbanization predicts genetic resistance to tuberculosis. Evolution 65(3):842–848. doi:10.1111/j.1558-5646.2010.01132.x

    Article  PubMed  Google Scholar 

  • Barry CE 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D (2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7(12):845–855. doi:10.1038/nrmicro2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartha I, Carlson JM, Brumme CJ, McLaren PJ, Brumme ZL, John M, Haas DW, Martinez-Picado J, Dalmau J, Lopez-Galindez C, Casado C, Rauch A, Gunthard HF, Bernasconi E, Vernazza P, Klimkait T, Yerly S, O'Brien SJ, Listgarten J, Pfeifer N, Lippert C, Fusi N, Kutalik Z, Allen TM, Muller V, Harrigan PR, Heckerman D, Telenti A, Fellay J (2013) A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control. elife 2:e01123. doi:10.7554/eLife.01123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Behr MA (2015) Comparative genomics of mycobacteria: some answers, yet more new questions. Cold Spring Harb Perspect Med 5(2):a021204. doi:10.1101/cshperspect.a021204

    Article  PubMed Central  CAS  Google Scholar 

  • Blaser MJ, Kirschner D (2007) The equilibria that allow bacterial persistence in human hosts. Nature 449(7164):843–849. doi:10.1038/nature06198

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Keller PM, Stucki D, Trauner A, Borrell S, Latshang T, Coscolla M, Rothe T, Homke R, Ritter C, Feldmann J, Schulthess B, Gagneux S, Bottger EC (2015) Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med 373(20):1986–1988. doi:10.1056/NEJMc1505196

    Article  PubMed  PubMed Central  Google Scholar 

  • Blouin Y, Cazajous G, Dehan C, Soler C, Vong R, Hassan MO, Hauck Y, Boulais C, Andriamanantena D, Martinaud C, Martin E, Pourcel C, Vergnaud G (2014) Progenitor “Mycobacterium canettii” clone responsible for lymph node tuberculosis epidemic, Djibouti. Emerg Infect Dis 20(1):21–28. doi:10.3201/eid2001.130652

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolotin E, Hershberg R (2015) Gene loss dominates as a source of genetic variation within clonal pathogenic bacterial species. Genome Biol Evol 7(8):2173–2187. doi:10.1093/gbe/evv135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boritsch EC, Khanna V, Pawlik A, Honore N, Navas VH, Ma L, Bouchier C, Seemann T, Supply P, Stinear TP, Brosch R (2016) Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc Natl Acad Sci U S A 113(35):9876–9881. doi:10.1073/pnas.1604921113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ, Campbell TJ, Majander K, Wilbur AK, Guichon RA, Steadman DLW, Cook DC, Niemann S, Behr MA, Zumarraga M, Bastida R, Huson D, Nieselt K, Young D, Parkhill J, Buikstra JE, Gagneux S, Stone AC, Krause J (2014) Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514(7523):494–497. doi:10.1038/nature13591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brites D, Gagneux S (2012) Old and new selective pressures on Mycobacterium tuberculosis. Infect Genet Evol 12(4):678–685. doi:10.1016/j.meegid.2011.08.010

    Article  PubMed  Google Scholar 

  • Brites D, Gagneux S (2015) Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev 264(1):6–24. doi:10.1111/imr.12264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99(6):3684–3689. doi:10.1073/pnas.052548299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NT, Thuong NT, Stepniewska K, Huyen MN, Bang ND, Loc TH, Gagneux S, van Soolingen D, Kremer K, van der Sande M, Small P, Anh PT, Chinh NT, Quy HT, Duyen NT, Tho DQ, Hieu NT, Torok E, Hien TT, Dung NH, Nhu NT, Duy PM, van Vinh CN, Farrar J (2008) The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog 4(3):e1000034. doi:10.1371/journal.ppat.1000034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chisholm RH, Trauer JM, Curnoe D, Tanaka MM (2016) Controlled fire use in early humans might have triggered the evolutionary emergence of tuberculosis. Proc Natl Acad Sci U S A 113(32):9051–9056. doi:10.1073/pnas.1603224113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colangeli R, Arcus VL, Cursons RT, Ruthe A, Karalus N, Coley K, Manning SD, Kim S, Marchiano E, Alland D (2014) Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. PLoS One 9(3):e91024. doi:10.1371/journal.pone.0091024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coll F, McNerney R, Guerra-Assuncao JA, Glynn JR, Perdigao J, Viveiros M, Portugal I, Pain A, Martin N, Clark TG (2014) A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 5:4812. doi:10.1038/ncomms5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comas I, Gagneux S (2009) The past and future of tuberculosis research. PLoS Pathog 5(10):e1000600. doi:10.1371/journal.ppat.1000600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comas I, Gagneux S (2011) A role for systems epidemiology in tuberculosis research. Trends Microbiol 19(10):492–500. doi:10.1016/j.tim.2011.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD, Gagneux S (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42(6):498–503. doi:10.1038/ng.590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S (2012) Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44(1):106–110. doi:10.1038/ng.1038

    Article  CAS  Google Scholar 

  • Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei LH, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S (2013) Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45(10):1176–1182. doi:10.1038/ng.2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comas I, Hailu E, Kiros T, Bekele S, Mekonnen W, Gumi B, Tschopp R, Ameni G, Hewinson RG, Robertson BD, Goig GA, Stucki D, Gagneux S, Aseffa A, Young D, Berg S (2015) Population genomics of Mycobacterium tuberculosis in Ethiopia contradicts the virgin soil hypothesis for human tuberculosis in Sub-Saharan Africa. Curr Biol 25(24):3260–3266. doi:10.1016/j.cub.2015.10.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copin R, Coscolla M, Efstathiadis E, Gagneux S, Ernst JD (2014) Impact of in vitro evolution on antigenic diversity of Mycobacterium bovis bacillus Calmette-Guerin (BCG). Vaccine 32(45):5998–6004. doi:10.1016/j.vaccine.2014.07.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copin R, Wang XY, Louie E, Escuyer V, Coscolla M, Gagneux S, Palmer GH, Ernst JD (2016) Within host evolution selects for a dominant genotype of Mycobacterium tuberculosis while T cells increase pathogen genetic diversity. PLoS Pathog 12(12). doi:ARTN e1006111. 10.1371/journal.ppat.1006111

  • Coscolla M, Gagneux S (2010) Does M. tuberculosis genomic diversity explain disease diversity? Drug Discov Today Dis Mech 7(1):e43–e59. doi:10.1016/j.ddmec.2010.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coscolla M, Gagneux S (2014) Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 26(6):431–444. doi:10.1016/j.smim.2014.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coscolla M, Lewin A, Metzger S, Maetz-Rennsing K, Calvignac-Spencer S, Nitsche A, Dabrowski PW, Radonic A, Niemann S, Parkhill J, Couacy-Hymann E, Feldman J, Comas I, Boesch C, Gagneux S, Leendertz FH (2013) Novel Mycobacterium tuberculosis complex isolate from a wild chimpanzee. Emerg Infect Dis 19(6):969–976. doi:10.3201/eid1906.121012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coscolla M, Copin R, Sutherland J, Gehre F, de Jong B, Owolabi O, Mbayo G, Giardina F, Ernst JD, Gagneux S (2015) M. tuberculosis T cell epitope analysis reveals paucity of antigenic variation and identifies rare variable TB antigens. Cell Host Microbe 18(5):538–548. doi:10.1016/j.chom.2015.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong BC, Hill PC, Brookes RH, Otu JK, Peterson KL, Small PM, Adegbola RA (2005) Mycobacterium africanum: a new opportunistic pathogen in HIV infection? AIDS 19(15):1714–1715

    Article  PubMed  Google Scholar 

  • de Jong BC, Hill PC, Aiken A, Awine T, Antonio M, Adetifa IM, Jackson-Sillah DJ, Fox A, Deriemer K, Gagneux S, Borgdorff MW, McAdam KP, Corrah T, Small PM, Adegbola RA (2008) Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. J Infect Dis 198(7):1037–1043. doi:10.1086/591504

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jong BC, Adetifa I, Walther B, Hill PC, Antonio M, Ota M, Adegbola RA (2010a) Differences between tuberculosis cases infected with Mycobacterium africanum, West African type 2, relative to Euro-American Mycobacterium tuberculosis: an update. FEMS Immunol Med Microbiol 58(1):102–105. doi:10.1111/j.1574-695X.2009.00628.x

    Article  PubMed  CAS  Google Scholar 

  • de Jong BC, Antonio M, Gagneux S (2010b) Mycobacterium africanum – review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis 4(9):e744. doi:10.1371/journal.pntd.0000744

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vos M, Muller B, Borrell S, Black PA, van Helden PD, Warren RM, Gagneux S, Victor TC (2013) Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother 57(2):827–832. doi:10.1128/Aac.01541-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Demay C, Liens B, Burguiere T, Hill V, Couvin D, Millet J, Mokrousov I, Sola C, Zozio T, Rastogi N (2012) SITVITWEB – a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol 12(4):755–766. doi:10.1016/j.meegid.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  • Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ (2016) Within-host evolution of bacterial pathogens. Nat Rev Microbiol 14(3):150–162. doi:10.1038/nrmicro.2015.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donoghue HD, Hershkovitz I, Minnikin DE, Besra GS, Lee OYC, Galili E, Greenblatt CL, Lemma E, Spigelman M, Bar-Gal GK (2009) Biomolecular archaeology of ancient tuberculosis: response to “Deficiencies and challenges in the study of ancient tuberculosis DNA” by Wilbur et al. (2009). J Archaeol Sci 36(12):2797–2804. doi:10.1016/j.jas.2009.09.007

    Article  Google Scholar 

  • Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG (2003) Measurably evolving populations. Trends Ecol Evol 18(9):481–488. doi:10.1016/S0169-5347(03)00216-7

    Article  Google Scholar 

  • Duchene S, Holt KE, Weill FX, Le Hello S, Hawkey J, Edwards DJ, Fourment M, Holmes EC (2016) Genome-scale rates of evolutionary change in bacteria. Microb Genom 2(11):e000094. doi:10.1099/mgen.0.000094

    Article  PubMed  PubMed Central  Google Scholar 

  • Dye C, Lonnroth K, Jaramillo E, Williams BG, Raviglione M (2009) Trends in tuberculosis incidence and their determinants in 134 countries. Bull World Health Organ 87(9):683–691. doi:10.2471/Blt.08.058453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldholm V, Norheim G, von der Lippe B, Kinander W, Dahle UR, Caugant DA, Mannsaker T, Mengshoel AT, Dyrhol-Riise AM, Balloux F (2014) Evolution of extensively drug-resistant Mycobacterium tuberculosis from a susceptible ancestor in a single patient. Genome Biol 15(11):490. doi:10.1186/s13059-014-0490-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, Balloux F (2015) Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun 6:7119. doi:10.1038/ncomms8119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldholm V, Pettersson JH, Brynildsrud OB, Kitchen A, Rasmussen EM, Lillebaek T, Ronning JO, Crudu V, Mengshoel AT, Debech N, Alfsnes K, Bohlin J, Pepperell CS, Balloux F (2016) Armed conflict and population displacement as drivers of the evolution and dispersal of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 113(48):13881–13886. doi:10.1073/pnas.1611283113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst JD (2012) The immunological life cycle of tuberculosis. Nat Rev Immunol 12(8):581–591. doi:10.1038/nri3259

    Article  CAS  PubMed  Google Scholar 

  • Esmail H, Barry CE 3rd, Young DB, Wilkinson RJ (2014) The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond Ser B Biol Sci 369(1645):20130437. doi:10.1098/rstb.2013.0437

    Article  CAS  Google Scholar 

  • Fenner L, Egger M, Bodmer T, Furrer H, Ballif M, Battegay M, Helbling P, Fehr J, Gsponer T, Rieder HL, Zwahlen M, Hoffmann M, Bernasconi E, Cavassini M, Calmy A, Dolina M, Frei R, Janssens JP, Borrell S, Stucki D, Schrenzel J, Bottger EC, Gagneux S, Swiss HIVC, Molecular Epidemiology of Tuberculosis Study G (2013) HIV infection disrupts the sympatric host-pathogen relationship in human tuberculosis. PLoS Genet 9(3):e1003318. doi:10.1371/journal.pgen.1003318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firdessa R, Berg S, Hailu E, Schelling E, Gumi B, Erenso G, Gadisa E, Kiros T, Habtamu M, Hussein J, Zinsstag J, Robertson BD, Ameni G, Lohan AJ, Loftus B, Comas I, Gagneux S, Tschopp R, Yamuah L, Hewinson G, Gordon SV, Young DB, Aseffa A (2013) Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg Infect Dis 19(3):460–463. doi:10.3201/eid1903.120256

    Article  PubMed  PubMed Central  Google Scholar 

  • Flynn J, Chan J (2005) What’s good for the host is good for the bug. Trends Microbiol 13:98–102

    Article  CAS  PubMed  Google Scholar 

  • Flynn JL, Gideon HP, Mattila JT, Lin PL (2015) Immunology studies in non-human primate models of tuberculosis. Immunol Rev 264(1):60–73. doi:10.1111/imr.12258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, Mohaideen N, Ioerger TR, Sacchettini JC, Lipsitch M, Flynn JL, Fortune SM (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43(5):482–486. doi:10.1038/ng.811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, Johnston JC, Gardy J, Lipsitch M, Fortune SM (2013) Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 45(7):784–790. doi:10.1038/ng.2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233. doi:10.1146/annurev.ecolsys.19.1.207

    Article  Google Scholar 

  • Gagneux S (2012) Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond Ser B Biol Sci 367(1590):850–859. doi:10.1098/rstb.2011.0316

    Article  CAS  Google Scholar 

  • Gagneux S, Small PM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7(5):328–337. doi:10.1016/S1473-3099(07)70108-1

    Article  PubMed  Google Scholar 

  • Gagneux S, Burgos MV, DeRiemer K, Encisco A, Munoz S, Hopewell PC, Small PM, Pym AS (2006a) Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog 2(6):e61. doi:10.1371/journal.ppat.0020061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, Nicol M, Niemann S, Kremer K, Gutierrez MC, Hilty M, Hopewell PC, Small PM (2006b) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103(8):2869–2873. doi:10.1073/pnas.0511240103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR (2009) A replication clock for Mycobacterium tuberculosis. Nat Med 15(2):211–214. doi:10.1038/nm.1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalo-Asensio J, Malaga W, Pawlik A, Astarie-Dequeker C, Passemar C, Moreau F, Laval F, Daffe M, Martin C, Brosch R, Guilhot C (2014) Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc Natl Acad Sci U S A 111(31):11491–11496. doi:10.1073/pnas.1406693111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST (1999) Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32(3):643–655

    Article  CAS  PubMed  Google Scholar 

  • Grant AV, Sabri A, Abid A, Abderrahmani Rhorfi I, Benkirane M, Souhi H, Naji Amrani H, Alaoui-Tahiri K, Gharbaoui Y, Lazrak F, Sentissi I, Manessouri M, Belkheiri S, Zaid S, Bouraqadi A, El Amraoui N, Hakam M, Belkadi A, Orlova M, Boland A, Deswarte C, Amar L, Bustamante J, Boisson-Dupuis S, Casanova JL, Schurr E, El Baghdadi J, Abel L (2016) A genome-wide association study of pulmonary tuberculosis in Morocco. Hum Genet 135(3):299–307. doi:10.1007/s00439-016-1633-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groschel MI, Sayes F, Simeone R, Majlessi L, Brosch R (2016) ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol 14(11):677–691. doi:10.1038/nrmicro.2016.131

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M, Supply P, Vincent V (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1(1):e5. doi:10.1371/journal.ppat.0010005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gygli SM, Borrell S, Trauner A, Gagneux S (2017) Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev 41(3):354–373. doi:10.1093/femsre/fux011

    Article  PubMed  CAS  Google Scholar 

  • Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6(12):e311. doi:10.1371/journal.pbio.0060311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OY, Gernaey AM, Galili E, Eshed V, Greenblatt CL, Lemma E, Bar-Gal GK, Spigelman M (2008) Detection and molecular characterization of 9000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean. PLoS One 3(10):e3426. doi:10.1371/journal.pone.0003426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM (2004) Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci U S A 101(14):4871–4876. doi:10.1073/pnas.0305627101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houben RM, Dodd PJ (2016) The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med 13(10):e1002152. doi:10.1371/journal.pmed.1002152

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang J, Becq J, Gicquel B, Deschavanne P, Neyrolles O (2008) Horizontally acquired genomic islands in the tubercle bacilli. Trends Microbiol 16(7):303–308. doi:10.1016/j.tim.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  • Kaiser VB, Charlesworth B (2009) The effects of deleterious mutations on evolution in non-recombining genomes. Trends Genet 25(1):9–12. doi:10.1016/j.tig.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  • Karlsson EK, Kwiatkowski DP, Sabeti PC (2014) Natural selection and infectious disease in human populations. Nat Rev Genet 15(6):379–393. doi:10.1038/nrg3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241. doi:10.1111/j.1461-0248.2004.00684.x

    Article  Google Scholar 

  • Kay GL, Sergeant MJ, Zhou Z, Chan JZ, Millard A, Quick J, Szikossy I, Pap I, Spigelman M, Loman NJ, Achtman M, Donoghue HD, Pallen MJ (2015) Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat Commun 6:6717. doi:10.1038/ncomms7717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch A, Brites D, Stucki D, Evans JC, Seldon R, Heekes A, Mulder N, Nicol M, Oni T, Warner DF, Mizrahi V, Parkhill J, Gagneux S, Martin DP, Wilkinson RJ (2017) The influence of HIV on the evolution of Mycobacterium tuberculosis. Mol Biol Evol. doi:10.1093/molbev/msx107

  • Kodaman N, Sobota RS, Mera R, Schneider BG, Williams SM (2014) Disrupted human-pathogen co-evolution: a model for disease. Front Genet 5. doi:UNSP 290. doi:10.3389/fgene.2014.00290

  • Koeck JL, Fabre M, Simon F, Daffe M, Garnotel E, Matan AB, Gerome P, Bernatas JJ, Buisson Y, Pourcel C (2011) Clinical characteristics of the smooth tubercle bacilli ‘Mycobacterium canettii’ infection suggest the existence of an environmental reservoir. Clin Microbiol Infect 17(7):1013–1019. doi:10.1111/j.1469-0691.2010.03347.x

    Article  PubMed  Google Scholar 

  • Kwan CK, Ernst JD (2011) HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24(2):351–378. doi:10.1128/Cmr.00042-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, Priebe GP, Kishony R (2014) Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. Nat Genet 46(1):82–87. doi:10.1038/ng.2848

    Article  CAS  PubMed  Google Scholar 

  • Lieberman TD, Wilson D, Misra R, Xiong LL, Moodley P, Cohen T, Kishony R (2016) Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat Med. doi:10.1038/nm.4205

  • Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, Sacchettini J, Fortune SM, Flynn JL (2014) Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 20(1):75. doi:10.1038/nm.3412

    Article  CAS  PubMed  Google Scholar 

  • Lindestam Arlehamn CS, Paul S, Mele F, Huang C, Greenbaum JA, Vita R, Sidney J, Peters B, Sallusto F, Sette A (2015) Immunological consequences of intragenus conservation of Mycobacterium tuberculosis T-cell epitopes. Proc Natl Acad Sci U S A 112(2):E147–E155. doi:10.1073/pnas.1416537112

    Article  CAS  PubMed  Google Scholar 

  • Lipsitch M, Sousa AO (2002) Historical intensity of natural selection for resistance to tuberculosis. Genetics 161(4):1599–1607

    PubMed  PubMed Central  Google Scholar 

  • Lonnroth K, Jaramillo E, Williams BG, Dye C, Raviglione M (2009) Drivers of tuberculosis epidemics: the role of risk factors and social determinants. Soc Sci Med 68(12):2240–2246. doi:10.1016/j.socscimed.2009.03.041

    Article  PubMed  Google Scholar 

  • Lovejoy PE (1989) The impact of the Atlantic slave-trade on Africa – a review of the literature. J Afr Hist 30(3):365–394

    Article  Google Scholar 

  • Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, Yang C, Liu Q, Gan M, Sun G, Shen X, Liu F, Gagneux S, Mei J, Lan R, Wan K, Gao Q (2015) Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci U S A 112(26):8136–8141. doi:10.1073/pnas.1424063112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, Zhao M, Chennagiri N, Nordenfelt S, Tandon A, Skoglund P, Lazaridis I, Sankararaman S, Fu Q, Rohland N, Renaud G, Erlich Y, Willems T, Gallo C, Spence JP, Song YS, Poletti G, Balloux F, van Driem G, de Knijff P, Romero IG, Jha AR, Behar DM, Bravi CM, Capelli C, Hervig T, Moreno-Estrada A, Posukh OL, Balanovska E, Balanovsky O, Karachanak-Yankova S, Sahakyan H, Toncheva D, Yepiskoposyan L, Tyler-Smith C, Xue Y, Abdullah MS, Ruiz-Linares A, Beall CM, Di Rienzo A, Jeong C, Starikovskaya EB, Metspalu E, Parik J, Villems R, Henn BM, Hodoglugil U, Mahley R, Sajantila A, Stamatoyannopoulos G, Wee JT, Khusainova R, Khusnutdinova E, Litvinov S, Ayodo G, Comas D, Hammer MF, Kivisild T, Klitz W, Winkler CA, Labuda D, Bamshad M, Jorde LB, Tishkoff SA, Watkins WS, Metspalu M, Dryomov S, Sukernik R, Singh L, Thangaraj K, Paabo S, Kelso J, Patterson N, Reich D (2016) The Simons genome diversity project: 300 genomes from 142 diverse populations. Nature 538(7624):201–206. doi:10.1038/nature18964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malm S, Linguissi LS, Tekwu EM, Vouvoungui JC, Kohl TA, Beckert P, Sidibe A, Rusch-Gerdes S, Madzou-Laboum IK, Kwedi S, Penlap Beng V, Frank M, Ntoumi F, Niemann S (2017) New Mycobacterium tuberculosis complex sublineage, Brazzaville, Congo. Emerg Infect Dis 23(3):423–429. doi:10.3201/eid2303.160679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marvig RL, Sommer LM, Molin S, Johansen HK (2015) Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 47(1):57–64. doi:10.1038/ng.3148

    Article  CAS  PubMed  Google Scholar 

  • May RM, Anderson RM (1983) Epidemiology and genetics in the coevolution of parasites and hosts. P Roy Soc Lond a Mat 390(1798):219–219

    Google Scholar 

  • Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, Blum MG, Rusch-Gerdes S, Mokrousov I, Aleksic E, Allix-Beguec C, Antierens A, Augustynowicz-Kopec E, Ballif M, Barletta F, Beck HP, Barry CE 3rd, Bonnet M, Borroni E, Campos-Herrero I, Cirillo D, Cox H, Crowe S, Crudu V, Diel R, Drobniewski F, Fauville-Dufaux M, Gagneux S, Ghebremichael S, Hanekom M, Hoffner S, Jiao WW, Kalon S, Kohl TA, Kontsevaya I, Lillebaek T, Maeda S, Nikolayevskyy V, Rasmussen M, Rastogi N, Samper S, Sanchez-Padilla E, Savic B, Shamputa IC, Shen A, Sng LH, Stakenas P, Toit K, Varaine F, Vukovic D, Wahl C, Warren R, Supply P, Niemann S, Wirth T (2015) Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet 47(3):242–249. doi:10.1038/ng.3195

    Article  CAS  PubMed  Google Scholar 

  • Mokrousov I, Vyazovaya A, Iwamoto T, Skiba Y, Pole I, Zhdanova S, Arikawa K, Sinkov V, Umpeleva T, Valcheva V, Alvarez Figueroa M, Ranka R, Jansone I, Ogarkov O, Zhuravlev V, Narvskaya O (2016) Latin-American-Mediterranean lineage of Mycobacterium tuberculosis: human traces across pathogen’s phylogeography. Mol Phylogenet Evol 99:133–143. doi:10.1016/j.ympev.2016.03.020

    Article  PubMed  Google Scholar 

  • Moller M, Hoal EG (2010) Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis (Edinb) 90(2):71–83. doi:10.1016/j.tube.2010.02.002

    Article  CAS  Google Scholar 

  • Murray GG, Wang F, Harrison EM, Paterson GK, Mather AE, Harris SR, Holmes MA, Rambaut A, Welch JJ (2016) The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol Evol 7(1):80–89. doi:10.1111/2041-210X.12466

    Article  PubMed  Google Scholar 

  • O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP (2013) The immune response in tuberculosis. Annu Rev Immunol 31:475–527. doi:10.1146/annurev-immunol-032712-095939

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MB, Mortimer TD, Pepperell CS (2015) Diversity of Mycobacterium tuberculosis across evolutionary scales. PLoS Pathog 11(11):e1005257. doi:10.1371/journal.ppat.1005257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orlando L, Gilbert MT, Willerslev E (2015) Reconstructing ancient genomes and epigenomes. Nat Rev Genet 16(7):395–408. doi:10.1038/nrg3935

    Article  CAS  PubMed  Google Scholar 

  • Orme IM, Robinson RT, Cooper AM (2015) The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16(1):57–63. doi:10.1038/ni.3048

    Article  CAS  PubMed  Google Scholar 

  • Osorio NS, Rodrigues F, Gagneux S, Pedrosa J, Pinto-Carbo M, Castro AG, Young D, Comas I, Saraiva M (2013) Evidence for diversifying selection in a set of Mycobacterium tuberculosis genes in response to antibiotic- and nonantibiotic-related pressure. Mol Biol Evol 30(6):1326–1336. doi:10.1093/molbev/mst038

    Article  CAS  PubMed  Google Scholar 

  • Paulson T (2013) Epidemiology: a mortal foe. Nature 502(7470):S2–S3. doi:10.1038/502S2a

    Article  PubMed  CAS  Google Scholar 

  • Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE, Holmes EC, Birren B, Galagan J, Feldman MW (2013) The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog 9(8):e1003543. doi:10.1371/journal.ppat.1003543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Lago L, Comas I, Navarro Y, Gonzalez-Candelas F, Herranz M, Bouza E, Garcia-de-Viedma D (2014) Whole genome sequencing analysis of intrapatient microevolution in Mycobacterium tuberculosis: potential impact on the inference of tuberculosis transmission. J Infect Dis 209(1):98–108. doi:10.1093/infdis/jit439

    Article  PubMed  Google Scholar 

  • Qu HQ, Li Q, McCormick JB, Fisher-Hoch SP (2011) What did we learn from the genome-wide association study for tuberculosis susceptibility? J Med Genet 48(4):217–218. doi:10.1136/jmg.2010.087361

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed MB, Pichler VK, McIntosh F, Mattia A, Fallow A, Masala S, Domenech P, Zwerling A, Thibert L, Menzies D, Schwartzman K, Behr MA (2009) Major Mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol 47(4):1119–1128. doi:10.1128/JCM.02142-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice WR (2002) Experimental tests of the adaptive significance of sexual recombination. Nat Rev Genet 3(4):241–251. doi:10.1038/nrg760

    Article  CAS  PubMed  Google Scholar 

  • Roetzer A, Diel R, Kohl TA, Ruckert C, Nubel U, Blom J, Wirth T, Jaenicke S, Schuback S, Rusch-Gerdes S, Supply P, Kalinowski J, Niemann S (2013) Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 10(2):e1001387. doi:10.1371/journal.pmed.1001387

    Article  PubMed  PubMed Central  Google Scholar 

  • Rose G, Cortes T, Comas I, Coscolla M, Gagneux S, Young DB (2013) Mapping of genotype-phenotype diversity among clinical isolates of mycobacterium tuberculosis by sequence-based transcriptional profiling. Genome Biol Evol 5(10):1849–1862. doi:10.1093/gbe/evt138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothschild BM, Martin LD, Lev G, Bercovier H, Bar-Gal GK, Greenblatt C, Donoghue H, Spigelman M, Brittain D (2001) Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin Infect Dis 33(3):305–311. doi:10.1086/321886

    Article  CAS  PubMed  Google Scholar 

  • Russell DG, Barry CE 3rd, Flynn JL (2010) Tuberculosis: what we don’t know can, and does, hurt us. Science 328(5980):852–856. doi:10.1126/science.1184784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salie M, van der Merwe L, Moller M, Daya M, van der Spuy G, van Helden PD, Martin MP, Gao XJ, Warren RM, Carrington M, Hoal EG (2014) Associations between human leukocyte antigen class I variants and the Mycobacterium tuberculosis subtypes causing disease. Int J Infect Dis 21:300–300. doi:10.1016/j.ijid.2014.03.1043

    Article  Google Scholar 

  • Sharma A, Bloss E, Heilig CM, Click ES (2016) Tuberculosis caused by Mycobacterium africanum, United States, 2004–2013. Emerg Infect Dis 22(3):396–403. doi:10.3201/eid2203.151505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE 3rd, Stover CK (1996) Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272(5268):1641–1643

    Article  CAS  PubMed  Google Scholar 

  • Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV (2009) Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 7(7):537–544. doi:10.1038/nrmicro2165

    Article  CAS  PubMed  Google Scholar 

  • Stead WW (1998) Tuberculosis in Africa. Int J Tuberc Lung Dis 2(10):791–792

    CAS  PubMed  Google Scholar 

  • Stead WW (2001) Variation in vulnerability to tuberculosis in America today: random, or legacies of different ancestral epidemics? Int J Tuberc Lung Dis 5(9):807–814

    CAS  PubMed  Google Scholar 

  • Stead WW, Senner JW, Reddick WT, Lofgren JP (1990) Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med 322(7):422–427. doi:10.1056/NEJM199002153220702

    Article  CAS  PubMed  Google Scholar 

  • Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, Fenner L, Rutaihwa L, Borrell S, Luo T, Gao Q, Kato-Maeda M, Ballif M, Egger M, Macedo R, Mardassi H, Moreno M, Vilanova GT, Fyfe J, Globan M, Thomas J, Jamieson F, Guthrie JL, Asante-Poku A, Yeboah-Manu D, Wampande E, Ssengooba W, Joloba M, Boom WH, Basu I, Bower J, Saraiva M, Vasconcellos SE, Suffys P, Koch A, Wilkinson R, Gail-Bekker L, Malla B, Ley SD, Beck HP, de Jong BC, Toit K, Sanchez-Padilla E, Bonnet M, Gil-Brusola A, Frank M, Penlap Beng VN, Eisenach K, Alani I, Ndung’u PW, Revathi G, Gehre F, Akter S, Ntoumi F, Stewart-Isherwood L, Ntinginya NE, Rachow A, Hoelscher M, Cirillo DM, Skenders G, Hoffner S, Bakonyte D, Stakenas P, Diel R, Crudu V, Moldovan O, Al-Hajoj S, Otero L, Barletta F, Carter EJ, Diero L, Supply P, Comas I, Niemann S, Gagneux S (2016) Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet. doi:10.1038/ng.3704

  • Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, Majlessi L, Criscuolo A, Tap J, Pawlik A, Fiette L, Orgeur M, Fabre M, Parmentier C, Frigui W, Simeone R, Boritsch EC, Debrie AS, Willery E, Walker D, Quail MA, Ma L, Bouchier C, Salvignol G, Sayes F, Cascioferro A, Seemann T, Barbe V, Locht C, Gutierrez MC, Leclerc C, Bentley SD, Stinear TP, Brisse S, Medigue C, Parkhill J, Cruveiller S, Brosch R (2013) Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 45(2):172–179. doi:10.1038/ng.2517

    Article  CAS  PubMed  Google Scholar 

  • Thye T, Vannberg FO, Wong SH, Owusu-Dabo E, Osei I, Gyapong J, Sirugo G, Sisay-Joof F, Enimil A, Chinbuah MA, Floyd S, Warndorff DK, Sichali L, Malema S, Crampin AC, Ngwira B, Teo YY, Small K, Rockett K, Kwiatkowski D, Fine PE, Hill PC, Newport M, Lienhardt C, Adegbola RA, Corrah T, Ziegler A, African TBGC, Wellcome Trust Case Control C, Morris AP, Meyer CG, Horstmann RD, Hill AV (2010) Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nat Genet 42(9):739–741. doi:10.1038/ng.639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thye T, Niemann S, Walter K, Homolka S, Intemann CD, Chinbuah MA, Enimil A, Gyapong J, Osei I, Owusu-Dabo E, Rusch-Gerdes S, Horstmann RD, Ehlers S, Meyer CG (2011) Variant G57E of mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. PLoS One 6(6):e20908. doi:10.1371/journal.pone.0020908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJ (2011) Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS One 6(4):e17601. doi:10.1371/journal.pone.0017601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trauner A, Borrell S, Reither K, Gagneux S (2014) Evolution of drug resistance in tuberculosis: recent progress and implications for diagnosis and therapy. Drugs 74(10):1063–1072. doi:10.1007/s40265-014-0248-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trauner A, Liu Q, Via LE, Liu X, Ruan X, Liang L, Shi H, Chen Y, Wang Z, Liang R, Zhang W, Wei W, Gao J, Sun G, Brites D, England K, Zhang G, Gagneux S, Barry CE 3rd, Gao Q (2017) The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol 18(1):71. doi:10.1186/s13059-017-1196-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Underhill PA, Kivisild T (2007) Use of Y chromosome and mitochondrial DNA population structure in tracing human migrations. Annu Rev Genet 41:539–564. doi:10.1146/annurev.genet.41.110306.130407

    Article  CAS  PubMed  Google Scholar 

  • Veyrier FJ, Dufort A, Behr MA (2011) The rise and fall of the Mycobacterium tuberculosis genome. Trends Microbiol 19(4):156–161. doi:10.1016/j.tim.2010.12.008

    Article  CAS  PubMed  Google Scholar 

  • Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, Eyre DW, Wilson DJ, Hawkey PM, Crook DW, Parkhill J, Harris D, Walker AS, Bowden R, Monk P, Smith EG, Peto TE (2013) Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13(2):137–146. doi:10.1016/S1473-3099(12)70277-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wampande EM, Mupere E, Debanne SM, Asiimwe BB, Nsereko M, Mayanja H, Eisenach K, Kaplan G, Boom HW, Gagneux S, Joloba ML (2013) Long-term dominance of Mycobacterium tuberculosis Uganda family in peri-urban Kampala-Uganda is not associated with cavitary disease. BMC Infect Dis 13:484. doi:10.1186/1471-2334-13-484

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, McIntosh F, Radomski N, Dewar K, Simeone R, Enninga J, Brosch R, Rocha EP, Veyrier FJ, Behr MA (2015) Insights on the emergence of Mycobacterium tuberculosis from the analysis of Mycobacterium kansasii. Genome Biol Evol 7(3):856–870. doi:10.1093/gbe/evv035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2016) Global tuberculosis report 2016. World Health Organization, Geneva

    Google Scholar 

  • Wilbur AK, Bouwman AS, Stone AC, Roberts CA, Pfister LA, Buikstra JE, Brown TA (2009) Deficiencies and challenges in the study of ancient tuberculosis DNA. J Archaeol Sci 36(9):1990–1997. doi:10.1016/j.jas.2009.05.020

    Article  Google Scholar 

  • Wilkipedia Ewe People (n.d.) https://en.wikipedia.org/wiki/Ewe_people

  • Williams AC, Dunbar RI (2014) Big brains, meat, tuberculosis and the nicotinamide switches: co-evolutionary relationships with modern repercussions on longevity and disease? Med Hypotheses 83(1):79–87. doi:10.1016/j.mehy.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  • Wirth T, Hildebrand F, Allix-Beguec C, Wolbeling F, Kubica T, Kremer K, van Soolingen D, Rusch-Gerdes S, Locht C, Brisse S, Meyer A, Supply P, Niemann S (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4(9):e1000160. doi:10.1371/journal.ppat.1000160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woolhouse M, Gaunt E (2007) Ecological origins of novel human pathogens. Crit Rev Microbiol 33(4):231–242. doi:10.1080/10408410701647560

    Article  PubMed  Google Scholar 

  • Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32(4):569–577. doi:10.1038/ng1202-569

    Article  CAS  PubMed  Google Scholar 

  • Worby CJ, Lipsitch M, Hanage WP (2014) Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLoS Comput Biol 10(3):e1003549. doi:10.1371/journal.pcbi.1003549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young DB, Perkins MD, Duncan K, Barry CE 3rd (2008) Confronting the scientific obstacles to global control of tuberculosis. J Clin Invest 118(4):1255–1265. doi:10.1172/JCI34614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yruela I, Contreras-Moreira B, Magalhaes C, Osorio NS, Gonzalo-Asensio J (2016) Mycobacterium tuberculosis complex exhibits lineage-specific variations affecting protein ductility and epitope recognition. Genome Biol Evol 8(12):3751–3764. doi:10.1093/gbe/evw279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng NB, Whalen CC, Handel A (2014) Modeling the potential impact of host population survival on the evolution of M. tuberculosis latency. PLoS One 9 (8). doi:ARTN e105721. 10.1371/journal.pone.0105721

  • Zumla A, Maeurer M, Host-Directed Therapies N, Chakaya J, Hoelscher M, Ntoumi F, Rustomjee R, Vilaplana C, Yeboah-Manu D, Rasolof V, Munderi P, Singh N, Aklillu E, Padayatchi N, Macete E, Kapata N, Mulenga M, Kibiki G, Mfinanga S, Nyirenda T, Maboko L, Garcia-Basteiro A, Rakotosamimanana N, Bates M, Mwaba P, Reither K, Gagneux S, Edwards S, Mfinanga E, Abdulla S, Cardona PJ, Russell JB, Gant V, Noursadeghi M, Elkington P, Bonnet M, Menendez C, Dieye TN, Diarra B, Maiga A, Aseffa A, Parida S, Wejse C, Petersen E, Kaleebu P, Oliver M, Craig G, Corrah T, Tientcheu L, Antonio M, Rao M, McHugh TD, Sheikh A, Ippolito G, Ramjee G, Kaufmann SH, Churchyard G, Steyn A, Grobusch M, Sanne I, Martinson N, Madansein R, Wilkinson RJ, Mayosi B, Schito M, Wallis RS (2015) Towards host-directed therapies for tuberculosis. Nat Rev Drug Discov 14(8):511–512. doi:10.1038/nrd4696

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the members of our group for the stimulating discussions. Work in our group is supported by the Swiss National Science Foundation (grants 310030_166687, IZRJZ3_164171 and IZLSZ3_170834), the European Research Council (309540-EVODRTB), SystemsX.ch, and the Novartis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Brites .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brites, D., Gagneux, S. (2017). The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex. In: Gagneux, S. (eds) Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Advances in Experimental Medicine and Biology, vol 1019. Springer, Cham. https://doi.org/10.1007/978-3-319-64371-7_1

Download citation

Publish with us

Policies and ethics