Skip to main content

Graphene-Based Nanomaterials

  • Chapter
  • First Online:
  • 829 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Graphenes are unique nanomaterials which was recently made compatible for physiological milieu, and thus find a way to be used as nanocarriers. The surface engineering abilities of nano-graphene oxides (nano-GOs) or graphene quantum dots (GQDs) in their own outstanding photoluminescence property have made it possible to be used for imaging or drug delivery. Though many successes were not reported in the application of GQDs in vivo, toxicity and safety of GOs in vitro and in vivo are being investigated. Interestingly, GOs are found to be degraded in vivo. In addition to much effort to use GOs as drug carriers, there have been recent trials to apply GOs for magnetic resonance imaging (MRI) and positron emission tomography (PET) or even multiplexed imaging with MRI/fluorescence or MRI/PET. The product has the composition of chelator-conjugated GOs loaded with iron oxide nanoparticles, and a variety of radionuclides such as 68Ga, 64Cu or 125I and 131I and 177Lu were used for PET or SPECT imaging and for radionuclide therapy, respectively. Multiplexed imaging or theranostics will enable targeted delivery, imaging in vivo with PET/SPECT and/or MRI and ex vivo confirmation of the tissues in preclinical studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  2. J.M. Yoo, J.H. Kang, B.H. Hong, Graphene-based nanomaterials for versatile imaging studies. Chem. Soc. Rev. 44(14), 4835–4852 (2015)

    Article  Google Scholar 

  3. D. Bitounis, H. Ali-Boucetta, B.H. Hong, D.H. Min, K. Kostarelos, Prospects and challenges of graphene in biomedical applications. Adv. Mater. 25(16), 2258–2268 (2013)

    Article  Google Scholar 

  4. S. Zhu, H. Zhen, Y. Li, P. Wang, X. Huang, P. Shi, PEGylated graphene oxide as a nanocarrier for podophyllotoxin. J. Nanopart. Res. 16(8), 2530 (2014)

    Article  ADS  Google Scholar 

  5. P.S. Wate, S.S. Banerjee, A. Jalota-Badhwar, R.R. Mascarenhas, K.R. Zope, J. Khandare et al., Cellular imaging using biocompatible dendrimer-functionalized graphene oxide-based fluorescent probe anchored with magnetic nanoparticles. Nanotechnology 23(41), 415101 (2012)

    Article  Google Scholar 

  6. G. Gollavelli, Y.C. Ling, Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials 33(8), 2532–2545 (2012)

    Article  Google Scholar 

  7. X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric et al., Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1(3), 203–212 (2008)

    Article  Google Scholar 

  8. J. Liu, J.T. Robinson, X. Sun, H. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130(33), 10876–10877 (2008)

    Article  Google Scholar 

  9. C. Peng, W. Hu, Y. Zhou, C. Fan, Q. Huang, Intracellular imaging with a graphene-based fluorescent probe. Small 6(15), 1686–1692 (2010)

    Article  Google Scholar 

  10. K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9), 3318–3323 (2010)

    Article  ADS  Google Scholar 

  11. Z. Sun, P. Huang, G. Tong, J. Lin, A. Jin, P. Rong et al., VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale 5(15), 6857–6866 (2013)

    Article  ADS  Google Scholar 

  12. H. Hong, K. Yang, Y. Zhang, J.W. Engle, L. Feng, Y. Yang et al., In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano. 6(3), 2361–2370 (2012)

    Article  Google Scholar 

  13. X. Mao, H. Li, Chiral imaging in living cells with functionalized graphene oxide. J. Mater. Chem. B Mater. Biol. Med. 1(34), 4267 (2013)

    Article  Google Scholar 

  14. S.H. Hu, Y.W. Chen, W.T. Hung, I.W. Chen, S.Y. Chen, Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv. Mater. 24(13), 1748–1754 (2012)

    Article  Google Scholar 

  15. M.L. Chen, J.W. Liu, B. Hu, M.L. Chen, J.H. Wang, Conjugation of quantum dots with graphene for fluorescence imaging of live cells. Analyst 136(20), 4277–4283 (2011)

    Article  ADS  Google Scholar 

  16. L.J. Cote, R. Cruz-Silva, J. Huang, Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc. 131(31), 11027–11032 (2009)

    Article  Google Scholar 

  17. G.K. Ramesha, S. Sampath, Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study. J. Phys. Chem. C 113(19), 7985–7989 (2009)

    Article  Google Scholar 

  18. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  Google Scholar 

  19. S. Shi, K. Yang, H. Hong, H.F. Valdovinos, T.R. Nayak, Y. Zhang et al., Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials 34(12), 3002–3009 (2013)

    Article  Google Scholar 

  20. K. Liu, J.-J. Zhang, F.-F. Cheng, T.-T. Zheng, C. Wang, J.-J. Zhu, Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J. Mater. Chem. 21(32), 12034 (2011)

    Article  Google Scholar 

  21. Z. Sheng, L. Song, J. Zheng, D. Hu, M. He, M. Zheng et al., Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34(21), 5236–5243 (2013)

    Article  Google Scholar 

  22. L. Zhang, Y. Xing, N. He, Y. Zhang, Z. Lu, J. Zhang et al., Preparation of graphene quantum dots for bioimaging application. J. Nanosci. Nanotechnol. 12(3), 2924–2928 (2012)

    Article  Google Scholar 

  23. S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan et al., Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 47(24), 6858–6860 (2011)

    Article  Google Scholar 

  24. M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu et al., Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem. 22(15), 7461 (2012)

    Article  Google Scholar 

  25. Q. Liu, K. Wang, J. Huan, G. Zhu, J. Qian, H. Mao et al., Graphene quantum dots enhanced electrochemiluminescence of cadmium sulfide nanocrystals for ultrasensitive determination of pentachlorophenol. Analyst 139(11), 2912–2918 (2014)

    Article  ADS  Google Scholar 

  26. S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang et al., Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: from fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 22(22), 4732–4740 (2012)

    Article  Google Scholar 

  27. X. Wu, F. Tian, W. Wang, J. Chen, M. Wu, J.X. Zhao, Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. J. Mater. Chem. C Mater. Opt. Electron Devices 1(31), 4676–4684 (2013)

    Article  Google Scholar 

  28. A.M. Jastrzebska, P. Kurtycz, A.R. Olszyna, Recent advances in graphene family materials toxicity investigations. J. Nanopart. Res. 14(12), 1320 (2012)

    Article  ADS  Google Scholar 

  29. C. Fisher, A.E. Rider, Z. Jun Han, S. Kumar, I. Levchenko, K. Ostrikov, Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. J. Nanomater. 2012, 1–19 (2012)

    Article  Google Scholar 

  30. K. Yang, H. Gong, X. Shi, J. Wan, Y. Zhang, Z. Liu, In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34(11), 2787–2795 (2013)

    Article  Google Scholar 

  31. A. Sasidharan, L.S. Panchakarla, P. Chandran, D. Menon, S. Nair, C.N. Rao et al., Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3(6), 2461–2464 (2011)

    Article  ADS  Google Scholar 

  32. C. Wu, C. Wang, T. Han, X. Zhou, S. Guo, J. Zhang, Insight into the cellular internalization and cytotoxicity of graphene quantum dots. Adv Healthc Mater. 2(12), 1613–1619 (2013)

    Article  Google Scholar 

  33. X. Yuan, Z. Liu, Z. Guo, Y. Ji, M. Jin, X. Wang, Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res. Lett. 9(108) (2014)

    Article  ADS  Google Scholar 

  34. Y. Chong, Y. Ma, H. Shen, X. Tu, X. Zhou, J. Xu et al., The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 35(19), 5041–5048 (2014)

    Article  Google Scholar 

  35. H. Zhang, C. Peng, J. Yang, M. Lv, R. Liu, D. He et al., Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake. ACS Appl. Mater. Interfaces 5(5), 1761–1767 (2013)

    Article  Google Scholar 

  36. S.M. Chowdhury, G. Lalwani, K. Zhang, J.Y. Yang, K. Neville, B. Sitharaman, Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials 34(1), 283–293 (2013)

    Article  Google Scholar 

  37. K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo et al., Biocompatibility of graphene oxide. Nanoscale Res. Lett. 6(1), 8 (2011)

    ADS  Google Scholar 

  38. A. Schinwald, F.A. Murphy, A. Jones, W. MacNee, K. Donaldson, Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano. 6(1), 736–746 (2012)

    Article  Google Scholar 

  39. R.G. Mendes, B. Koch, A. Bachmatiuk, X. Ma, S. Sanchez, C. Damm et al., A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J. Mater. Chem. B Mater. Biol. Med. 3(12), 2522–2529 (2015)

    Article  Google Scholar 

  40. O. Akhavan, E. Ghaderi, A. Akhavan, Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32), 8017–8025 (2012)

    Article  Google Scholar 

  41. O. Akhavan, E. Ghaderi, Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9(21), 3593–3601 (2013)

    Article  Google Scholar 

  42. R. Agarwal, V. Singh, P. Jurney, L. Shi, S.V. Sreenivasan, K. Roy, Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc. Natl. Acad. Sci. U. S. A. 110(43), 17247–17252 (2013)

    Article  ADS  Google Scholar 

  43. A. Albanese, P.S. Tang, W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012)

    Article  Google Scholar 

  44. W. Kong, J. Liu, R. Liu, H. Li, Y. Liu, H. Huang et al., Quantitative and real-time effects of carbon quantum dots on single living HeLa cell membrane permeability. Nanoscale 6(10), 5116–5120 (2014)

    Article  ADS  Google Scholar 

  45. K. Yang, J. Wan, S. Zhang, Y. Zhang, S.T. Lee, Z. Liu, In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 5(1), 516–522 (2011)

    Article  Google Scholar 

  46. M. Nurunnabi, Z. Khatun, K.M. Huh, S.Y. Park, D.Y. Lee, K.J. Cho et al., In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano. 7(8), 6858–6867 (2013)

    Article  Google Scholar 

  47. G.P. Kotchey, S.A. Hasan, A.A. Kapralov, S.H. Ha, K. Kim, A.A. Shvedova et al., A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. Acc. Chem. Res. 45(10), 1770–1781 (2012)

    Article  Google Scholar 

  48. G.P. Kotchey, B.L. Allen, H. Vedala, N. Yanamala, A.A. Kapralov, Y.Y. Tyurina et al., The enzymatic oxidation of graphene oxide. ACS Nano. 5(3), 2098–2108 (2011)

    Article  Google Scholar 

  49. J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H.S. Casalongue, D. Vinh et al., Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133(17), 6825–6831 (2011)

    Article  Google Scholar 

  50. B. Tian, C. Wang, S. Zhang, L. Feng, Z. Liu, Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano. 5(9), 7000–7009 (2011)

    Article  Google Scholar 

  51. C. Jang, J.H. Lee, A. Sahu, G. Tae, The synergistic effect of folate and RGD dual ligand of nanographene oxide on tumor targeting and photothermal therapy in vivo. Nanoscale 7(44), 18584–18594 (2015)

    Article  ADS  Google Scholar 

  52. L. Zhou, L. Zhou, S. Wei, X. Ge, J. Zhou, H. Jiang et al., Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. J. Photochem. Photobiol. B 135, 7–16 (2014)

    Article  Google Scholar 

  53. H. Kim, W.J. Kim, Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite. Small 10(1), 117–126 (2014)

    Article  Google Scholar 

  54. P. Matteini, F. Tatini, L. Cavigli, S. Ottaviano, G. Ghini, R. Pini, Graphene as a photothermal switch for controlled drug release. Nanoscale 6(14), 7947 (2014)

    Article  ADS  Google Scholar 

  55. V. Shanmugam, S. Selvakumar, C.-S. Yeh, Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 43(17), 6254 (2014)

    Article  Google Scholar 

  56. W.C. Lee, C.H.Y.X. Lim, H. Shi, L.A.L. Tang, Y. Wang, C.T. Lim et al., Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 5(9), 7334–7341 (2011)

    Article  Google Scholar 

  57. S.Y. Park, J. Park, S.H. Sim, M.G. Sung, K.S. Kim, B.H. Hong et al., Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 23(36), H263–H267 (2011)

    Article  Google Scholar 

  58. C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, G.N. Chen, A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. Engl. 48(26), 4785–4787 (2009)

    Article  Google Scholar 

  59. X. Li, S. Zhu, B. Xu, K. Ma, J. Zhang, B. Yang et al., Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale 5(17), 7776–7779 (2013)

    Article  ADS  Google Scholar 

  60. S.J. Jeon, S.Y. Kwak, D. Yim, J.M. Ju, J.H. Kim, Chemically-modulated photoluminescence of graphene oxide for selective detection of neurotransmitter by “turn-on” response. J. Am. Chem. Soc. 136(31), 10842–10845 (2014)

    Article  Google Scholar 

  61. Y. Wang, J.T. Chen, X.P. Yan, Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal. Chem. 85(4), 2529–2535 (2013)

    Article  Google Scholar 

  62. J.J. Liu, X.L. Zhang, Z.X. Cong, Z.T. Chen, H.H. Yang, G.N. Chen, Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites. Nanoscale 5(5), 1810–1815 (2013)

    Article  ADS  Google Scholar 

  63. Q. Mei, C. Jiang, G. Guan, K. Zhang, B. Liu, R. Liu et al., Fluorescent graphene oxide logic gates for discrimination of iron (3+) and iron (2+) in living cells by imaging. Chem. Commun. 48(60), 7468–7470 (2012)

    Article  Google Scholar 

  64. A.A. Nahain, J.E. Lee, I. In, H. Lee, K.D. Lee, J.H. Jeong et al., Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol. Pharm. 10(10), 3736–3744 (2013)

    Article  Google Scholar 

  65. J. Ge, M. Lan, B. Zhou, W. Liu, L. Guo, H. Wang et al., A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596 (2014)

    Article  Google Scholar 

  66. X.T. Zheng, A. Than, A. Ananthanaraya, D.H. Kim, P. Chen, Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 7(7), 6278–6286 (2013)

    Article  Google Scholar 

  67. P. Mansfield, Snapshot magnetic resonance imaging (nobel lecture). Angew. Chem. Int. Ed. Engl. 43(41), 5456–5464 (2004)

    Article  Google Scholar 

  68. P.E.J. Caravan, T.J. McMurry, R.B. Lauffer, Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99(9), 2293–2352 (1999)

    Article  Google Scholar 

  69. G.J.M.W. Strijkers, G.A. van Tilborg, K. Nicolay, MRI contrast agents: current status and future perspectives. Anticancer Agents Med. Chem. 7(3), 291–305 (2007)

    Article  Google Scholar 

  70. S. Kanakia, J.D. Toussaint, S.M. Chowdhury, G. Lalwani, T. Tembulkar, T. Button et al., Physicochemical characterization of a novel graphene-based magnetic resonance imaging contrast agent. Int J Nanomedicine. 8, 2821–2833 (2013)

    Google Scholar 

  71. A. Gizzatov, V. Keshishian, A. Guven, A.M. Dimiev, F. Qu, R. Muthupillai et al., Enhanced MRI relaxivity of aquated Gd3+ ions by carboxyphenylated water-dispersed graphene nanoribbons. Nanoscale 6(6), 3059–3063 (2014)

    Article  ADS  Google Scholar 

  72. H.B. Na, I.C. Song, T. Hyeon, Inorganic nanoparticles for MRI contrast aAgents. Adv. Mater. 21(21), 2133–2148 (2009)

    Article  Google Scholar 

  73. H. Li, J.M. Melnyczuk, L.I. Lewis, S. Palchoudhury, J. Wu, P. Nagappan et al., Selectively self-assembling graphene nanoribbons with shaped iron oxide nanoparticles. RSC Adv. 4(62), 33127 (2014)

    Article  Google Scholar 

  74. W. Chen, P. Yi, Y. Zhang, L. Zhang, Z. Deng, Z. Zhang, Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl. Mater. Interfaces 3(10), 4085–4091 (2011)

    Article  Google Scholar 

  75. X. Shi, H. Gong, Y. Li, C. Wang, L. Cheng, Z. Liu, Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 34(20), 4786–4793 (2013)

    Article  Google Scholar 

  76. E. Peng, E.S.G. Choo, P. Chandrasekharan, C.-T. Yang, J. Ding, K.-H. Chuang et al., Synthesis of manganese ferrite/graphene oxide nanocomposites for biomedical applications. Small 8(23), 3620–3630 (2012)

    Article  Google Scholar 

  77. M.L. Chen, L.M. Shen, S. Chen, H. Wang, X.W. Chen, J.H. Wang, In situ growth of β-FeOOH nanorods on graphene oxide with ultra-high relaxivity for in vivo magnetic resonance imaging and cancer therapy. J. Mater. Chem. B Biol. Med. 1, 2582–2589 (2013)

    Article  Google Scholar 

  78. Y. Wang, R. Huang, G. Liang, Z. Zhang, P. Zhang, S. Yu et al., MRI-visualized, dual-targeting, combined tumor therapy using magnetic graphene-based mesoporous silica. Small 10(1), 109–116 (2014)

    Article  ADS  Google Scholar 

  79. K. Dey, A. Ghosh, P. Modak, A. Indra, S. Majumdar, S. Giri, Tuning of multiferroic orders correlated to oxygen stoichiometry in magnetite films. Appl. Phys. Lett. 105(14), 142905 (2014)

    Article  ADS  Google Scholar 

  80. J. Lin, X. Chen, P. Huang, Graphene-based nanomaterials for bioimaging. Adv. Drug Deliv. Rev. 105, 242–254 (2016)

    Article  Google Scholar 

  81. D.W. Hwang, Radio-graphene in theranostic perspectives. Nucl. Med. Mol. Imaging. 51, 1–5 (2016)

    Article  Google Scholar 

  82. J.M. Craft, R.A. De Silva, K.A. Lears, R. Andrews, K. Liang, S. Achilefu et al., In vitro and in vivo evaluation of a 64Cu-labeled NOTA-Bn-SCN-Aoc-bombesin analogue in gastrin-releasing peptide receptor expressing prostate cancer. Nucl. Med. Biol. 39, 609–616 (2012)

    Article  Google Scholar 

  83. C.M. Kang, S.M. Kim, H.J. Koo, M.S. Yim, K.H. Lee, E.K. Ryu et al., In vivo characterization of 68Ga-NOTA-VEGF 121 for the imaging of VEGF receptor expression in U87MG tumor xenograft models. Eur. J. Nucl. Med. Mol. Imaging 40, 198–206 (2013)

    Article  Google Scholar 

  84. C.J. Choy, X. Ling, J.J. Geruntho, S.K. Beyer, J.D. Latoche, B. Langton-Webster et al., 177Lu-labeled phosphoramidate-based PSMA inhibitors: the effect of an albumin binder on biodistribution and therapeutic efficacy in prostate tumor-bearing mice. Theranostics 7, 1928–1939 (2017)

    Article  Google Scholar 

  85. J.P. Meyer, P. Adumeau, J.S. Lewis, B.M. Zeglis, Click chemistry and radiochemistry: the first 10 years. Bioconjug. Chem. 27, 2791–2807 (2016)

    Article  Google Scholar 

  86. D. Prim, F. Rebeaud, V. Cosandey, R. Marti, P. Passeraub, M.E. Pfeifer, ADIBO-based “click” chemistry for diagnostic peptide micro-array fabrication: physicochemical and assay characteristics. Molecules 18, 9833–9849 (2013)

    Article  Google Scholar 

  87. H. Hong, K. Yang, Y. Zhang, J.W. Engle, L. Feng, Y. Yang et al., In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano. 6, 2361–2370 (2012)

    Article  Google Scholar 

  88. H. Hong, Y. Zhang, J.W. Engle, T.R. Nayak, C.P. Theuer, R.J. Nickles et al., In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene. Biomaterials 33, 4147–4156 (2012)

    Article  Google Scholar 

  89. D. Yang, L. Feng, C.A. Dougherty, K.E. Luker, D. Chen, M.A. Cauble et al., In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 104, 361–371 (2016)

    Article  Google Scholar 

  90. S. Shi, K. Yang, H. Hong, F. Chen, H.F. Valdovinos, S. Goel et al., VEGFR targeting leads to significantly enhanced tumor uptake of nanographene oxide in vivo. Biomaterials 39, 39–46 (2015)

    Article  Google Scholar 

  91. H.J. Im, C.G. England, L.Z. Feng, S.A. Graves, R. Hernandez, R.J. Nickles et al., Accelerated blood clearance phenomenon reduces the passive targeting of PEGylated nanoparticles in peripheral arterial disease. ACS Appl. Mater. Interfaces 8, 17955–17963 (2016)

    Article  Google Scholar 

  92. C.G. England, H.J. Im, L.Z. Feng et al., Re-assessing the enhanced permeability and retention effect in peripheral arterial disease using radiolabeled long circulating nanoparticles. Biomaterials 100, 101–109 (2016)

    Article  Google Scholar 

  93. B. Cornelissen, S. Able, V. Kersemans, P.A. Waghorn, S. Myhra, K. Jurkshat et al., Nanographene oxide-based radioimmunoconstructs for in vivo targeting and SPECT imaging of HER2-positive tumors. Biomaterials 34, 1146–1154 (2013)

    Article  Google Scholar 

  94. Y. Fazaeli, O. Akhavan, R. Rahighi, M.R. Aboudzadeh, E. Karimi, H. Afarideh, In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater. Sci. Eng. C Mater. Biol. Appl. 45, 196–204 (2014)

    Article  Google Scholar 

  95. K. Yang, J.M. Wan, S.A. Zhang, Y.J. Zhang, S.T. Lee, Z.A. Liu, In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 5, 516–522 (2011)

    Article  Google Scholar 

  96. F.M. Lu, Z. Yuan, PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 5, 433–447 (2015)

    Google Scholar 

  97. J. Song, X. Yang, O. Jacobson, L. Lin, P. Huang, G. Niu et al., Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano. 9, 9199–9209 (2015)

    Article  Google Scholar 

  98. T.H. Tran, H.T. Nguyen, T.T. Pham, J.Y. Choi, H.G. Choi, C.S. Yong et al., Development of a graphene oxide nanocarrier for dual-drug chemo-phototherapy to overcome drug resistance in cancer. ACS Appl. Mater. Interfaces 7, 28647–28655 (2015)

    Article  Google Scholar 

  99. L. Zhou, L. Zhou, S. Wei, X. Ge, J. Zhou, H. Jiang et al., Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. J. Photochem. Photobiol. B 5(135), 7–16 (2014)

    Article  Google Scholar 

  100. B. Lewis, E. Chalhoub, C. Chalouhy, O. Sartor, Radium-223 in bone-metastatic prostate cancer: current data and future prospects. Oncology 29, 483–488 (2015)

    Google Scholar 

  101. D.A. Scheinberg, M.R. McDevitt, Actinium-225 in targeted alpha-particle therapeutic applications. Curr. Radiopharm. 4, 306–320 (2011)

    Article  Google Scholar 

  102. L. Chen, X. Zhong, X. Yi, M. Huang, P. Ning, T. Liu et al., Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials 66, 21–28 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Hee Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoo, J.M., Hwang, D.W., Hong, B.H. (2018). Graphene-Based Nanomaterials. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_4

Download citation

Publish with us

Policies and ethics