Skip to main content

Mechanical Forces in Tumor Angiogenesis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1092))

Abstract

A defining hallmark of cancer and cancer development is upregulated angiogenesis. The vasculature formed in tumors is structurally abnormal, not organized in the conventional hierarchical arrangement, and more permeable than normal vasculature. These features contribute to leaky, tortuous, and dilated blood vessels, which act to create heterogeneous blood flow, compression of vessels, and elevated interstitial fluid pressure. As such, abnormalities in the tumor vasculature not only affect the delivery of nutrients and oxygen to the tumor, but also contribute to creating an abnormal tumor microenvironment that further promotes tumorigenesis. The role of chemical signaling events in mediating tumor angiogenesis has been well researched; however, the relative contribution of physical cues and mechanical regulation of tumor angiogenesis is less understood. Growing research indicates that the physical microenvironment plays a significant role in tumor progression and promoting abnormal tumor vasculature. Here, we review how mechanical cues found in the tumor microenvironment promote aberrant tumor angiogenesis. Specifically, we discuss the influence of matrix stiffness and mechanical stresses in tumor tissue on tumor vasculature, as well as the mechanosensory pathways utilized by endothelial cells to respond to the physical cues found in the tumor microenvironment. We also discuss the impact of the resulting aberrant tumor vasculature on tumor progression and therapeutic treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The MMTV-PyMT transgenic mouse model is widely used to study mammary tumor progression and metastasis. In the MMTV-PyMT model, mammary gland-specific expression of the polyoma middle T antigen (PyMT) oncogene driven by the upstream mouse mammary tumor virus (MMTV) long terminal repeat promoter results in mammary epithelium transformation and rapid development of multifocal mammary adenocarcinomas and metastatic lesions.

References

  1. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switchduring tumorigenesis. Cell 86:353–364

    Article  CAS  PubMed  Google Scholar 

  2. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  3. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410

    Article  CAS  PubMed  Google Scholar 

  4. Less JR et al (1991) Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 51(265):265–273

    CAS  PubMed  Google Scholar 

  5. Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1):102–111

    Article  CAS  PubMed  Google Scholar 

  6. Dudley AC (2012) Tumor endothelial cells. Cold Spring Harb Perspect Med 2(3):1–18

    Article  CAS  Google Scholar 

  7. Aird WC (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2(1):a006429–a006429

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aird WC (2009) Molecular heterogeneity of tumor endothelium. Cell Tissue Res 335(1):271–281

    Article  CAS  PubMed  Google Scholar 

  9. Hashizume H et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hobbs SK et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci 95(8):4607–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dvorak HF et al (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132

    CAS  PubMed  Google Scholar 

  12. Bordeleau F et al (2017) Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci 114(3):492–497

    Article  CAS  PubMed  Google Scholar 

  13. Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5):605–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Daley WP, Peters SB, Larsen M (2008) Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121(3):255–264

    Article  CAS  PubMed  Google Scholar 

  16. Kim DH et al (2012) Matrix nanotopography as a regulator of cell function. J Cell Biol 197(3):351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mongiat, M et al (2016) Extracellular matrix, a hard player in angiogenesis. Int J Mol Sci 17(11):1822

    Article  PubMed Central  CAS  Google Scholar 

  19. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137(9):1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Provenzano PP et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4(1):38–38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wiseman BS (2002) Stromal effects on mammary gland development and breast cancer. Science 296(5570):1046–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9(2):108–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grassian AR, Coloff JL, Brugge JS (2011) Extracellular matrix regulation of metabolism and implications for tumorigenesis. Cold Spring Harb Symp Quant Biol 76:313–324

    Article  CAS  PubMed  Google Scholar 

  25. Morris BA et al (2016) Collagen matrix density drives the metabolic shift in breast cancer cells. EBioMedicine 13:146–156

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paszek MJ et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  CAS  PubMed  Google Scholar 

  27. Wozniak MA et al (2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163(3):583–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Provenzano PP et al (2009) Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 28(49):4326–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samani A et al (2003) Measuring the elastic modulus of ex vivo small tissue samples. Phys Med Biol 48(14):2183–2198

    Article  PubMed  Google Scholar 

  30. Gefen A, Dilmoney B (2007) Mechanics of the normal woman’s breast. Technol Health Care 15(4):259–271

    PubMed  Google Scholar 

  31. Jain RK (1994) Barriers to drug delivery in solid tumors. Sci Am 271(1):58–65

    Article  CAS  PubMed  Google Scholar 

  32. Less JR et al (1992) Interstitial hypertension in human breast and colorectal tumors. Cancer Res 52(22):6371–6374

    CAS  PubMed  Google Scholar 

  33. Nathanson SD, Nelson L (1994) Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Ann Surg Oncol 1(4):333–338

    Article  CAS  PubMed  Google Scholar 

  34. Stylianopoulos T et al (2012) Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci 109(38):15101–15108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67(6):2729–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ebihara T et al (2000) Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis. Temporal aspects. Am J Respir Crit Care Med 162(4):1569–1576

    Article  CAS  PubMed  Google Scholar 

  37. Aukland K, Reed RK (1993) Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73(1):1–78

    Article  CAS  PubMed  Google Scholar 

  38. Mori T et al (2015) Interstitial fluid pressure correlates clinicopathological factors of lung cancer. Ann Thorac Cardiovasc Surg 21(3):201–208

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kumar S, Weaver VM (2009) Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 28(1–2):113–127

    Article  PubMed  PubMed Central  Google Scholar 

  40. Boucher Y et al (1997) Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br J Cancer 75(6):829–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arbit E, Lee J, Diresta G (1994) Interstitial hypertension in human brain tumors: possible role in peritumoral edema formation. In: Nagai H, Kamlya K (eds) Intracranial pressure, 9th edn. Springer, Tokyo

    Google Scholar 

  42. Goel S et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121

    Article  CAS  PubMed  Google Scholar 

  43. Navalitloha Y et al (2006) Therapeutic implications of tumor interstitial fluid pressure in subcutaneous RG-2 tumors. Neuro-Oncology 8(3):227–233

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nia HT et al (2016) Solid stress and elastic energy as measures of tumour mechanopathology. Nat Biomed Eng 1. https://doi.org/10.1038/s41551-016-0004

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guyton AC, Hall JE (2006) Textbook of medical physiology, Guyton physiology series. Elsevier Saunders, Amsterdam

    Google Scholar 

  46. Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47(4):1394–1400

    Article  CAS  PubMed  Google Scholar 

  47. Yeh WC et al (2002) Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med Biol 28(4):467–474

    Article  PubMed  Google Scholar 

  48. Hori K et al (1986) Increased tumor tissue pressure in association with the growth of rat tumors. Jpn J Cancer Res 77(1):65–73

    CAS  PubMed  Google Scholar 

  49. Kawano S et al (2015) Assessment of elasticity of colorectal cancer tissue, clinical utility, pathological and phenotypical relevance. Cancer Sci 106(9):1232–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnson LA et al (2013) Matrix stiffness corresponding to strictured bowel induces a fibrogenic response in human colonic fibroblasts. Inflamm Bowel Dis 19(5):891–903

    Article  PubMed  Google Scholar 

  51. Nebuloni M et al (2016) Insight on colorectal carcinoma infiltration by studying perilesional extracellular matrix. Sci Rep 6:22522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Netti PA et al (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60:2497–2503

    CAS  PubMed  Google Scholar 

  53. Stanczyk M et al (2010) Lack of functioning lymphatics and accumulation of tissue fluid/lymph in interstitial “lakes” in colon cancer tissue. Lymphology 43(4):158–167

    CAS  PubMed  Google Scholar 

  54. Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matter 3:2990306

    Article  Google Scholar 

  55. Lee JW et al (2011) Palpation device for the identification of kidney and bladder cancer: a pilot study. Yonsei Med J 52(5):768–772

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wortman T, Hsu F, Slocum A (2016) A novel phantom tissue model for skin elasticity quantification. ASME J Med Devices 10(2):020961

    Article  Google Scholar 

  57. Boucher Y et al (1991) Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res 51(24):6691–6694

    CAS  PubMed  Google Scholar 

  58. Rice AJ et al (2017) Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogene 6(7):e352

    Article  CAS  Google Scholar 

  59. Provenzano PP et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3):418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zysset PK et al (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32(10):1005–1012

    Article  CAS  PubMed  Google Scholar 

  61. Odgaard A, Linde F (1991) The underestimation of Young’s modulus in compressive testing of cancellous bone specimens. J Biomech 24(8):691–698

    Article  CAS  PubMed  Google Scholar 

  62. Nathan SS et al (2008) Tumor interstitial fluid pressure may regulate angiogenic factors in osteosarcoma. J Orthop Res 26(11):1520–1525

    Article  PubMed  Google Scholar 

  63. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97(11):1093–1107

    Article  CAS  PubMed  Google Scholar 

  64. Ingber DE, Folkman J (1989) Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 109(1):317–330

    Article  CAS  PubMed  Google Scholar 

  65. Vailhé B et al (1997) In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to alpha(v)beta3 integrin localization. In Vitro Cell Dev Biol Anim 33(10):763–773

    Article  PubMed  Google Scholar 

  66. Ghajar CM et al (2008) The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys J 94(5):1930–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rao RR et al (2012) Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen fibrin materials. Angiogenesis 15(2):253–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kniazeva E, Putnam AJ (2009) Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am J Physiol Cell Physiol 297(1):C179–C187

    Article  CAS  PubMed  Google Scholar 

  69. Mason BN et al (2013) Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater 9(1):4635–4644

    Article  CAS  PubMed  Google Scholar 

  70. Sieminski AL, Hebbel RP, Gooch KJ (2004) The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp Cell Res 297(2):574–584

    Article  CAS  PubMed  Google Scholar 

  71. LaValley DJ, Reinhart-King CA (2014) Matrix stiffening in the formation of blood vessel. Adv Regen Biol 1:1–18

    Google Scholar 

  72. Wu Y, Al-Ameen MA, Ghosh G (2014) Integrated effects of matrix mechanics and vascular endothelial growth factor (VEGF) on capillary sprouting. Ann Biomed Eng 42(5):1024–1036

    Article  PubMed  Google Scholar 

  73. Cox TR, Erler JT (2011) Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 4(2):165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19(1):677–695

    Article  CAS  PubMed  Google Scholar 

  75. Ingber DE (1991) Integrins as mechanochemical transducers. Curr Opin Cell Biol 3(5):841–848

    Article  CAS  PubMed  Google Scholar 

  76. Polet F, Feron O (2013) Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med 273(2):156–165

    Article  CAS  PubMed  Google Scholar 

  77. Liu Z et al (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci 107(22):9944–9949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Croix BS et al (2000) Genes expressed in human tumor endothelium. Science 289(5482):1197–1202

    Article  Google Scholar 

  79. Bussolati B et al (2003) Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J 17(9):1159–1161

    Article  CAS  PubMed  Google Scholar 

  80. Ghosh K et al (2008) Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci 105(32):11305–11310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Francis-Sedlak ME et al (2010) Collagen glycation alters neovascularization in vitro and in vivo. Microvasc Res 80(1):3–9

    Article  CAS  PubMed  Google Scholar 

  82. Lee PF et al (2013) Angiogenic responses are enhanced in mechanically and microscopically characterized, microbial transglutaminase crosslinked collagen matrices with increased stiffness. Acta Biomater 9(7):7178–7190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Whittington CF, Yoder MC, Voytik-Harbin SL (2013) Collagen-polymer guidance of vessel network formation and stabilization by endothelial colony forming cells in vitro. Macromol Biosci 13(9):1135–1149

    Article  CAS  PubMed  Google Scholar 

  84. Yao C et al (2008) The effect of cross-linking of collagen matrices on their angiogenic capability. Biomaterials 29(1):66–74

    Article  CAS  PubMed  Google Scholar 

  85. Yamamura N et al (2007) Effects of the mechanical properties of collagen gel on the in vitro formation of microvessel networks by endothelial cells. Tissue Eng 13(7):1443–1453

    Article  CAS  PubMed  Google Scholar 

  86. Fantozzi A, Christofori G (2006) Mouse models of breast cancer metastasis. Breast Cancer Res 8(4):212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17(1):463–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Haage A, Schneider IC (2014) Cellular contractility and extracellular matrix stiffness regulate matrix metalloproteinase activity in pancreatic cancer cells. FASEB J 28(8):3589–3599

    Article  CAS  PubMed  Google Scholar 

  89. Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16(1):321–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stylianopoulos T et al (2013) Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res 73(13):3833–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Harris AK, Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290(5803):249–251

    Article  CAS  PubMed  Google Scholar 

  92. Miron-Mendoza M, Seemann J, Grinnell F (2008) Collagen fibril flow and tissue translocation coupled to fibroblast migration in 3D collagen matrices. Mol Biol Cell 19(5):2051–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shi Q et al (2014) Rapid disorganization of mechanically interacting systems of mammary acini. Proc Natl Acad Sci 111(2):658–663

    Article  CAS  PubMed  Google Scholar 

  94. Wang H et al (2014) Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys J 107(11):2592–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kilarski WW et al (2009) Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 15(6):657–664

    Article  CAS  PubMed  Google Scholar 

  96. Korff T, Augustin HG (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112(19):3249–3258

    CAS  PubMed  Google Scholar 

  97. Kenyon BM et al (1996) A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37(8):1625–1632

    CAS  PubMed  Google Scholar 

  98. Lockhart AC et al (2003) A clinical model of dermal wound angiogenesis. Wound Repair Regen 11(4):306–313

    Article  PubMed  Google Scholar 

  99. Padera TP et al (2004) Pathology: cancer cells compress intratumour vessels. Nature 427(6976):695

    Article  CAS  PubMed  Google Scholar 

  100. Boucher Y, Jain RK (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 52(18):5110–5114

    CAS  PubMed  Google Scholar 

  101. Potente M, Mäkinen T (2017) Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 18(8):477

    Google Scholar 

  102. Helmlinger G et al (1991) Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng 113(2):123–131

    Article  CAS  PubMed  Google Scholar 

  103. Wang Y et al (2007) Selective adapter recruitment and differential signaling networks by VEGF vs. shear stress. Proc Natl Acad Sci 104(21):8875–8879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kappas NC et al (2008) The VEGF receptor Flt-1 spatially modulates Flk-1 signaling and blood vessel branching. J Cell Biol 181(5):847–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Price GM et al (2010) Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31(24):6182–6189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci 108(37):15342–15347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Galie Pa et al (2014) Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci 111(22):7968–7973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Vickerman V, Kamm RD (2012) Mechanism of a flow-gated angiogenesis switch: early signaling events at cell–matrix and cell–cell junctions. Integr Biol 4(8):863–874

    Article  CAS  Google Scholar 

  109. Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14(1):53–65

    Article  CAS  PubMed  Google Scholar 

  110. Chauhan VP et al (2014) Compression of pancreatic tumor blood vessels by hyaluronan is caused by solid stress and not interstitial fluid pressure. Cancer Cell 26(1):14–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J Cell Biochem 96(6):1110–1126

    Article  CAS  PubMed  Google Scholar 

  112. Li YSJ, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38(10):1949–1971

    Article  PubMed  Google Scholar 

  113. Kutys ML, Chen CS (2016) Forces and mechanotransduction in 3D vascular biology. Curr Opin Cell Biol 42:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Conway DE et al (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23(11):1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci 94(3):849–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stevenson RP, Veltman D, Machesky LM (2012) Actin-bundling proteins in cancer progression at a glance. J Cell Sci 125:1073–1079

    Article  CAS  PubMed  Google Scholar 

  117. Alenghat FJ, Ingber DE (2002) Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci Signal 2002(119):pe6

    Article  Google Scholar 

  118. Schwarz US, Gardel ML (2012) United we stand – integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction. J Cell Sci 125(13):3051–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Katsumi A et al (2004) Integrins in mechanotransduction. J Biol Chem 279(13):12001–12004

    Article  CAS  PubMed  Google Scholar 

  120. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1033

    Article  CAS  PubMed  Google Scholar 

  121. Miranti CK, Brugge JS (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4(4):E83–E90

    Article  CAS  PubMed  Google Scholar 

  122. Matthews BD et al (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119(3):508–518

    Article  CAS  PubMed  Google Scholar 

  123. Reinhart-King CA, Dembo M, Hammer DA (2005) The dynamics and mechanics of endothelial cell spreading. Biophys J 89(1):676–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zanotelli MR, Bordeleau F, Reinhart-King CA (2017) Subcellular regulation of cancer cell mechanics. Curr Opin Biomed Eng 1:8–14

    Article  Google Scholar 

  125. Kraning-Rush CM, Califano JP, Reinhart-King CA (2012) Cellular traction stresses increase with increasing metastatic potential. PLoS One 7(2):e32572–e32572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Weis SM, Cheresh DA (2011) αV integrins in angiogenesis and cancer. Cold Spring Harb Perspect Med 1(1):1–14

    Article  CAS  Google Scholar 

  127. Paszek MJ, Weaver VM (2004) The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 9(4):325–342

    Article  PubMed  Google Scholar 

  128. Tzima E et al (2001) Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20(17):4639–4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nikolopoulos SN et al (2004) Integrin β4 signaling promotes tumor angiogenesis. Cancer Cell 6(5):471–483

    Article  CAS  PubMed  Google Scholar 

  130. Ruoslahti E (2000) Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol 10(6):435–442

    Article  CAS  PubMed  Google Scholar 

  131. Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2(2):83–90

    Article  PubMed  Google Scholar 

  132. Senger DR et al (1997) Angiogenesis promoted by vascular endothelial growth factor: regulation through α1β1 and α2β1 integrins. Proc Natl Acad Sci 94(25):13612–13617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Senger D et al (2002) The α1β1 and α2β1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160(1):195–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim S et al (2000) Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin. Am J Pathol 156(4):1345–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Brooks PC et al (1994) Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7):1157–1164

    Article  CAS  PubMed  Google Scholar 

  136. Friedlander M et al (1995) Definition of two angiogenic pathways by distinct αv integrins. Science 270(5241):1500–1502

    Article  CAS  PubMed  Google Scholar 

  137. Hood JD et al (2003) Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 162(5):933–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brooks PC, Clark RAF, Cheresh DA (1994) Requirement of vascular integrin αvβ3 for angiogenesis. Science 264(5158):569–571

    Article  CAS  PubMed  Google Scholar 

  139. Soldi R et al (1999) Role of αvβ3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18(4):882–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Borges E, Jan Y, Ruoslahti E (2000) Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J Biol Chem 275(51):39867–39873

    Article  CAS  PubMed  Google Scholar 

  141. Brooks PC et al (1995) Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Investig 96(4):1815–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Erdreich-Epstein A et al (2000) Integrins alpha(v)beta3 and alpha(v)beta5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Res 60(3):712–721

    CAS  PubMed  Google Scholar 

  143. Eliceiri BP, Cheresh Da (1999) The role of αv integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Dev 103(9):1227–12330

    CAS  Google Scholar 

  144. Kumar CC et al (2001) Inhibition of angiogenesis and tumor growth by SCH221153, a dual alpha(v)beta3 and alpha(v)beta5 integrin receptor antagonist. Cancer Res 61(5):2232–2238

    CAS  PubMed  Google Scholar 

  145. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84(3):869–901

    Article  CAS  PubMed  Google Scholar 

  146. Dorland YL, Huveneers S (2017) Cell–cell junctional mechanotransduction in endothelial remodeling. Cell Mol Life Sci 74(2):279–292

    Article  CAS  PubMed  Google Scholar 

  147. Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10(1):53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lakshmikanthan S et al (2015) Rap1 promotes endothelial mechanosensing complex formation, NO release and normal endothelial function. EMBO Rep 16(5):628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Coon BG et al (2015) Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. J Cell Biol 208(7):975–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Conway D, Schwartz MA (2012) Lessons from the endothelial junctional mechanosensory complex. F1000 Biol Rep 4(1):2–7

    Google Scholar 

  151. Collins C et al (2012) Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway. Curr Biol 22(22):2087–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Murakami M, Simons M (2009) Regulation of vascular integrity. J Mol Med 87(6):571–582

    Article  PubMed  Google Scholar 

  153. Fraccaroli A et al (2015) Endothelial alpha-parvin controls integrity of developing vasculature and is required for maintenance of cell–cell junctions. Circ Res 117(1):19–40

    Article  CAS  Google Scholar 

  154. Huynh J et al (2011) Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med 3(112):112ra122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Mazzone M et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Giannotta M, Trani M, Dejana E (2013) VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell 26(5):441–454

    Article  CAS  PubMed  Google Scholar 

  157. van Nieuw Amerongen GP et al (2003) Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol 23(2):211–217

    Article  PubMed  Google Scholar 

  158. Shay-salit A et al (2002) VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci 99(14):9462–9467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502

    Google Scholar 

  160. Kubo H et al (2000) Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96(2):546–553

    CAS  PubMed  Google Scholar 

  161. Laakkonen P et al (2007) Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 67(2):593–599

    Article  CAS  PubMed  Google Scholar 

  162. Mammoto A et al (2009) A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457(7233):1103–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sack KD, Teran M, Nugent MA (2016) Extracellular matrix stiffness controls vegf signaling and processing in endothelial cells. J Cell Physiol 231(9):2026–2039

    Article  CAS  PubMed  Google Scholar 

  164. Yang MT, Reich DH, Chen CS (2011) Measurement and analysis of traction force dynamics in response to vasoactive agonists. Integr Biol 3(6):663–674

    Article  CAS  Google Scholar 

  165. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ogawa K et al (2000) The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19(52):6043–6052

    Article  CAS  PubMed  Google Scholar 

  167. Shin D et al (2001) Expression of EphrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 230(2):139–150

    Article  CAS  PubMed  Google Scholar 

  168. Gale NW et al (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230(2):151–160

    Article  CAS  PubMed  Google Scholar 

  169. Martial S (2016) Involvement of ion channels and transporters in carcinoma angiogenesis and metastasis. Am J Physiol Cell Physiol 310(9):C710–C727

    Article  PubMed  Google Scholar 

  170. Liberati S et al (2013) Oncogenic and anti-oncogenic effects of transient receptor potential channels. Curr Top Med Chem 13(3):344–366

    Article  CAS  PubMed  Google Scholar 

  171. Lehen'kyi V, Prevarskaya N (2011) Oncogenic TRP channels. Adv Exp Med Biol 704:929–945

    Article  CAS  PubMed  Google Scholar 

  172. Lehen’kyi V, Prevarskaya N (2011) Study of TRP channels in cancer cells. In: Zhu MX (ed) TRP channels. CRC Press/Taylor & Francis. Llc., Boca Raton (FL)

    Google Scholar 

  173. Kwan H-Y, Huang Y, Yao X (2007) TRP channels in endothelial function and dysfunction. Biochim Biophys Acta 1772(8):907–914

    Article  CAS  PubMed  Google Scholar 

  174. Adapala RK et al (2016) Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy. Oncogene 35(3):314–322

    Article  CAS  PubMed  Google Scholar 

  175. Thoppil RJ et al (2016) TRPV4 channels regulate tumor angiogenesis via modulation of Rho/Rho kinase pathway. Oncotarget 7(18): 25849–25861

    Article  PubMed  PubMed Central  Google Scholar 

  176. Thodeti CK et al (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104(9):1123–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci 103(42):15463–15468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7(2):79–94

    Article  CAS  PubMed  Google Scholar 

  179. Richard DE, Vouret-Craviari V, Pouysségur J (2001) Angiogenesis and G-protein-coupled receptors: signals that bridge the gap. Oncogene 20(1):1556–1562

    Article  CAS  PubMed  Google Scholar 

  180. O'Hayre M, Degese MS, Gutkind JS (2014) Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol 27:126–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Pai R et al (2001) PGE2 stimulates VEGF expression in endothelial cells via ERK2/JNK1 signaling pathways. Biochem Biophys Res Commun 286(5):923–928

    Article  CAS  PubMed  Google Scholar 

  182. Visentin B et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9(3):225–238

    Article  CAS  PubMed  Google Scholar 

  183. Vouret-Craviari V, Grall D, Van Obberghen-Schilling E (2003) Modulation of Rho GTPase activity in endothelial cells by selective proteinase-activated receptor (PAR) agonists. J Thromb Haemost 1(5):1103–1111

    Article  CAS  PubMed  Google Scholar 

  184. Evan-Ram S et al (1998) Thrombin receptor overexpression in malignant and physiological invasion processes. Nature 4(8):909–914

    Google Scholar 

  185. McDonald DM, Baluk P (2002) Significance of blood vessel leakiness in cancer. Cancer Res 62(18):5381–5385

    Google Scholar 

  186. Pries AR et al (2010) The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 10(8):587–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Kamoun WS et al (2010) Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nat Methods 7(8):655–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Baish JW et al (2011) Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc Natl Acad Sci 108(5):1799–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chauhan VP et al (2011) Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng 2(1):281–298

    Article  CAS  PubMed  Google Scholar 

  190. Heldin C-H et al (2004) High interstitial fluid pressure — an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813

    Article  CAS  PubMed  Google Scholar 

  191. Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31(17):2205–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Hurwitz H (2004) Integrating the anti-VEGF-A humanized monoclonal antibody bevacizumab with chemotherapy in advanced colorectal cancer. Clin Colorectal Cancer 4(Suppl 2):S62–S68

    Article  CAS  PubMed  Google Scholar 

  193. Maes H et al (2014) Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26(2):190–206

    Article  CAS  PubMed  Google Scholar 

  194. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  CAS  PubMed  Google Scholar 

  195. Welti J et al (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Investig 123(8):3190–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  CAS  PubMed  Google Scholar 

  198. Nagy JA et al (2009) Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer 100(6):865–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410

    Article  CAS  PubMed  Google Scholar 

  200. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    Article  CAS  PubMed  Google Scholar 

  201. Minchinton AI, Tannock IF (2006) Drug penetration in solid tumours. Nat Rev Cancer 6(8):583–592

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Heart, Lung, and Blood Institute (HL127499) to CAR-K and a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1650441 to MRZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia A. Reinhart-King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zanotelli, M.R., Reinhart-King, C.A. (2018). Mechanical Forces in Tumor Angiogenesis. In: Dong, C., Zahir, N., Konstantopoulos, K. (eds) Biomechanics in Oncology. Advances in Experimental Medicine and Biology, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-319-95294-9_6

Download citation

Publish with us

Policies and ethics