Skip to main content

On the Nested Hierarchical Organization of CNS: Basic Characteristics of Neuronal Molecular Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3146))

Abstract

It has been suggested that the Central Nervous System(CNS) is built as a “nested system of networks of networks” structured according to hierarchical principles. Thus, it is possible to recognize networks at multiple scales (miniaturisation principle) moving top-down from neuronal to molecular networks. Such a nested organization of the CNS leads to the problem how circulation and integration of information at different levels of miniaturisation (i.e., macro-scale, meso-scale and micro-scale) take place. We suggest that local circuits are the highly specialised meso-scale level capable of functionally interconnecting macro- with micro-scale level. Furthermore, it is suggested that the same modes for communication (Wiring and Volume Transmission) are in operation at various miniaturisation levels. This indicates a sort of “fractal organization” of the CNS. Detailed analysis of molecular networks is discussed. In particular, receptor-receptor interactions are examined as an important input to horizontal molecular networks located at plasma membrane level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kitano, H.: Computational Systems Biology. Nature 420, 206–210 (2002)

    Article  Google Scholar 

  2. Wuchy, S.: Scale-free behaviour in Protein Domain Networks. Mol. Biol. Evol. 18, 1694–1702 (2001)

    Google Scholar 

  3. Barbasi, A.L., Ravasz, E., Vicsek, T.: Deterministic scale-free networks. Phys. Acta 299, 599–604 (2001)

    Google Scholar 

  4. Barbasi, A.L., Albert, R.: Emergence of Scaling Networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small–world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  6. Kitano, H.: Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr. Genet. 41, 1–10 (2002)

    Article  Google Scholar 

  7. Agnati, L.F., Fuxe, K., Battistini, N., Zini, I., Benfenati, F., Merlo Pich, E., Farabegoli, C., Zoli, M., Andersson, K., Harfstrand, A.: Multiple transmission lines in central synapses and their interactions. In: Kemali, D., et al. (eds.) New Research Strategies in Biological Psychiatry, pp. 58–71. John Libbey, London (1984)

    Google Scholar 

  8. Agnati, L.F., Zoli, M., Merlo Pich, E., Benfenati, F., Fuxe, K.: Aspects of neural plasticity in the central nervous system. VII. Theoretical aspects of brain communication and computation. Neurochem. Int. 16, 479–500 (1990)

    Article  Google Scholar 

  9. Carlson, J.M., Doyle, J.: Complexity and robustness. Proc. Natl. Acad. Sci. USA 99, 2538–2545 (2002)

    Article  Google Scholar 

  10. Csete, M.E., Doyle, J.C.: Reverse Engineering of Biological Complexity. Science 295, 1664–1669 (2002)

    Article  Google Scholar 

  11. Bacon, F.: Instauratio Magna. In: Collier, P.F. & Son (eds.) Famous Prefaces, vol. 39, The Harvard Classics, New York (1909-1914)

    Google Scholar 

  12. Agnati, L.F., Fuxe, K.: New concepts on the structure of the neuronal networks: the miniaturization and hierarchical organization of the central nervous system. Biosci. Rep. 4, 93–98 (1984)

    Article  Google Scholar 

  13. Agnati, L.F., Fuxe, K.: Volume transmission as a key feature of information handling in the central nervous system possible new interpretative value of the Turing’s B-type machine. Progr. Brain Res. 125, 3–19 (2000)

    Article  Google Scholar 

  14. Agnati, L.F., Tinner, B., Staines, W.A., Väänäen, K., Fuxe, K.: On the cellular localization and distribution of carbonic anhydrase II immunoreactivity in the rat brain. Brain Res. 676, 10–24 (1995)

    Article  Google Scholar 

  15. Goldman-Rakic, P.: Local Circuit Neurons. Neurosci. Res. Prog. Bull. 13, 299–313 (1975)

    Google Scholar 

  16. Agnati, L.F., Fuxe, K., Ferri, M., Benfenati, F., Ögren, S.O.: A new hypothesis on memory. A possible role of local circuits in the formation of the memory trace. Med. Biol. 59, 224–229 (1981)

    Google Scholar 

  17. Agnati, L.F., Ferré, S., Lluis, C., Franco, R., Fuxe, K.: Molecular Mechanisms and Therapeutical Implications of Intramembrane Receptor / Receptor Interactions among Heptahelical Receptors with Examples from the Striopallidal GABA neurons. Pharmacol. Rev. 55, 509–550 (2003)

    Article  Google Scholar 

  18. Schmitt, F.O., Dev, P., Smith, B.H.: Electrotonic processing of information by brain cells. Science 193, 114–120 (1976)

    Article  Google Scholar 

  19. Metzler, J.: Mental Transformations: A top-Down Analysis. In: Metzler, J. (ed.) Systems Neuroscience, pp. 1–24. Academic Press, New York (1977)

    Google Scholar 

  20. Poo, M.M.: Mobility and localization of proteins in excitable membranes. Annu. Rev. Neurosci. 8, 369–406 (1985)

    Article  Google Scholar 

  21. Agnati, L.F., Santarossa, L.M., Benfenati, F., Ferri, M., Morpurgo, A., Apolloni, B., Fuxe, K.: Molecular basis of learning and memory: modelling based on receptor mosaics. In: Apolloni, B., Kurfess, F. (eds.) From Synapses to Rules, pp. 165–196. Kluwer Academic/Plenum Publishers, New York (2002)

    Google Scholar 

  22. Lauffenburger, D.A.: Cell signalling pathways as control modules: Complexity for simplicity? Proc. Natl. Acad. Sci. USA 97, 5031–5033 (2000)

    Article  Google Scholar 

  23. Bergson, C., Levenson, R., Goldman-Rakic, P.S., Lidow, M.S.: Dopamine-receptorinteracting proteins: the Ca2+ connection in dopamine signaling. Trends Pharmacol. Sci. 24, 486–492 (2003)

    Article  Google Scholar 

  24. Elliott, W.H., Elliott, D.C. (eds.): Biochemistry and Molecular Biology. Oxford University Press, Oxford (2002)

    Google Scholar 

  25. Agnati, L.F., Fuxe, K., Zoli, M., Zini, I., Toffano, G., Ferraguti, F.: A correlation analysis of the regional distribution of central enkephalin and endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Acta Physiol. Scand. 128, 201–207 (1986)

    Article  Google Scholar 

  26. Fuxe, K., Agnati, L.F.: Two principal modes of electrochemical communication in the brain: volume versus wiring transmission. In: Fuxe, K., Agnati, L.F. (eds.) Volume Transmission in the Brain. Novel Mechanisms for Neural Transmission. Advances in Neuroscience, vol. 1, pp. 1–9. Raven Press, New York (1991)

    Google Scholar 

  27. Verkman, A.S.: Solute and macromolecule diffusion in cellular aqueous compartment. Trends Biol. Sci. 27, 27–33 (2002)

    Article  Google Scholar 

  28. Petsko, G.A., Ringe, D.: Protein Structure and Function. Sinauer Associates, Inc. Publisher, Sunderland (2004)

    Google Scholar 

  29. Weng, G., Bhalla, U.S., Iyengar, R.: Complexity in Biological Signalling Systems. Science 284, 92–96 (1999)

    Article  Google Scholar 

  30. Park, S.H., Zarrinpar, A., Lim, W.A.: Rewiring MAP Kinase Pathways Using Alternative Scaffold Assembly Mechanisms. Science 299, 1061–1064 (2003)

    Article  Google Scholar 

  31. Pawson, T.: Protein modules and signalling networks. Nature 373, 573–580 (1995)

    Article  Google Scholar 

  32. Pierce, K.L., Lefkowitz, R.J.: Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat. Rev. Neurosci. 2, 727–733 (2001)

    Article  Google Scholar 

  33. Agnati, L.F., Franzen, O., Ferré, S., Leo, G., Franco, R., Fuxe, K.: Possibile role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia. J. Neural. Transm. 65, 195–222 (2003)

    Google Scholar 

  34. Pawson, T., Scott, J.D.: Signaling Through Scaffold, Anchoring, and Adaptor. Proteins Science 278, 2075–2080 (1997)

    Google Scholar 

  35. Pawson, T., Gish, G.D., Nash, P.: SH2 domains, interaction modules and cellular wiring Trend Cell Biol. Trend Cell Biol. 11, 504–511 (2001)

    Article  Google Scholar 

  36. Lefkowitz, R.J.: The superfamily of heptahelical receptors. Nat. Cell Biol. 2, E133–E136 (2000)

    Google Scholar 

  37. Greengard, P., Nairn, A.C., Girault, J.A., Ouimet, C.C., Snyder, G.L., Fisone, G., Allen, P.B., Fienberg, A., Nishi, A.: The DARPP-32/protein phosphatase-1 cascade: a model for signal integration. Brain Res. Rew. 26, 274–284 (1998)

    Google Scholar 

  38. Hunter, T.: Signalling - 2000 and beyond. Cell 100, 113–127 (2000)

    Article  MathSciNet  Google Scholar 

  39. Agnati, L.F., Fuxe, K., Zini, I., Lenzi, P., Hökfelt, T.: Aspects on receptor regulation and isoreceptor identification. Med. Biol. 58, 182–187 (1980)

    Google Scholar 

  40. Fuxe, K., Agnati, L.F.: Opening address. In: Fuxe, K., Agnati, L.F. (eds.) Receptor-Receptor Interactions. A New Intramembrane Integrative Mechanism, pp. 14–18. MacMillan, London (1987)

    Google Scholar 

  41. Agnati, L.F., Fuxe, K., Zoli, M., Rondanini, C., Ögren, S.O.: New vistas on synaptic plasticity: the receptor mosaic hypothesis of the engram. Med. Biol. 60, 183–190 (1982)

    Google Scholar 

  42. Franco, R., Casado, V., Ciruela, F., Mallol, J., Lluis, C., Canela, E.I.: The clusterarranged cooperative model: a model that accounts for the kinetics of binding to A1 adenosine receptors. Biochemistry 35, 3007–3015 (1996)

    Article  Google Scholar 

  43. Franco, R., Canals, M., Marcellino, D., Ferré, S., Agnati, L.F., Mallol, J., Casado, V., Ciruela, F., Fuxe, K., Lluis, C., Canela, E.I.: Regulation of heptaspanningmembrane- receptor function by dimerization and clustering. Trends Biochem. Sci. 28, 238–243 (2003)

    Article  Google Scholar 

  44. Smith, A.D. (ed.): Oxford Dictionary of Biochemistry and Molecular Biology. Oxford University Press, Oxford (1997)

    Google Scholar 

  45. Lee, S.P., O’Dowd, B.F., George, S.R.: Homo- and hetero-oligomerization of G protein-coupled receptors. Life Sci. 74, 173–180 (2003)

    Article  Google Scholar 

  46. Bockaert, J., Marin, P., Dumuis, A., Fagni, L.: The ‘magic tail’ of G protein-coupled receptors: an anchorage for functional protein networks. FEBS Lett. 546, 65–72 (2003)

    Article  Google Scholar 

  47. Milligan, G., White, J.H.: Protein-Protein interactions at G-protein-coupled receptors. Trends Phramacol. Sci. 22, 513–518 (2001)

    Article  Google Scholar 

  48. Morfis, M., Christopoulos, A., Sexton, P.M.: RAMPs: 5 years on, where to now? Trends Phramacol. Sci. 24, 596–601 (2003)

    Article  Google Scholar 

  49. Ferguson, S.S.G.: Evolving Concepts in G Protein-Coupled Receptor Endocytosis: The Role in Receptor Desensitisation and Signalling. Pharmacol. Rev. 53, 1–24 (2001)

    Google Scholar 

  50. Howard, A.D., McAllister, G., Feighner, S.D., Liu, Q., Nargund, R.P., Van der Ploeg, L.H., Patchett, A.A.: Orphan G-protein-coupled receptors and natural ligand discovery. Trends Phramacol. Sci. 22, 123–140 (2001)

    Google Scholar 

  51. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  Google Scholar 

  52. Edwards, A.S., Scott, J.D.: A-kinase anchoring proteins: protein kinase A and beyond. Curr. Op. Cell Biol. 12, 217–221 (2000)

    Article  Google Scholar 

  53. Fraser, I.D.C., Cong, M., Kim, J., Rollins, E.N., Daaka, Y., Lefkowitz, R.J., Scott, J.D.: Assembly of an A kinase-anchoring protein-beta(2)-adrenergic receptor complex facilitates receptor phosphorylation and signalling. Curr. Biol. 10, 409–412 (2000)

    Article  Google Scholar 

  54. Grant, S.G., Blackstock, W.P.J.: Proteomics in neuroscience: from protein to network. J. Neurosci. 21, 8315–8318 (2001)

    Google Scholar 

  55. Agnati, L.F., Cortelli, P., Biagini, G., Bjelke, B., Fuxe, K.: Different classes of volume transmission signals exist in the central nervous system and are affected by metabolic signals, temperature gradients and pressure waves. Neuroreport 6, 9–12 (1994)

    Article  Google Scholar 

  56. Ikezu, T., Ueda, H., Trapp, B.D., Nishiyama, K., Sha, J.F., Volonte, D., Galbiati, F., Byrd, A.L., Bassell, G., Serizawa, H., Lane, W.S., Lisanti, M.P., Okamoto, T.: Affinity-purification and characterization of caveolins from the brain: differential expression of caveolin-1, -2, and -3 in brain endothelial and astroglial cell types. Brain Res. 804, 177–192 (1998)

    Article  Google Scholar 

  57. Becker, W.M., Kleinsmith, L.J., Hardin, J. (eds.): The World of the Cell, p. 177. The Benjamin, San Francisco (2000)

    Google Scholar 

  58. Hardingham, G.E., Bading, H.: The Yin and Yang of NMDA receptor signaling. Trends Neurosci. 26, 81–89 (2003)

    Article  Google Scholar 

  59. Barco, A., Alarcon, J.M., Kandel, E.R.: Expression of Constitutively Active CREB Protein Facilitates the Late Phase of Long-Term Potentiation by Enhancing Synaptic Capture. Cell 108, 698–703 (2002)

    Article  Google Scholar 

  60. Edelman, G., Gally, J.A.: Degeneracy and complexity in biological systems. Proc. Natl. Acad. Sci. USA 98, 13763–13768 (2001)

    Article  Google Scholar 

  61. Bhalla, U.S., Iyengar, R.: Emergent Properties of Networks of Biological Signalling Pathways. Science 283, 381–387 (1999)

    Article  Google Scholar 

  62. von Newmann, J. (ed.): The Computer and the Brain. New Haven CT, Yale University Press (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agnati, L.F. et al. (2004). On the Nested Hierarchical Organization of CNS: Basic Characteristics of Neuronal Molecular Networks. In: Érdi, P., Esposito, A., Marinaro, M., Scarpetta, S. (eds) Computational Neuroscience: Cortical Dynamics. NN 2003. Lecture Notes in Computer Science, vol 3146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27862-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27862-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22566-9

  • Online ISBN: 978-3-540-27862-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics