Skip to main content

Medical Robotics and Computer-Integrated Surgery

  • Reference work entry

Abstract

The growth of medical robotics since the mid-1980s has been striking. From a few initial efforts in stereotactic brain surgery, orthopaedics, endoscopic surgery, microsurgery, and other areas, the field has expanded to include commercially marketed, clinically deployed systems, and a robust and exponentially expanding research community. This chapter will discuss some major themes and illustrate them with examples from current and past research. Further reading providing a more comprehensive review of this rapidly expanding field is suggested in Sect. 52.4.

Medical robots may be classified in many ways: by manipulator design (e.g., kinematics, actuation); by level of autonomy (e.g., preprogrammed versus teleoperation versus constrained cooperative control), by targeted anatomy or technique (e.g., cardiac, intravascular, percutaneous, laparoscopic, microsurgical); or intended operating environment (e.g., in-scanner, conventional operating room). In this chapter, we have chosen to focus on the role of medical robots within the context of larger computer-integrated systems including presurgical planning, intraoperative execution, and postoperative assessment and follow-up.

First, we introduce basic concepts of computer-integrated surgery, discuss critical factors affecting the eventual deployment and acceptance of medical robots, and introduce the basic system paradigms of surgical computer-assisted planning, registration, execution, monitoring, and assessment (CAD/CAM) and surgical assistance. In subsequent sections, we provide an overview of the technology of medical robot systems and discuss examples of our basic system paradigms, with brief additional discussion topics of remote telesurgery and robotic surgical simulators. We conclude with some thoughts on future research directions and provide suggested further reading.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CAD:

computer-aided design

CAM:

computer-aided manufacturing

CIS:

computer-integrated surgery

CT:

computed tomography

DOF:

degree of freedom

GI:

gastrointestinal

IEEE:

Institute of Electrical and Electronics Engineers

JHU:

Johns Hopkins University

MEMS:

microelectromechanical systems

MIS:

minimally invasive surgery

MRI:

magnetic resonance imaging

PC:

Purkinje cells

PC:

principal contact

PET:

positron emission tomography

RAS:

Robotics and Automation Society

RCM:

remote center of motion

SMA:

shape-memory alloy

US:

ultrasound

References

  1. R.H.L. Taylor Joskowicz: Computer-integrated surgery and medical robotics. In: Standard Handbook of Biomedical Engineering and Design, ed. by M. Kutz (McGraw Hill, New York 2003) pp. 29.23–29.45

    Google Scholar 

  2. G.S. Guthart, J.K. Salisbury: The intuitive telesurgery system: overview and application, IEEE Int. Conf. Robot. Autom. (ICRA2000) (San Francisco 2000) pp. 618–621

    Google Scholar 

  3. R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z.X. Wang, E. deJuan, L. Kavoussi: Steady-hand robotic system for microsurgical augmentation, Int. J. Robot. Res. 18, 1201–1210 (1999)

    Article  Google Scholar 

  4. D. Rothbaum, J. Roy, G. Hager, R. Taylor, L. Whitcomb: Task performance in stapedotomy: comparison between surgeons of different experience levels, Otolaryngol. Head Neck Surg. 128, 71–77 (2003)

    Article  Google Scholar 

  5. J.R. Adler, M.J. Murphy, S.D. Chang, S.L. Hankock: Image guided robotic radiosurgery, Neurosurgery 44(6), 1299–1306 (1999)

    Article  Google Scholar 

  6. A. Amin, J. Grossman, W. P: Early experience with a computerized robotically controlled catheter system, J. Int. Card. Electrophysiol., Vol. 12 (2005) pp. 199–202

    Google Scholar 

  7. L. Mettler, M. Ibrahim, W. Jonat: One year of experience working with the aid of a robotic assistant (the voice-controlled optic holder AESOP) in gynaecological endoscopic surgery, Hum. Reprod. 13, 2748–2750 (1998)

    Google Scholar 

  8. R.H. Taylor, H.A. Paul, P. Kazandzides, B.D. Mittelstadt, W. Hanson, J.F. Zuhars, B. Williamson, B.L. Musits, E. Glassman, W.L. Bargar: An image-directed robotic system for precise orthopaedic surgery, IEEE Trans. Robot. Autom., Vol. 10 (1994) pp. 261–275

    Google Scholar 

  9. P. Kazanzides, B.D. Mittelstadt, B.L. Musits, W.L. Bargar, J.F. Zuhars, B. Williamson, P.W. Cain, E.J. Carbone: An integrated system for cementless hip replacement, IEEE Eng. Med. Biol. 14, 307–313 (1995)

    Article  Google Scholar 

  10. Q. Li, L. Zamorano, A. Pandya, R. Perez, J. Gong, F. Diaz: The application accuracy of the NeuroMate robot – A quantitative comparison with frameless and frame-based surgical localization systems, Comput. Assisted Surg. 7(2), 90–98 (2002)

    Google Scholar 

  11. P. Cinquin, J. Troccaz, J. Demongeot, S. Lavallee, G. Champleboux, L. Brunie, F. Leitner, P. Sautot, B. Mazier, A. Perez, M. Djaid, T. Fortin, M. Chenic, A. Chapel: IGOR: image guided operating robot, Innovation Technonogie Biologie Med. 13, 374–394 (1992)

    Google Scholar 

  12. H. Reichenspurner, R. Demaino, M. Mack, D. Boehm, H. Gulbins, C. Detter, B. Meiser, R. Ellgass, B. Reichart: Use of the voice controlled and computer-assisted surgical system Zeus for endoscopic coronary artery surgery bypass grafting, J. Thoracic Cardiovasc. Surg. 118, 11–16 (1999)

    Article  Google Scholar 

  13. Y.S. Kwoh, J. Hou, E.A. Jonckheere, S. Hayati: A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery, IEEE Trans. Biomed. Eng. 35, 153–161 (1988)

    Article  Google Scholar 

  14. J.M. Sackier, Y. Wang: Robotically assisted laparoscopic surgery. From concept to development, Surg. Endosc. 8, 63–66 (1994)

    Article  Google Scholar 

  15. D. Stoianovici, L. Whitcomb, J. Anderson, R. Taylor, L. Kavoussi: A modular surgical robotic system for image-guided percutaneous procedures, Med. Image Comput. Comput.-Assisted Interventions (MICCAI-98) (Cambridge 1998) pp. 404–410

    Google Scholar 

  16. R.H. Taylor, J. Funda, B. Eldridge, K. Gruben, D. LaRose, S. Gomory, M. Talamini, L.R. Kavoussi, J. Anderson: A telerobotic assistant for laparoscopic surgery, IEEE Eng. Med. Biol. Mag. 14, 279–287 (1995)

    Article  Google Scholar 

  17. M. Mitsuishi, T. Watanabe, H. Nakanishi, T. Hori, H. Watanabe, B. Kramer: A telemicrosurgery system with colocated view and operation points and rotational-force-feedback-free master manipulator, 2nd Int. Symp. Med. Robot. Comput. Assisted Surg. (Baltimore 1995) pp. 111–118

    Google Scholar 

  18. N. Simaan, R. Taylor, P. Flint: High dexterity snake-like robotic slaves for minimally invasive telesurgery of the throat, Int. Symp. Med. Image Comput. Comput.-Assisted Interventions (2004) pp. 17–24

    Google Scholar 

  19. K. Ikuta, M. Tsukamoto, S. Hirose: Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope. In: Computer-Integrated Surgery, ed. by R.H. Taylor, S. Lavallee, G. Burdea, R. Mosges (MIT Press, Cambridge 1996) pp. 277–282

    Google Scholar 

  20. A. Menciassi, C. Stefanini, S. Gorini, G. Pernorio, P. Dario, B. Kim, J.O. Park: Legged locomotion in the gastrointestinal tract problem analysis and preliminary technological activity, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2004) pp. 937–942

    Google Scholar 

  21. K. Ikuta, H. Ichikawa, K. Suzuki, D. Yajima: Multi-degree of freedom hydraulic pressure driven safety active catheter, IEEE Int. Conf. Robot. Autom. (Orlando 2006) pp. 4161–4166

    Google Scholar 

  22. S. Guo, J. Sawamoto, Q. Pan: A novel type of microrobot for biomedical application, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2005) pp. 1047–1052, .

    Google Scholar 

  23. N. Patronik, C. Riviere, S.E. Qarra, M.A. Zenati: The heartlander: a novel epicardial crawling robot for myocardial injections, 19th Int. Congress Comput. Assisted Radiology Surg. (2005) pp. 735–739

    Google Scholar 

  24. P. Dario, B. Hannaford, A. Menciassi: Smart surgical tools and augmenting devices, IEEE Trans. Robot. Autom, Vol. 19 (2003) pp. 782–792

    Google Scholar 

  25. L. Phee, D. Accoto, A. Menciassi, C. Stefanini, M.C. Carrozza, P. Dario: Analysis and development of locomotion devices for the gastrointestinal tract, IEEE Trans. Biomed. Eng., Vol. 49 (2002) pp. 613–616

    Google Scholar 

  26. N. Suzuki, M. Hayashibe, A. Hattori: Development of a downsized master-slave surgical robot system for intragastic surgery, ICRA Surg. Robot. Workshop (Barcelona 2005)

    Google Scholar 

  27. K. Ikuta, K. Yamamoto, K. Sasaki: Development of remote microsurgery robot and new surgical procedure for deep and narrow space, IEEE Conf. Robot. Autom. (Taiwan 2003) pp. 1103–1108

    Google Scholar 

  28. C. Plaskos, P. Cinquin, S. Lavallee, A.J. Hodgson: Praxiteles: a miniature bone-mounted robot for minimal access total knee arthroplasty, Int. J. Med. Robot. Comput. Assisted Surg., Vol. 1 (2005) pp. 67–79

    Google Scholar 

  29. P.J. Berkelman, L. Whitcomb, R. Taylor, P. Jensen: A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation, IEEE Trans. Robot. Autom., Vol. 19 (2003) pp. 917–922

    Google Scholar 

  30. K. Chinzei, R. Gassert, E. Burdet: Workshop on MRI/fMRI compatible robot technology - a critical tool for neuroscience and image guided intervention, IEEE Int. Conf. on Robot. Autom. (Orlando 2006)

    Google Scholar 

  31. M. Jakopec, S.J. Harris, F.R.Y. Baena, P. Gomes, J. Cobb, B.L. Davies: The first clinical application of a hands-on robotic knee surgery system, Comput. Aided Surg. 6, 329–339 (2001)

    Google Scholar 

  32. D.F. Louw, T. Fielding, P.B. McBeth, D. Gregoris, P. Newhook, G.R. Sutherland: Surgical robotics: A review and neurosurgical prototype development, Neurosurgery 54, 525–537 (2004)

    Article  Google Scholar 

  33. J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix, S.E. Butner, M.K. Smith: Transatlantic robot-assisted telesurgery, Nature 413, 379–380 (2001)

    Article  Google Scholar 

  34. M. Anvari, T. Broderick, H. Stein, T. Chapman, M. Ghodoussi, D.W. Birch, C. Mckinley, P. Trudeau, S. Dutta, C.H. Goldsmith: The impact of latency on surgical precision and task completion during robotic-assisted remote telepresence surgery, Comput. Aided Surg. 10, 93–99 (2005)

    Google Scholar 

  35. M. Li, M. Ishii, R.H. Taylor: Spatial motion constraints in medical robot using virtual fixtures generated by anatomy, IEEE Trans. Robot. 23, 4–19 (2007)

    Article  Google Scholar 

  36. S. Park, R.D. Howe, D.F. Torchiana: Virtual fixtures for robotic cardiac surgery, Fourth Int. Conf. Med. Image Comput. Computer-Assisted Intervention (2001)

    Google Scholar 

  37. B. Davies: A discussion of safety issues for medical robots. In: Computer-Integrated Surgery, ed. by R. Taylor, S. Lavallee, G. Burdea, R. Moesges (MIT Press, Cambridge 1996) pp. 287–296

    Google Scholar 

  38. P. Varley: Techniques of development of safety-related software in surgical robots, IEEE Trans. Inform. Technol. Biomed. 3, 261–267 (1999)

    Article  Google Scholar 

  39. J.B. Maintz, M.A. Viergever: A survey of medical image registration, Med. Image Anal. 2, 1–37 (1998)

    Article  Google Scholar 

  40. S. Lavallee: Registration for computer-integrated surgery: methodology, state of the Art. In: Computer-Integrated Surgery, ed. by R.H. Taylor, S. Lavallee, G. Burdea, R. Mosges (MIT Press, Cambridge 1996) pp. 77–98

    Google Scholar 

  41. P.J. Besl, N.D. McKay: A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Machine Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  42. R.J. Maciunas: Interactive Image-Guided Neurosurgery (Am. Association Neurological Surg., USA 1993)

    Google Scholar 

  43. R.H. Taylor, H.A. Paul, C.B. Cutting, B. Mittelstadt, W. Hanson, P. Kazanzides, B. Musits, Y.Y. Kim, A. Kalvin, B. Haddad, D. Khoramabadi, D. Larose: Augmentation of human precision in computer-integrated surgery, Innov. Technol. Biol. Med. 13, 450–459 (1992)

    Google Scholar 

  44. J. Troccaz, M. Peshkin, B. Davies: The use of localizers, robots and synergistic devices in CAS, CVRMed-MRCAS 1205, 727–736 (1997)

    Google Scholar 

  45. G. Fichtinger, A. Degeut, M. K, E. Balogh, G. Fischer, H. Mathieu, R.H. Taylor, S. Zinreich, L.M. Fayad: Image overlay guidance for needle insertion on CT scanner, IEEE Trans. Biomed. Eng. 52, 1415–1424 (2005)

    Article  Google Scholar 

  46. T. Akinbiyi, C.E. Reiley, S. Saha, D. Burschka, C.J. Hasser, D.D. Yuh, A.M. Okamura: Dynamic augmented reality for sensory substitution in robot-assisted surgical systems, 28th Annu. Int. Conf. IEEE Eng. Med. Biology Society (2006) pp. 567–570

    Google Scholar 

  47. J. Leven, D. Burschka, R. Kumar, G. Zhang, S. Blumenkranz, X. Dai, M. Awad, G. Hager, M. Marohn, M. Choti, C. Hasser, R.H. Taylor: DaVinci canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability, Med. Image Comput. Computer-Assisted Interventions (Palm Springs 2005)

    Google Scholar 

  48. S. Solomon, A. Patriciu, R.H. Taylor, L. Kavoussi, D. Stoianovici: CT guided robotic needle biopsy: a precise sampling method minimizing radiation exposure, Radiology 225, 277–282 (2002)

    Article  Google Scholar 

  49. K. Masamune, G. Fichtinger, A. Patriciu, R. Susil, R. Taylor, L. Kavoussi, J. Anderson, I. Sakuma, T. Dohi, D. Stoianovici: System for robotically assisted percutaneous procedures with computed tomography guidance, J. Comput. Assisted Surg. 6, 370–383 (2001)

    Article  Google Scholar 

  50. A. Krieger, R.C. Susil, C. Menard, J.A. Coleman, G. Fichtinger, E. Atalar, L.L. Whitcomb: Design of a novel MRI compatible manipulator for image guided prostate intervention, IEEE Trans. Biomed. Eng. 52, 306–313 (2005)

    Article  Google Scholar 

  51. G.A. Krombach, T. Schmitz-Rode, B.B. Wein, J. Meyer, J.E. Wildberger, K. Brabant, R.W. Gunther: Potential of a new laser target system for percutaneous CT-guided nerve blocks: technical note, Neuroradiology 42, 838–841 (2000)

    Article  Google Scholar 

  52. M. Rosenthal, A. State, J. Lee, G. Hirota, J. Ackerman, K. Keller, E.D. Pisano, M. Jiroutek, K. Muller, H. Fuchs: Augmented reality guidance for needle biopsies: a randomized, controlled trial in phantoms, Fourth Int. Conf. Med. Image Comput. Computer-Assisted Intervention (2001) pp. 240–248

    Google Scholar 

  53. G. Stetten, V. Chib: Overlaying ultrasound images on direct vision, J. Ultrasound Med. 20, 235–240 (2001)

    Google Scholar 

  54. H.F. Reinhardt: Neuronagivation: a ten years review. In: Computer-Integrated Surgery, ed. by R. Taylor, S. Lavallée, G. Burdea, R. Moegses (MIT Press, Cambridge 1996) pp. 329–342

    Google Scholar 

  55. E. Hempel, H. Fischer, L. Gumb, T. Hohn, H. Krause, U. Voges, H. Breitwieser, B. Gutmann, J. Durke, M. Bock, A. Melzer: An MRI-compatible surgical robot for precise radiological interventions, Comput. Aided Surg. 8, 180–191 (2003)

    Article  Google Scholar 

  56. Z. Wei, G. Wan, L. Gardi, G. Mills, D. Downey, A. Fenster: Robot-assisted 3D-TRUS guided prostate brachytherapy: system integration and validation, Med. Phys. 31, 539–548 (2004)

    Article  Google Scholar 

  57. E. Boctor, G. Fischer, M. Choti, G. Fichtinger, R.H. Taylor: Dual-armed robotic system for intraoperative ultrasound guided hepatic ablative therapy: a prospective study, IEEE Int. Conf. Robot. Autom. (2004) pp. 377–382

    Google Scholar 

  58. J. Hong, T. Dohi, M. Hashizume, K. Konishi, N. Hata: An ultrasound-driven needle-insertion robot for percutaneous cholecystostomy, Phys. Med. Biol. 49, 441–455 (2004)

    Article  Google Scholar 

  59. G. Megali, O. Tonet, C. Stefanini, M. Boccadoro, V. Papaspyropoulis, L. Angelini, P. Dario: A computer-assisted robotic ultrasound-guided biopsy system for video-assisted surgery, Med. Image Comput. Computer-Assisted Intervention – MICCAI 2001 (Utrecht 2001) pp. 343–350

    Google Scholar 

  60. S. Okazawa, R. Ebrahimi, J. Chuang, S. Salcudean, R. Rohling: Hand-held steerable needle device, IEEE/ASME Trans. Mechatron. 10, 285–296 (2005)

    Article  Google Scholar 

  61. R.J. Webster III, J.S. Kim, N.J. Cowan, G.S. Chirikjian, A.M. Okamura: Nonholonomic modeling of needle steering, Int. J. Robot. Res. 25(5-6), 509–525 (2006)

    Article  Google Scholar 

  62. J. Engh, G. Podnar, D. Kondziolka, C. Riviere: Toward effective needle steering in brain tissue, 28th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (2006) pp. 559–562

    Google Scholar 

  63. G.H. Ballantyne: Robotic surgery, telerobotic surgery, telepresence and telementoring, Surg. Endosc. 16, 1389 (2002)

    Article  Google Scholar 

  64. J.A. McEwen, C.R. Bussani, G.F. Auchinleck, M.J. Breault: Development and initial clinical evaluation of pre-robotic and robotic retraction systems for surgery, Second Workshop Med. Health Care Robot. (Newcastle 1989) pp. 91–101

    Google Scholar 

  65. P. Berkelman, P. Cinquin, J. Troccaz, J. Ayoubi, C. Letoublon, F. Bouchard: A compact, compliant laparoscopic endoscope manipulator, IEEE Int. Conf. Robot. Aut. (2002) pp. 1870–1875

    Google Scholar 

  66. A. Nishikawa, T. Hosoi, K. Koara, T. Dohi: FAce MOUSe: A novel human-machine interface for controlling the position of a laparoscope, IEEE Trans Robot. Autom. 19, 825–841 (2003)

    Article  Google Scholar 

  67. A. Krupa, J. Gangloff, C. Doignon, M.F. deMathelin, G. Morel, J. Leroy, L. Soler, J. Marescaux: Autonomous 3-D positioning of surgical instruments in robotized laparoscopic surgery using visual servoing, IEEE Trans. Robot. Autom. 19, 842–853 (2003)

    Article  Google Scholar 

  68. P. Green, R. Satava, J. Hill, I. Simon: Telepresence: advanced teleoperator technology of minimally invasive surgery (abstract), Surg. Endosc. 6, 90 (1992)

    Article  Google Scholar 

  69. T. Ahlering, D. Woo, L. Eichel, D. Lee, R. Edwards, D. Skarecky: Robot-assisted versus open radical prostatectomy: a comparison of one surgeonʼs outcomes, Urology 63, 819–822 (2004)

    Article  Google Scholar 

  70. J. Rosen, J.D. Brown, L. Chang, M. Barreca, M. Sinanan, B. Hannaford: The BlueDRAGON – a system for measuring the kinematics and the dynamics of minimally invasive surgical tools in-vivo, IEEE Int. Conf. Robot. Autom. (2002) pp. 1876–1881

    Google Scholar 

  71. H.C. Lin, I. Shafran, T.E. Murphy, A.M. Okamura, D.D. Yuh, G.D. Hager: Automatic detection and segmentation of robot-assisted surgical motions, MICCAI (2005) pp. 802–810

    Google Scholar 

  72. H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll, J. Schmidhuber: A system for robotic heart surgery that learns to tie knots using recurrent neural networks, Int. Conf. Intell. Robot. Syst. (IROS) (2006) pp. 543–548

    Google Scholar 

  73. J. Schiff, P. Li, M. Goldstein: Robotic microsurgical vasovasostomy and vasoepididymostomy: a prospective randomized study in a rat model, J. Urol. 171, 1720–1725 (2004)

    Article  Google Scholar 

  74. P.S. Jensen, K.W. Grace, R. Attariwala, J.E. Colgate, M.R. Glucksberg: Toward robot assisted vascular microsurgery in the retina, Graefes Arch. Clin. Exp. Ophthalmol. 235, 696–701 (1997)

    Article  Google Scholar 

  75. H. Das, H. Zak, J. Johnson, J. Crouch, D. Frambaugh: Evaluation of a telerobotic system to assist surgeons in microsurgery, Comput. Aided Surg. 4, 15–25 (1999)

    Article  Google Scholar 

  76. K. Hongo, S. Kobayashi, Y. Kakizawa, J.I. Koyama, T. Goto, H. Okudera, K. Kan, M.G. Fujie, H. Iseki, K. Takakura: NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery-preliminary results, Neurosurgery 51, 985–988 (2002)

    Article  Google Scholar 

  77. A. Kapoor, R. Kumar, R. Taylor: Simple biomanipulation tasks with a steady hand cooperative manipulator, Sixth Int. Conf. Med. Image Comput. Computer Assisted Intervention – MICCAI 2003 (Montreal 2003) pp. 141–148

    Google Scholar 

  78. C. Riviere, J. Gangloff, M. de Mathelin: Robotic compensation of biological motion to enhance surgical accuracy, Proc IEEE 94(9), 1705–1716 (2006)

    Article  Google Scholar 

  79. W. Armstrong, A. Karamzadeh, R. Crumley, T. Kelley, R. Jackson, B. Wong: A novel laryngoscope instrument stabilizer for operative microlaryngoscopy, Otolaryngol. Head Neck Surg. 132, 471–477 (2004)

    Article  Google Scholar 

  80. L. Ascari, C. Stefanini, A. Menciassi, S. Sahoo, P. Rabischong, P. Dario: A new active microendoscope for exploring the sub-arachnoid space in the spinal cord, IEEE Conf. Robot. Autom. (2003) pp. 2657–2662

    Google Scholar 

  81. U. Bertocchi, L. Ascari, C. Stefanini, C. Laschi, P. Dario: Human-robot shared control for robot-assisted endoscopy of the spinal cord, IEEE/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatron. (2006) pp. 543–548

    Google Scholar 

  82. A. Cuschieri, G. Buess, J. Perissat: Operative Manual of Endoscopic Surgery (Springer, Heidleberg 1992)

    Google Scholar 

  83. K.J. Rebello: Applications of MEMS in surgery, IE, Vol. 992 (2004) pp. 43–55

    Google Scholar 

  84. I. Kassim, W.S. Ng, G. Feng, S.J. Phee: Review of locomotion techniques for robotic colonoscopy, Int. Conf. Robot. Autom. (Taipei 2003) pp. 1086–1091

    Google Scholar 

  85. C. Stefanini, A. Menciassi, P. Dario: Modeling and experiments on a legged microrobot locomoting in a tubular, compliant and slippery environment, Int. J. Robot. Res. 25, 551–560 (2006)

    Article  Google Scholar 

  86. Y. Kusuda: A further step beyond wireless capsule endoscopy, Sensor Rev. 25, 259–260 (2005)

    Article  Google Scholar 

  87. R.C. Ritter, M.S. Grady, M.A. Howard, G.T. Gilles: Magnetic stereotaxis: computer assisted, image guided remote movement of implants in the brain. In: Computer Integrated Surgery, ed. by R.H. Taylor, S. Lavallee, G.C. Burdea, R. Mosges (MIT Press, Cambridge 1995) pp. 363–369

    Google Scholar 

  88. C.R. Wagner, N. Stylopoulos, P.G. Jackson, R.D. Howe: The benefit of force feedback in surgery: examination of blunt dissection, Presence: Teleoperators Virtual Environments (2007)

    Google Scholar 

  89. A.M. Okamura: Methods for haptic feedback in teleoperated robot-assisted surgery, Ind. Robot 31, 499–508 (2004)

    Article  Google Scholar 

  90. M.J. Massimino: Improved force perception through sensory substitution, Contr. Eng. Practice 3, 215–222 (1995)

    Article  Google Scholar 

  91. P. Gupta, P. Jensen, E. de Juan: Quantification of tactile sensation during retinal microsurgery, MICCAI99: Second Int. Conf. Med. Image Comput. Computer-Assisted Intervention (Cambridge 1999)

    Google Scholar 

  92. P.K. Poulose, M.F. Kutka, M. Mendoza-Sagaon, A.C. Barnes, C. Yang, R.H. Taylor, M.A. Talamini: Human versus robotic organ retraction during laparoscopic nissen fundoplication, Surg. Endosc. 13, 461–465 (1999)

    Article  Google Scholar 

  93. J. Rosen, B. Hannaford, M. MacFarlane, M. Sinanan: Force controlled and teleoperated endoscopic grasper for minimally invasive surgery – experimental performance evaluation, IEEE Trans. Biomed. Eng. 46, 1212–1221 (1999)

    Article  Google Scholar 

  94. A. Menciassi, A. Eisinberg, M.C. Carrozza, P. Dario: Force sensing microinstrument for measuring tissue properties and pulse in microsurgery, IEEE/ASME Trans. Mechatron. 8, 10–17 (2003)

    Article  Google Scholar 

  95. R.D. Howe, W.J. Peine, D.A. Kontarinis, J.S. Son: Remote palpation technology, IEEE Eng. Med. Biol. 14(3), 318–323 (1995)

    Article  Google Scholar 

  96. G. Fischer, T. Akinbiyi, S. Saha, J. Zand, M. Talamini, M. Marohn, R. Taylor: Ischemia and force sensing surgical instruments for augmenting available surgeon information, IEEE Int. Conf. Biomed. Robot. Biomechatron. – BioRob 2006 (Pisa 2006)

    Google Scholar 

  97. F.J. Carter, M.P. Schijven, R. Aggarwal, T. Grantcharov, N.K. Francis, G.B. Hanna, J.J. Jakimowicz: Consensus guidelines for validation of virtual reality surgical simulators, Surg. Endo. 19, 1523–1532 (2005)

    Article  Google Scholar 

  98. F.H. Halvorsen, O.J. Elle, E. Fosse: Simulators in surgery, Minimally Invasive Ther. 14, 214–223 (2005)

    Article  Google Scholar 

  99. K. Moorthy, Y. Munz, S.K. Sarker, A. Darzi: Objective assessment of technical skills in surgery, Br. Med. J. 327, 1032–1037 (2003)

    Article  Google Scholar 

  100. C. Basdogan, S. De, J. Kim, M. Muniyandi, H. Kim, M.A. Srinivasan: Haptics in Minimally Invasive Surgical Simulation and Training, IEEE Comput. Graphics Appl. 24(2), 56–64 (2004)

    Article  Google Scholar 

  101. Lapmentor: www.simbionix.com

  102. Surgical Education platform: www.meti.com

  103. LapSim: www.surgical-science.com

  104. MIST: www.mentice.com

  105. EndoTower: www.verifi.com

  106. Laparoscopic Trainer: www.reachin.se

  107. Simendo: www.simendo.nl

  108. Vest System: www.select-it.de

  109. EYESI: http://www.vrmagic.com/

  110. F. Cavallo, G. Megali, S. Sinigaglia, O. Tonet, P. Dario: A biomechanical analysis of surgeonʼs gesture in a laparoscopic virtual scenario, Studies Health Techn. Informatics 119, 79–84 (2006)

    Google Scholar 

  111. K.T. Kavanagh: Applications of image-directed robotics in otolaryngologic surgery, Laryngoscope 194, 283–293 (1994)

    Google Scholar 

  112. J. Wurm, H. Steinhart, K. Bumm, M. Vogele, C. Nimsky, H. Iro: A novel robot system for fully automated paranasal sinus surgery, CARS 2003. Comput. Assisted Radiol. Surg. (2003) pp. 633–638

    Google Scholar 

  113. M. Li, M. Ishii, R.H. Taylor: Spatial motion constraints in medical robot using virtual fixtures generated by anatomy, IEEE Trans. Robot. 2, 1270–1275 (2006)

    Google Scholar 

  114. G. Strauss, K. Koulechov, R. Richter, A. Dietz, C. Trantakis, T. Lueth: Navigated control in functional endoscopic sinus surgery, Int. J. Med. Robot. Comput. Assisted Surg. 1, 31–41 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Russell H. Taylor Prof , Arianna Menciassi Prof , Gabor Fichtinger Dr. or Paolo Dario Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Taylor, R.H., Menciassi, A., Fichtinger, G., Dario, P. (2008). Medical Robotics and Computer-Integrated Surgery. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics