Skip to main content
Book cover

Analgesia pp 31–63Cite as

Opioids

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 177))

Abstract

Opioids are the most effective and widely used drugs in the treatment of severe pain. They act through G protein-coupled receptors. Four families of endogenous ligands (opioid peptides) are known. The standard exogenous opioid analgesic is morphine. Opioid agonists can activate central and peripheral opioid receptors. Three classes of opioid receptors (μ, δ, κ) have been identified. Multiple pathways of opioid receptor signaling (e.g., Gi/o coupling, cAMP inhibition, Ca++ channel inhibition) have been described. The differential regulation of effectors, preclinical pharmacology, clinical applications, and side effects will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriaensen H, Vissers K, Noorduin H, Meert T (2003) Opioid tolerance and dependence: an inevitable consequence of chronic treatment? Acta Anaesthesiol Belg 54:37–47

    PubMed  CAS  Google Scholar 

  • Akins PT, McCleskey EW (1993) Characterization of potassium currents in adult rat sensory neurons and modulation by opioids and cyclic AMP. Neuroscience 56:759–769

    PubMed  CAS  Google Scholar 

  • Antonijevic I, Mousa SA, Schäfer M, Stein C (1995) Perineurial defect and peripheral opioid analgesia in inflammation. J Neurosci 15:165–172

    PubMed  CAS  Google Scholar 

  • Apfel CC, Korttila K, Abdalla M, Kerger H, Turan A, Vedder I, Zernak C, Danner K, Jokela R, Posock SJ, Trenkler S, Kredel M, Biedler A, Sessler DI, Roewer N (2004) A factorial trial of six interventions for the prevention of postoperative neusea and vomiting. N Engl J Med 350:2441–2451

    PubMed  CAS  Google Scholar 

  • Arandia HY, Patil VU (1987) Glottic closure following large doses of fentanyl. Anesthesiology 66:574–575

    PubMed  CAS  Google Scholar 

  • Attali B, Gouarderes C, Mazarguil H, Audigier Y, Cros J (1982) Evidence for multiple “Kappa” binding sites by use of opioid peptides in the guinea-pig lumbo-sacral spinal cord. Neuropeptides 3:53–64

    PubMed  CAS  Google Scholar 

  • Ballantyne JC, Loach AB, Carr DB (1989) The incidence of pruritus after epidural morphine. Anaesthesia 44:863

    PubMed  CAS  Google Scholar 

  • Barke KE, Hough LB (1993) Opiates, mast cells and histamine release. Life Sci 53:1391–1399

    PubMed  CAS  Google Scholar 

  • Becker LD, Paulson BA, Miller RD, Severinghaus JW, Eger EI 2nd (1976) Biphasic respiratory depression after fentanyldroperidol or fentanyl alone used to supplement nitrous oxide anesthesia. Anesthesiology 44:291–296

    PubMed  CAS  Google Scholar 

  • Belcheva MM, Bohn LM, Ho MT, Johnson FE, Yanai J, Barron S, Coscia CJ (1998) Brain opioid receptor adaptation and expression after prenatal exposure to buprenorphine. Brain Res Dev Brain Res 111:35–42

    PubMed  CAS  Google Scholar 

  • Belcheva MM, Clark AL, Haas PD, Serna JS, Hahn JW, Kiss A, Coscia CJ (2005) Mu and kappa opioid receptors activate ERK/MAPK via different protein kinase C isoforms and secondary messengers in astrocytes. J Biol Chem 280:27662–27669

    PubMed  CAS  Google Scholar 

  • Benthuysen JL, Smith NT, Sanford TJ, Head N, Dec-Silver H (1986) Physiology of alfentanilinduced rigidity. Anesthesiology 64:440–446

    PubMed  CAS  Google Scholar 

  • Binder W, Machelska H, Mousa S, Schmitt T, Riviere PJ, Junien JL, Stein C, Schäfer M (2001) Analgesic and antiinflammatory effects of two novel kappa-opioid peptides. Anesthesiology 94:1034–1044

    PubMed  CAS  Google Scholar 

  • Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723

    PubMed  CAS  Google Scholar 

  • Bohn LM, Lefkowitz RJ, Caron MG (2002) Differential mechanisms of morphine antinociceptive tolerance revealed in (beta)arrestin-2knock-outmice. J Neurosci 22:10494–10500

    PubMed  CAS  Google Scholar 

  • Bohn LM, Dykstra LA, Lefkowitz RJ, Caron MG, Barak LS (2004) Relative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery. Mol Pharmacol 66:106–112

    PubMed  CAS  Google Scholar 

  • Bowdle TA (1998) Adverse effects of opioid agonists and agonist-antagonists in anaesthesia. Drug Saf 19:173–189

    PubMed  CAS  Google Scholar 

  • Bowdle TA, Rooke GA (1994) Postoperative myoclonus and rigidity after anesthesia with opioids. Anesth Analg 78:783–786

    PubMed  CAS  Google Scholar 

  • Caldwell JR, Hale ME, Boyd RE, Hague JM, Iwan T, Shi M, Lacouture PG (1999) Treatment of osteoarthritis pain with controlled release oxycodone or fixed combination oxycodone plus acetaminophen added to nonsteroidal antiinflammatory drugs: a double blind, randomized, multicenter, placebo controlled trial. J Rheumatol 26:862–869

    PubMed  CAS  Google Scholar 

  • Cao Z, Liu L, Van Winkle DM (2003) Activation of delta-and kappa-opioid receptors by opioid peptides protects cardiomyocytes via KATP channels. Am J Physiol Heart Circ Physiol 285:1032–1039

    Google Scholar 

  • Cao Z, Liu L, Van Winkle DM (2005) Met5-enkephalin-induced cardioprotection occurs via transactivation of EGFR and activation of PI3 K. Am J Physiol Heart Circ Physiol 288:1955–1964

    Google Scholar 

  • Capeyrou R, Riond J, Corbani M, Lepage JF, Bertin B, Emorine LJ (1997) Agonist-induced signaling and trafficking of themu-opioid receptor: role of serine and threonine residues in the third cytoplasmic loop and C-terminal domain. FEBS Lett 415:200–205

    PubMed  CAS  Google Scholar 

  • Chan JS, Chiu TT, Wong YH (1995) Activation of type II adenylyl cyclase by the cloned mu-opioid receptor: coupling to multiple G proteins. J Neurochem 65:2682–2689

    PubMed  CAS  Google Scholar 

  • Chaney MA (1995) Side effects of intrathecal and epidural opioids. Can JAnaesth 42:891–903

    CAS  Google Scholar 

  • Chen JJ, Dymshitz J, Vasko MR (1997) Regulation of opioid receptors in rat sensory neurons in culture. Mol Pharmacol 51:666–673

    PubMed  CAS  Google Scholar 

  • Chou DT, Wang SC (1975) Studies on the localization of central cough mechanism; site of action of antitussive drugs. J Pharmacol Exp Ther 194:499–505

    PubMed  CAS  Google Scholar 

  • Chung KF, Chang AB (2002) Therapy for cough: active agents. Pulm Pharmacol Ther 15:335–338

    PubMed  CAS  Google Scholar 

  • Comb M, Seeburg PH, Adelman J, Eiden L, Herbert E (1982) Primary structure of the human Met-and Leu-enkephalin precursor and its mRNA. Nature 295:663–666

    PubMed  CAS  Google Scholar 

  • Costall B, Fortune DH, Naylor RJ (1978) Involvement of mesolimbic and extrapyramidal nuclei in the motor depressant action of narcotic drugs. J Pharm Pharmacol 30:566–572

    PubMed  CAS  Google Scholar 

  • Cowan A, Lewis JW, Macfarlane IR (1977) Agonist and antagonist properties of buprenorphine, a new antinociceptive agent. Br J Pharmacol 60:537–545

    PubMed  CAS  Google Scholar 

  • De Luca A, Coupar IM (1996) Insights into action in the intestinal tract. Pharmacol Ther 69:103–115

    PubMed  Google Scholar 

  • Decaillot FM, Befort K, Filliol D, Yue S, Walker P, Kieffer BL (2003) Opioid receptor random mutagenesis reveals a mechanism for G protein-coupled receptor activation. Nat Struct Biol 10:629–636

    PubMed  CAS  Google Scholar 

  • Dershwitz M, Walsh JL, Morishige RJ, Connors PM, Rubsamen RM, Shafer SL, Rosow CE (2000) Pharmacokinetics and pharmacodynamics of inhaled versus intravenous morphine in healthy volunteers. Anesthesiology 93:619–628

    PubMed  CAS  Google Scholar 

  • Eilers H, Schumacher MA (2004) Opioid-induced respiratory depression: are 5-HT4a receptor agonists the cure? Mol Interv 4:197–199

    PubMed  CAS  Google Scholar 

  • Eisenach JC, Carpenter R, Curry R (2003) Analgesia froma peripherally active kappa-opioid receptor agonist in patients with chronic pancreatitis. Pain 101:89–95

    PubMed  CAS  Google Scholar 

  • Eisinger DA, Ammer H, Schulz R (2002) Chronic morphine treatment inhibits opioid receptor desensitization and internalization. J Neurosci 22:10192–10200

    PubMed  CAS  Google Scholar 

  • Elliott K, Kest B, Man A, Kao B, Inturrisi CE (1995) N-methyl-D-aspartate (NMDA) receptors, mu and kappa opioid tolerance, and perspectives on new analgesic drug development. Neuropsychopharmacology 13:347–356

    PubMed  CAS  Google Scholar 

  • Enck RE (1991) Understanding tolerance, physical dependence and addiction in the use of opioid analgesics. Am J Hosp Palliat Care 8:9–11

    PubMed  CAS  Google Scholar 

  • Evans CJ, Keith DE Jr, Morrison H, Magendzo K, Edwards RH (1992) Cloning of a delta opioid receptor by functional expression. Science 258:1952–1955

    PubMed  CAS  Google Scholar 

  • Forrest WH Jr, Bellville JW (1964) The effect of sleep plus morphine on the respiratory response to carbon dioxide. Anesthesiology 25:137–141

    PubMed  Google Scholar 

  • Furst S, Riba P, Friedmann T, Timar J, Al-Khrasani M, Obara I, Makuch W, Spetea M, Schutz J, Przewlocki R, Przewlocka B, Schmidhammer H (2005) Peripheral versus central antinociceptive actions of 6-amino acid-substituted derivatives of 14-O-methyloxymorphone in acute and inflammatory pain in the rat. J Pharmacol Exp Ther 312:609–618

    PubMed  Google Scholar 

  • Gavériaux-Ruff C, Kieffer BL (2002) Opioid receptor genes inactivated in mice: the highlights. Neuropeptides 36:62–71

    PubMed  Google Scholar 

  • Gavériaux-Ruff C, Filliol D, Simonin F, Matthes HW, Kieffer BL (2001) Immunosuppression by delta-opioid antagonist naltrindole: delta-and triplemu/delta/kappa-opioid receptor knockout mice reveal a nonopioid activity. J Pharmacol Exp Ther 298:1193–1198

    PubMed  Google Scholar 

  • Gavériaux-Ruff C, Kieffer BL (1999b) Opioid receptors: gene structure and function. In: Stein C (ed) Opioids in pain control. Cambridge University Press, Cambridge, pp 1–20

    Google Scholar 

  • Gold MS, Levine JD (1996) DAMGO inhibits prostaglandin E2-induced potentiation of a TTX-resistant Na+ current in rat sensory neurons in vitro. Neurosci Lett 212:83–86

    PubMed  CAS  Google Scholar 

  • Gong L, Middleton RK (1992) Sublingual administration of opioids. Ann Pharmacother 26:1525–1527

    PubMed  CAS  Google Scholar 

  • Gouarderes C, Tellez S, Tafani JA, Zajac JM (1993) Quantitative autoradiographic mapping of delta-opioid receptors in the rat central nervous systemusing [125I][D.Ala2]deltorphin-I. Synapse 13:231–240

    PubMed  CAS  Google Scholar 

  • Greaves MW, Wall PD (1996) Pathophysiology of itching. Lancet 348:938–940

    PubMed  CAS  Google Scholar 

  • Hanna MH, Elliott KM, Fung M (2005) Randomized, double-blind study of the analgesic efficacy of morphine-6-glucuronide versus morphine sulfate for postoperative pain in maijor surgery. Anesthesiology 102:815–821

    PubMed  CAS  Google Scholar 

  • Hassan AH, Ableitner A, Stein C, Herz A (1993) Inflammation of the rat paw enhances axonal transport of opioid receptors in the sciatic nerve and increases their density in the inflamed tissue. Neuroscience 55:185–195

    PubMed  CAS  Google Scholar 

  • Heinricher M, Morgan M (1999) Supraspinal mechanisms of opioid analgesia. In: Stein C (ed) Opioids in pain control: basic and clinical aspects. Cambridge University Press, Cambridge, pp 46–69

    Google Scholar 

  • Heit HA (2003) Addiction, physical dependence, and tolerance: precise definitions to help clinicians evaluate and treat chronic pain patients. J Pain Palliat Care Pharmacother 17:15–29

    PubMed  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380:258–262

    PubMed  CAS  Google Scholar 

  • Höllt V (1993) Regulation of opioid peptide gene expression. In: Herz A (ed) Opioids I. (Handbook of experimental pharmacology) Springer Verlag, New York, pp 307–346

    Google Scholar 

  • Holzner P (2004) Opioids and opioid receptors in the enteric nervous system: from a problem in opioid analgesia to a possible new prokinetic therapy in humans. Neurosci Lett 361:192–195

    Google Scholar 

  • Horvath G (2000) Endomorphin-1 and endomorphin-2: pharmacology of the selective endogenous mu-opioid receptor agonists. Pharmacol Ther 88:437–463

    PubMed  CAS  Google Scholar 

  • Hug CC Jr, Murphy MR (1979) Fentanyl disposition in cerebrospinal fluid and plasma and its relationship to ventilatory depression in the dog. Anesthesiology 50:342–349

    PubMed  CAS  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–580

    PubMed  CAS  Google Scholar 

  • Hulme EC, Lu ZL, Ward SD, Allman K, Curtis CA (1999) The conformational switch in 7-transmembrane receptors: the muscarinic receptor paradigm. Eur J Pharmacol 375:247–260

    PubMed  CAS  Google Scholar 

  • Ignatova EG, Belcheva MM, Bohn LM, Neumann MC, Coscia CJ (1999) Requirement of receptor internalization for opioid stimulation of mitogen-activated protein kinase: biochemical and immunofluorescence confocal microscopic evidence. J Neurosci 19:56–63

    PubMed  CAS  Google Scholar 

  • Ingram SL, Williams JT (1994) Opioid inhibition of Ih via adenylyl cyclase. Neuron 13:179–186

    PubMed  CAS  Google Scholar 

  • Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine betaneo-endorphin/dynorphin precursor. Nature 298:245–249

    PubMed  CAS  Google Scholar 

  • Kalso E, Smith L, McQuay HJ, Andrew Moore R (2002) No pain, no gain: clinical excellence and scientific rigour-lessons learned from IA morphine. Pain 98:269–275

    PubMed  CAS  Google Scholar 

  • Karnik SS, Gogonea C, Patil S, Saad Y, Takezako T (2003) Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol Metab 14:431–437

    PubMed  CAS  Google Scholar 

  • Khodorova A, Navarro B, Jouaville LS, Murphy JE, Rice FL, Mazurkiewicz JE, Long-Woodward D, Stoffel M, Strichartz GR, Yukhananov R, Davar G (2003) Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nat Med 9:1055–1061

    PubMed  CAS  Google Scholar 

  • Kieffer B, Befort K, Gaveriaux-Ruff C, Hirth C (1992) The δ-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A 90:12048–12052

    Google Scholar 

  • Kieffer BL (1999a) Opioids: first lessons from knockout mice. Trends Pharmacol Sci 20:19–26

    PubMed  CAS  Google Scholar 

  • Kieffer BL, Gaveriaux-Ruff C (2002) Exploring the opioid system by gene knockout. Prog Neurobiol 66:285–306

    PubMed  CAS  Google Scholar 

  • Kilpatrick GJ, Smith TW (2005) Morphine-6-glucuronide: actions and mechanisms. Med Res Rev 25:521–544

    PubMed  CAS  Google Scholar 

  • Kissin I, Vinik HR, Castillo R, Bradley EL Jr (1990) Alfentanil potentiates midazolam-induced unconsciousness in subanalgesic doses. Anesth Analg 71:65–69

    PubMed  CAS  Google Scholar 

  • Kjellberg F, Tramer MR (2001) Pharmacological control of opioid-induced pruritus: a quantitative systematic review of randomized trials. Eur J Anaesthesiol 18:346–357

    PubMed  CAS  Google Scholar 

  • Klco JM, Wiegand CB, Narzinski K, Baranski TJ (2005) Essential role for the second extracellular loop in C5a receptor activation. Nat Struct Mol Biol 12:320–326

    PubMed  CAS  Google Scholar 

  • Koch T, Schulz S, Schroder H, Wolf R, Raulf E, Hollt V (1998) Carboxyl-terminal splicing of the rat mu opioid receptor modulates agonist-mediated internalization and receptor resensitization. J Biol Chem 273:13652–13657

    PubMed  CAS  Google Scholar 

  • Koch T, Schulz S, Pfeiffer M, Klutzny M, Schroder H, Kahl E, Hollt V (2001) C-terminal splice variants of the mouse mu-opioid receptor differ in morphine-induced internalization and receptor resensitization. J Biol Chem 276:31408–31414

    PubMed  CAS  Google Scholar 

  • Koch T, Widera A, Bartzsch K, Schulz S, Brandenburg LO, Wundrack N, Beyer A, Grecksch G, Hollt V (2005) Receptor endocytosis counteracts the development of opioid tolerance. Mol Pharmacol 67:280–287

    PubMed  CAS  Google Scholar 

  • Kolesnikov YA, Chereshnev I, Pasternak GW (2000) Analgesic synergy between topical lidocaine and topical opioids. J Pharmacol Exp Ther 295:546–551

    PubMed  CAS  Google Scholar 

  • Kondo I, Marvizon JC, Song B, Salgado F, Codeluppi S, Hua XY, Yaksh TL (2005) Inhibition by spinal mu-and delta-opioid agonists of afferent-evoked substance P release. J Neurosci 25:3651–3660

    PubMed  CAS  Google Scholar 

  • Krajnik M, Zylicz Z, Finlay I, Luczak J, van Sorge AA (1999) Potential uses of topical opioids in palliative care—report of 6 cases. Pain 80:121–125

    PubMed  CAS  Google Scholar 

  • Kraus J, Borner C, Giannini E, Hickfang K, Braun H, Mayer P, Hoehe MR, Ambrosch A, Konig W, Höllt V (2001) Regulation of mu-opioid receptor gene transcription by interleukin-4 and influence of an allelic variation within a STAT6 transcription factor binding site. J Biol Chem 276:43901–43908

    PubMed  CAS  Google Scholar 

  • Kumar V, Guo D, Cassel JA, Daubert JD, Dehaven RN, Dehaven-Hudkins DL, Gauntner EK, Gottshall SL, Greiner SL, Koblish M, Little PJ, Mansson E, Maycock AL (2005) Synthesis and evaluation of novel peripherally restricted kappa-opioid receptor agonists. Bioorg Med Chem Lett 15:1091–1095

    PubMed  CAS  Google Scholar 

  • Ladd LA, Kam PC, Williams DB, Wright AW, Smith MT, Mather LE (2005) Ventilatory responses of healthy subjects to intravenous combinations of morphine and oxycodone under imposed hypercapnic and hypoxaemic conditions. Br JClin Pharmacol 59:524–535

    CAS  Google Scholar 

  • Laduron PM, Castel MN (1990) Axonal transport of receptors. A major criterion for presynaptic localization. Ann N Y Acad Sci 604:462–469

    PubMed  CAS  Google Scholar 

  • Lal J, Krutak-Krol H, Domino EF (1986) Comparative antitussive effects of dextrorphan, dextromethorphan and phencyclidine. Arzneimittelforschung 36:1075–1078

    PubMed  CAS  Google Scholar 

  • Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430

    PubMed  CAS  Google Scholar 

  • Lee AY (1992) Stereospecific antiarrhythmic effects of naloxone against myocardial ischaemia and reperfusion in the dog. Br J Pharmacol 107:1057–1060

    PubMed  CAS  Google Scholar 

  • Liang CS, Imai N, Stone CK, Woolf PD, Kawashima S, Tuttle RR (1987) The role of endogenous opioids in congestive heart failure: effects of nalmefene on systemic and regional hemodynamics in dogs. Circulation 75:443–451

    PubMed  CAS  Google Scholar 

  • Likar R, Schäfer M, Paulak F, Sittl R, Pipam W, Schalk H, Geissler D, Bernatzky G (1997) Intraarticular morphine analgesia in chronic pain patients with osteoarthritis. Anesth Analg 84:1313–1317

    PubMed  CAS  Google Scholar 

  • Likar R, Sittl R, Gragger K, Pipam W, Blatnig H, Breschan C, Schalk HV, Stein C, Schäfer M (1998) Peripheral morphine analgesia in dental surgery. Pain 76:145–150

    PubMed  CAS  Google Scholar 

  • Long TD, Cathers TA, Twillman R, O’Donnell T, Garrigues N, Jones T (2001) Morphine-Infused silver sulfadiazine (MISS) cream for burn analgesia: a pilot study. J Burn Care Rehabil 22:118–123

    PubMed  CAS  Google Scholar 

  • Lord JA, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    PubMed  CAS  Google Scholar 

  • Lotsch J (2005a) Opioid metabolites. J Pain Symptom Manage 29:S10–24

    PubMed  Google Scholar 

  • Lotsch J (2005b) Pharmacokinetic-pharmacodynamic modeling of opioids. J Pain Symptom Manage 29:S90–103

    PubMed  Google Scholar 

  • Machelska H, Cabot PJ, Mousa SA, Zhang Q, Stein C (1998) Pain control in inflammation governed by selectins. Nat Med 4:1425–1428

    PubMed  CAS  Google Scholar 

  • Machelska H, Mousa SA, Brack A, Schopohl JK, Rittner HL, Schäfer M, Stein C (2002) Opioid control of inflammatory pain regulated by intercellular adhesion molecule-1. J Neurosci 22:5588–5596

    PubMed  CAS  Google Scholar 

  • Maekawa K, Minami M, Masuda T, Satoh M (1996) Expression of mu-and kappa-, but not delta-, opioid receptor mRNAs is enhanced in the spinal dorsal horn of the arthritic rats. Pain 64:365–371

    PubMed  CAS  Google Scholar 

  • Mansour A, Taylor LP, Fine JL, Thompson RC, Hoversten MT, Mosberg HI, Watson SJ, Akil H (1997) Key residues defining the mu-opioid receptor binding pocket: a site-directed mutagenesis study. J Neurochem 68:344–353

    PubMed  CAS  Google Scholar 

  • Manzke T, Guenther U, Ponimaskin EG, Haller M, Dutschmann M, Schwarzacher S, Richter DW (2003) 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 301:226–229

    PubMed  CAS  Google Scholar 

  • Mao J (1999) NMDA and opioid receptors: their interactions in antinociception, tolerance and neuroplasticity. Brain Res Brain Res Rev 30:289–304

    PubMed  CAS  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine-and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  CAS  Google Scholar 

  • Massotte D, Kieffer BL (2005) The second extracellular loop: a damper for G protein-coupled receptors? Nat Struct Mol Biol 12:287–288

    PubMed  CAS  Google Scholar 

  • Mattia A, Vanderah T, Mosbert HI, Porreca F (1991) Lack of antinociceptive cross-tolerance between [D-Pen2, D-Pen5]enkephalin and [D-Ala2]deltorphin II in mice: evidence for delta receptor subtypes. J Pharmacol Exp Ther 258:583–587

    PubMed  CAS  Google Scholar 

  • Meng F, Xie GX, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of a rat kappa opioid receptor. Proc Natl Acad Sci U S A 90:9954–9958

    PubMed  CAS  Google Scholar 

  • Moulin DE, Iezzi A, Amireh R, Sharpe WK, Boyd D, Merskey H (1996) Randomised trial of oral morphine for chronic non-cancer pain. Lancet 347:143–147

    PubMed  CAS  Google Scholar 

  • Mousa SA, Machelska H, Schäfer M, Stein C (2000) Co-expression of beta-endorphin with adhesion molecules in a model of inflammatory pain. J Neuroimmunol 108:160–170

    PubMed  CAS  Google Scholar 

  • Nakanishi S, Inoue A, Kita T, Nakamura M, Chang AC, Cohen SN, Numa S (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature 278:423–427

    PubMed  CAS  Google Scholar 

  • Narita M, Tseng LF (1998) Evidence for the existence of the beta-endorphin-sensitive “epsilon-opioid receptor” in the brain: the mechanisms of epsilon-mediated antinociception. Jpn J Pharmacol 76:233–253

    PubMed  CAS  Google Scholar 

  • Negus SS, Picker MJ, Dykstra LA (1989) Kappa antagonist properties of buprenorphine in non-tolerant and morphine-tolerant rats. Psychopharmacology (Berl) 98:141–143

    PubMed  CAS  Google Scholar 

  • Ocana M, Del Pozo E, Barrios M, Baeyens JM (1995) Subgroups among mu-opioid receptor agonists distinguished by ATP-sensitive K+ channel-acting drugs. Br J Pharmacol 114:1296–1302

    PubMed  CAS  Google Scholar 

  • Ocana M, Cendan CM, Cobos EJ, Entrena JM, Baeyens JM (2004) Potassium channels and pain: present realities and future opportunities. Eur J Pharmacol 500:203–219

    PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    PubMed  CAS  Google Scholar 

  • Pasternak GW (2004) Multiple opiate receptors: deja vu all over again. Neuropharmacology 47:312–323

    PubMed  CAS  Google Scholar 

  • Patwardhan AM, Berg KA, Akopain AN, Jeske NA, Gamper N, Clarke WP, Hargreaves KM (2005) Bradykinin-induced functional competence and trafficking of the delta-opioid receptor in trigeminal nociceptors. J Neurosci 25:8825–8832

    PubMed  CAS  Google Scholar 

  • Peloso PM, Bellamy N, Bensen W, Thomson GT, Harsanyi Z, Babul N, Darke AC (2000) Double blind randomized placebo control trial of controlled release codeine in the treatment of osteoarthritis of the hip or knee. J Rheumatol 27:764–771

    PubMed  CAS  Google Scholar 

  • Pepe S, van den Brink OW, Lakatta EG, Xiao RP (2004) Cross-talk of opioid peptide receptor and beta-adrenergic receptor signalling in the heart. Cardiovasc Res 63:414–422

    PubMed  CAS  Google Scholar 

  • Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014

    PubMed  CAS  Google Scholar 

  • Peyman GA, Rahimy MH, Fernandes ML (1994) Effects of morphine on corneal sensitivity and epithelial wound healing: implications for topical ophthalmic analgesia. Br J Ophthalmol 78:138–141

    PubMed  CAS  Google Scholar 

  • Pierce KL, Tohgo A, Ahn S, Field ME, Luttrell LM, Lefkowitz RJ (2001) Epidermal growth factor (EGF) receptor-dependent ERK activation by G protein-coupled receptors: a coculture system for identifying intermediates upstream and downstream of heparin-binding EGF shedding. J Biol Chem 276:23155–23160

    PubMed  CAS  Google Scholar 

  • Pol O, Puig MM (1997) Reversal of tolerance to the antitransit effects of morphine during acute intestinal inflammation in mice. Br J Pharmacol 122:1216–1222

    PubMed  CAS  Google Scholar 

  • Polakiewicz RD, Schieferl SM, Dorner LF, Kansra V, Comb MJ (1998) A mitogen-activated protein kinase pathway is required for mu-opioid receptor desensitization. J Biol Chem 273:12402–12406

    PubMed  CAS  Google Scholar 

  • Portenoy RK, Khan E, Layman M, Lapin J, Malkin MG, Foley KM, Thaler HT, Cerbone DJ, Inturrisi CE (1991) Chronic morphine therapy for cancer pain: plasma and cerebrospinal fluid morphine and morphine-6-glucuronide concentrations. Neurology 41:1457–1461

    PubMed  CAS  Google Scholar 

  • Porter J, Jick H (1980) Addiction rare in patients treated with narcotics. N Engl J Med 302:123

    PubMed  CAS  Google Scholar 

  • Price DD, Mayer DJ, Mao J, Caruso FS (2000) NMDA-receptor antagonists and opioid receptor interactions as related to analgesia and tolerance. J Pain Symptom Manage 19:S7–11

    PubMed  CAS  Google Scholar 

  • Puehler W, Zöllner C, Brack A, Shaqura M, Krause H, Schäfer M, Stein C (2004) Rapid upregulation of μ opioid receptor mRNA in dorsal root ganglia in response to peripheral inflammation depends on neuronal conduction. Neuroscience 129:473–479

    PubMed  CAS  Google Scholar 

  • Rittner HL, Brack A, Machelska H, Mousa SA, Bauer M, Schäfer M, Stein C (2001) Opioid peptide-expressing leukocytes: identification, recruitment, and simultaneously increasing inhibition of inflammatory pain. Anesthesiology 95:500–508

    PubMed  CAS  Google Scholar 

  • Roques BP (2000) Novel approaches to targeting neuropeptide systems. Trends Pharmacol Sci 21:475–483

    PubMed  CAS  Google Scholar 

  • Rubovitch V, Gafni M, Sarne Y (2003) The mu opioid agonist DAMGO stimulates cAMP production in SK-N-SH cells through a PLC-PKC-Ca++ pathway. Brain Res Mol Brain Res 110:261–266

    PubMed  CAS  Google Scholar 

  • Schmidt H, Schulz S, Klutzny M, Koch T, Handel M, Höllt V (2000) Involvement of mitogen-activated protein kinase in agonist-induced phosphorylation of the mu-opioid receptor in HEK 293 cells. J Neurochem 74:414–422

    PubMed  CAS  Google Scholar 

  • Schmidt WK (2001) Alvimopan (ADL 8-2698) is a novel peripheral opioid antagonist. Am J Surg 182:27–38

    Google Scholar 

  • Schmitz R (1985) Friedrich Wilhelm Serturner and the discovery of morphine. Pharm Hist 27:61–74

    PubMed  CAS  Google Scholar 

  • Schug SA, Zech D, Grond S (1992) Adverse effects of systemic opioid analgesics. Drug Saf 7:200–213

    PubMed  CAS  Google Scholar 

  • Schultz JJ, Hsu AK, Gross GJ (1997) Ischemic preconditioning and morphine-induced cardioprotection involve the delta (delta)-opioid receptor in the intact rat heart. J Mol Cell Cardiol 29:2187–2195

    PubMed  CAS  Google Scholar 

  • Schulz R, Eisinger DA, Wehmeyer A (2004a) Opioid control of MAP kinase cascade. Eur J Pharmacol 500:487–497

    PubMed  CAS  Google Scholar 

  • Schulz S, Mayer D, Pfeiffer M, Stumm R, Koch T, Hollt V (2004b) Morphine induces terminal micro-opioid receptor desensitization by sustained phosphorylation of serine-375. EMBO J 23:3282–3289

    PubMed  CAS  Google Scholar 

  • Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    PubMed  CAS  Google Scholar 

  • Servin F (2003) Remifentanil; from pharmacological properties to clinical practice. Adv Exp Med Biol 523:245–260

    PubMed  CAS  Google Scholar 

  • Shaiova L (2005) The management of opioid-related sedation. Curr Pain Headache Rep 9:239–242

    PubMed  Google Scholar 

  • Shaqura MA, Zöllner C, Mousa SA, Stein C, Schäfer M (2004) Characterization of mu opioid receptor binding and G protein coupling in rat hypothalamus, spinal cord, and primary afferent neurons during inflammatory pain. J Pharmacol Exp Ther 308:712–718

    PubMed  CAS  Google Scholar 

  • Short TG, Plummer JL, Chui PT (1992) Hypnotic and anaesthetic interactions between midazolam, propofol and alfentanil. Br J Anaesth 69:162–167

    PubMed  CAS  Google Scholar 

  • Sim LJ, Selley DE, Dworkin SI, Childers SR (1996) Effects of chronic morphine administration on mu opioid receptor-stimulated [35S]GTPgammaS autoradiography in rat brain. J Neurosci 16:2684–2692

    PubMed  CAS  Google Scholar 

  • Simonin F, Slowe S, Becker JA, Matthes HW, Filliol D, Chluba J, Kitchen I, Kieffer BL (2001) Analysis of [3H]bremazocine binding in single and combinatorial opioid receptor knockout mice. Eur J Pharmacol 414:189–195

    PubMed  CAS  Google Scholar 

  • Slominski A, Wortsman J, Luger T, Paus R, Solomon S (2000) Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev 80:979–1020

    PubMed  CAS  Google Scholar 

  • Smith FL, Javed RR, Elzey MJ, Dewey WL (2003) The expression of a high level of morphine antinociceptive tolerance in mice involves both PKC and PKA. Brain Res 985:78–88

    PubMed  CAS  Google Scholar 

  • Stein A, Yassouridis A, Szopko C, Helmke K, Stein C (1999) Intraarticular morphine versus dexamethasone in chronic arthritis. Pain 83:525–532

    PubMed  CAS  Google Scholar 

  • Stein C, Millan MJ, Shippenberg TS, Peter K, Herz A (1989) Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J Pharmacol Exp Ther 248:1269–1275

    PubMed  CAS  Google Scholar 

  • Stein C, Hassan AH, Lehrberger K, Giefing J, Yassouridis A (1993) Local analgesic effect of endogenous opioid peptides. Lancet 342:321–324

    PubMed  CAS  Google Scholar 

  • Stein C, Pfluger M, Yassouridis A, Hoelzl J, Lehrberger K, Welte C, Hassan AH (1996) No tolerance to peripheral morphine analgesia in presence of opioid expression in inflamed synovia. J Clin Invest 98:793–799

    PubMed  CAS  Google Scholar 

  • Stein C, Schäfer M, Machelska H (2003) Attacking pain at its source: new perspectives on opioids. Nat Med 9:1003–1008

    PubMed  CAS  Google Scholar 

  • Sternini C, Spann M, Anton B, Keith DE Jr, Bunnett NW, von Zastrow M, Evans C, Brecha NC (1996) Agonist-selective endocytosis of mu opioid receptor by neurons in vivo. Proc Natl Acad Sci U S A 93:9241–9246

    PubMed  CAS  Google Scholar 

  • Stretton D, Miura M, Belvisi MG, Barnes PJ (1992) Calcium-activated potassium channels mediate prejunctional inhibition of peripheral sensory nerves. Proc Natl Acad Sci U S A 89:1325–1329

    PubMed  CAS  Google Scholar 

  • Surratt CK, Johnson PS, Moriwaki A, Seidleck BK, Blaschak CJ, Wang JB, Uhl GR (1994)-mu opiate receptor. Charged transmembrane domain amino acids are critical for agonist recognition and intrinsic activity. J Biol Chem 269:20548–20553

    PubMed  CAS  Google Scholar 

  • Taguchi A, Sharma N, Saleem RM, Sessler DI, Carpenter RL, Seyedsadr M, Kurz A (2001) Selective postoperative inhibition of gastrointestinal opioid receptors. N Engl J Med 345:935–940

    PubMed  CAS  Google Scholar 

  • Tegeder I, Meier S, Burian M, Schmidt H, Geisslinger G, Lotsch J (2003) Peripheral opioid analgesia in experimental human pain models. Brain 126:1092–1102

    PubMed  Google Scholar 

  • Townsend Dt, Portoghese PS, Brown DR (2004) Characterization of specific opioid binding sites in neural membranes from the myenteric plexus of porcine small intestine. J Pharmacol Exp Ther 308:385–393

    PubMed  Google Scholar 

  • Twillman RK, Long TD, Cathers TA, Mueller DW (1999) Treatment of painful skin ulcers with topical opioids. J Pain Symptom Manage 17:288–292

    PubMed  CAS  Google Scholar 

  • von Zastrow M (2004) A cell biologist’s perspective on physiological adaptation to opiate drugs. Neuropharmacology 47Suppl 1:286–292

    Google Scholar 

  • Wang HL (2000) A cluster of Ser/Thr residues at the C-terminus of mu-opioid receptor is required for G protein-coupled receptor kinase 2-mediated desensitization. Neuropharmacology 39:353–363

    PubMed  CAS  Google Scholar 

  • Wang JB, Imai Y, Eppler CM, Gregor P, Spivak CE, Uhl GR (1993) mu opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci U S A 90:10230–10234

    PubMed  CAS  Google Scholar 

  • Wang SC, Glaviano VV (1954) Locus of emetic action of morphine and hydergine in dogs. J Pharmacol Exp Ther 111:329–334

    PubMed  CAS  Google Scholar 

  • Watson CP, Babul N (1998) Efficacy of oxycodone in neuropathic pain: a randomized trial in postherpetic neuralgia. Neurology 50:1837–1841

    PubMed  CAS  Google Scholar 

  • Weil JV, McCullough RE, Kline JS, Sodal IE (1975) Diminished ventilatory response to hypoxia and hypercapnia after morphine in normal man. N Engl J Med 292:1103–1106

    PubMed  CAS  Google Scholar 

  • Weinberg DS, Inturrisi CE, Reidenberg B, Moulin DE, Nip TJ, Wallenstein S, Houde RW, Foley KM (1988) Sublingual absorption of selected opioid analgesics. Clin Pharmacol Ther 44:335–342

    PubMed  CAS  Google Scholar 

  • Weinger MB, Smith NT, Blasco TA, Koob GF (1991) Brain sites mediating opiate-induced muscle rigidity in the rat: methylnaloxonium mapping study. Brain Res 544:181–190

    PubMed  CAS  Google Scholar 

  • Whistler JL, Enquist J, Marley A, Fong J, Gladher F, Tsuruda P, Murray SR, von Zastrow M (2002) Modulation of postendocytic sorting of G protein-coupled receptors. Science 297:615–620

    PubMed  CAS  Google Scholar 

  • Whiteside GT, Harrison JE, Pearson MS, Chen Z, Fundytus ME, Rotshteyn Y, Turchin PI, Pomonis JD, Mark L, Walker K, Brogle KC (2004) DiPOA ([8-(3,3-diphenyl-propyl)-4-oxo-1-phenyl-1,3,8-triazaspiro[4.5]dec-3-yl]-acetic acid), a novel, systemically available, and peripherally restricted Mu opioid agonist with antihyperalgesic activity. II. In vivo pharmacological characterization in the rat. J Pharmacol Exp Ther 310:793–799

    PubMed  CAS  Google Scholar 

  • Zacny JP (2005) Differential effects of morphine and codeine on pupil size: dosing issues. Anesth Analg 100:598

    PubMed  Google Scholar 

  • Zadina JE, Hackler L, Ge LJ, Kastin AJ (1997) A potent and selective endogenous agonist for the mu-opiate receptor. Nature 386:499–502

    PubMed  CAS  Google Scholar 

  • Zech DF, Grond S, Lynch J, Herte lD, Lehmann KA (1995) Validation of World Health Organization Guidelines for cancer pain relief: a 10-year prospective study. Pain 63:65–76

    PubMed  CAS  Google Scholar 

  • Zhang P, Johnson PS, Zöllner C, Wang W, Wang Z, Montes AE, Seidleck BK, Blaschak CJ, Surratt CK (1999) Mutation of human mu opioid receptor extracellular “disulfide cysteine” residues alters ligand binding but does not prevent receptor targeting to the cell plasma membrane. Brain Res Mol Brain Res 72:195–204

    PubMed  CAS  Google Scholar 

  • Zöllner C, Shaqura MA, Bopaiah CP, Mousa S, Stein C, Schäfer M (2003) Painful inflammation-induced increase in mu-opioid receptor binding and G-protein coupling in primary afferent neurons. Mol Pharmacol 64:202–210

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zöllner, C., Stein, C. (2006). Opioids. In: Stein, C. (eds) Analgesia. Handbook of Experimental Pharmacology, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33823-9_2

Download citation

Publish with us

Policies and ethics