Skip to main content

NO-Independent, Haem-Dependent Soluble Guanylate Cyclase Stimulators

  • Chapter
Book cover cGMP: Generators, Effectors and Therapeutic Implications

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

The nitric oxide (NO) signalling pathway is altered in cardiovascular diseases, including systemic and pulmonary hypertension, stroke, and atherosclerosis. The vasodilatory properties of NO have been exploited for over a century in cardiovascular disease, but NO donor drugs and inhaled NO are associated with significant shortcomings, including resistance to NO in some disease states, the development of tolerance during long-term treatment, and non-specific effects such as post-translational modification of proteins. The development of pharmacological agents capable of directly stimulating the NO receptor, soluble guanylate cyclase (sGC), is therefore highly desirable. The benzylindazole compound YC-1 was the first sGC stimulator to be identified; this compound formed a lead structure for the development of optimized sGC stimulators with improved potency and specificity for sGC, including CFM-1571, BAY 41-2272, BAY 41-8543, and BAY 63-2521. In contrast to the NO- and haem-independent sGC activators such as BAY 58-2667, these compounds stimulate sGC activity independent of NO and also act in synergy with NO to produce anti-aggregatory, anti-proliferative, and vasodilatory effects. Recently, aryl-acrylamide compounds were identified independent of YC-1 as sGC stimulators; although structurally dissimilar to YC-1, they have a similar mode of action and promote smooth muscle relaxation. Pharmacological stimulators of sGC may be beneficial in the treatment of a range of diseases, including systemic and pulmonary hypertension, heart failure, atherosclerosis, erectile dysfunction, and renal fibrosis. An sGC stimulator, BAY 63-2521, is currently in clinical development as an oral therapy for patients with pulmonary hypertension. It has demonstrated efficacy in a proof-of-concept study, reducing pulmonary vascular resistance and increasing cardiac output from baseline. A full, phase 2 trial of BAY 63-2521 in pulmonary hypertension is underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahluwalia A, Foster P, Scotland RS, McLean PG, Mathur A, Perretti M, Moncada S, Hobbs AJ (2004) Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc Natl Acad Sci USA 101:1386–1391

    PubMed  CAS  Google Scholar 

  • Aliyu ZY, Kato GJ, Taylor JT, Babadoko A, Mamman AI, Gordeuk VR, Gladwin MT (2008) Sickle cell disease and pulmonary hypertension in Africa: A global perspective and review of epidemiology, pathophysiology, and management. Am J Hematol 83:63–70

    PubMed  Google Scholar 

  • Amirmansour C, Vallance P, Bogle RG (1999) Tyrosine nitration in blood vessels occurs with increasing nitric oxide concentration. Br J Pharmacol 127:788–794

    PubMed  CAS  Google Scholar 

  • Andersson KE (2001) Pharmacology of penile erection. Pharmacol Rev 53:417–450

    PubMed  CAS  Google Scholar 

  • Atz AM, Adatia I, Wessel DL (1996) Rebound pulmonary hypertension after inhalation of nitric oxide. Ann Thorac Surg 62:1759–1764

    PubMed  CAS  Google Scholar 

  • Baracat JS, Teixeira CE, Okuyama CE, Priviero FB, Faro R, Antunes E, De Nucci G (2003) Relaxing effects induced by the soluble guanylyl cyclase stimulator BAY 41–2272 in human and rabbit corpus cavernosum. Eur J Pharmacol 477:163–169

    PubMed  CAS  Google Scholar 

  • Becker EM, Alonso-Alija C, Apeler H, Gerzer R, Minuth T, Pleiss U, Schmidt P, Schramm M, Schroder H, Schroeder W, Steinke W, Straub A, Stasch JP (2001) NO-independent regulatory site of direct sGC stimulators like YC-1 and BAY 41-2272. BMC Pharmacol 1:13.

    PubMed  CAS  Google Scholar 

  • Becker EM, Schmidt P, Schramm M, Schroder H, Walter U, Hoenicka M, Gerzer R, Stasch JP (2000) The vasodilator-stimulated phosphoprotein (VASP): target of YC-1 and nitric oxide effects in human and rat platelets. J Cardiovasc Pharmacol 35:390–397

    PubMed  CAS  Google Scholar 

  • Berkan O, Bagcivan I, Kaya T, Yildirim K, Yildirim S, Dogan K (2007) Investigation of the vasorelaxant effects of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1) and diethy-lamine/nitric oxide (DEA/NO) on the human radial artery used as coronary bypass graft. Can J Physiol Pharmacol 85:521–526

    PubMed  CAS  Google Scholar 

  • Bischoff E, Schramm M, Straub A, Feurer A, Stasch JP (2003) BAY 41–2272: a stimulator of soluble guanylyl cyclase induces nitric oxide-dependent penile erection in vivo. Urology 61:464–467

    PubMed  CAS  Google Scholar 

  • Bischoff E, Stasch JP (2004) Effects of the sGC stimulator BAY 41-2272 are not mediated by phosphodiesterase 5 inhibition. Circulation 110:320–321; author reply e320–e321

    Google Scholar 

  • Bloch KD, Ichinose F, Roberts JD Jr, Zapol WM (2007) Inhaled NO as a therapeutic agent. Cardiovasc Res 75:339–348

    PubMed  CAS  Google Scholar 

  • Boerrigter G, Jr Burnett JC (2004) Recent advances in natriuretic peptides in congestive heart failure. Expert Opin Investig Drugs 13:643–652

    PubMed  CAS  Google Scholar 

  • Boerrigter G, Costello-Boerrigter LC, Cataliotti A, Tsuruda T, Harty GJ, Lapp H, Stasch JP, Burnett JC Jr (2003) Cardiorenal and humoral properties of a novel direct soluble guanylate cyclase stimulator BAY 41-2272 in experimental congestive heart failure. Circulation 107:686–689

    PubMed  CAS  Google Scholar 

  • Brandes RP, Kim D, Schmitz-Winnenthal FH, Amidi M, Godecke A, Mulsch A, Busse R (2000) Increased nitrovasodilator sensitivity in endothelial nitric oxide synthase knockout mice:role of soluble guanylyl cyclase. Hypertension 35:231–236

    PubMed  CAS  Google Scholar 

  • Bredt DS (2003) Nitric oxide signaling in brain:potentiating the gain with YC-1. Mol Pharmacol 63:1206–1208

    PubMed  CAS  Google Scholar 

  • Brunton TL (1867) Use of nitrite of amyl in angina patients. Lancet 2:97–98

    Google Scholar 

  • Budworth J, Meillerais S, Charles I, Powell K (1999) Tissue distribution of the human soluble guanylate cyclases. Biochem Biophys Res Commun 263:696–701

    PubMed  CAS  Google Scholar 

  • Burney S, Caulfield JL, Niles JC, Wishnok JS, Tannenbaum SR (1999) The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res 424:37–49

    PubMed  CAS  Google Scholar 

  • Cary SP, Winger JA, Marletta MA (2005) Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP. Proc Natl Acad Sci USA 102:13064–13069

    PubMed  CAS  Google Scholar 

  • Cau SB, Dias-Junior CA, Montenegro MF, de Nucci G, Antunes E, Tanus-Santos JE (2008) Dose-dependent beneficial hemodynamic effects of BAY 41–2272 in a canine model of acute pulmonary thromboembolism. Eur J Pharmacol 581:132–137

    PubMed  CAS  Google Scholar 

  • Cellek S (2003) The Rho-kinase inhibitor Y-27632 and the soluble guanylyl cyclase activator BAY 41-2272 relax rabbit vaginal wall and clitoral corpus cavernosum. Br J Pharmacol 138:287–290

    PubMed  CAS  Google Scholar 

  • Cetin A, Kaya T, Demirkoprulu N, Karadas B, Duran B, Cetin M (2004) YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits the spontaneous contractions of isolated pregnant rat myometrium. J Pharmacol Sci 94:19–24

    PubMed  CAS  Google Scholar 

  • Chapman KR, Mannino DM, Soriano JB, Vermeire PA, Buist AS, Thun MJ, Connell C, Jemal A, Lee TA, Miravitlles M, Aldington S, Beasley R (2006) Epidemiology and costs of chronic obstructive pulmonary disease. Eur Respir J 27:188–207

    PubMed  CAS  Google Scholar 

  • Che Y, Ellis A, Li CG (2005) Enhanced responsiveness to nitric oxide, nitroxyl anions, and nitr-ergic transmitter by 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole in the rat anococcygeus muscle. Nitric Oxide 13:118–124

    PubMed  CAS  Google Scholar 

  • Chen Z, Zhang J, Stamler JS (2002) Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci USA 99:8306–8311

    PubMed  CAS  Google Scholar 

  • Chiang WC, Teng CM, Lin SL, Chen YM, Tsai TJ, Hsieh BS (2005) YC-1-inhibited proliferation of rat mesangial cells through suppression of cyclin D1-independent of cGMP pathway and partially reversed by p38 MAPK inhibitor. Eur J Pharmacol 517:1–10

    PubMed  CAS  Google Scholar 

  • Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM (2003) Enhancement of long-term potentiation by a potent nitric oxide-guanylyl cyclase activator, 3-(5-hydroxymethyl-2-furyl)-1-benzyl-indazole. Mol Pharmacol 63:1322–1328

    PubMed  CAS  Google Scholar 

  • Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY, Fu WM (2005) Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1. Eur J Neurosci 21:1679– 1688

    PubMed  Google Scholar 

  • Chien YH, Bau DT, Jan KY (2004) Nitric oxide inhibits DNA-adduct excision in nucleotide excision repair. Free Radic Biol Med 36:1011–1017

    PubMed  CAS  Google Scholar 

  • Chirkov YY, Horowitz JD (2007) Impaired tissue responsiveness to organic nitrates and nitric oxide:a new therapeutic frontier?. Pharmacol Ther 116:287–305

    PubMed  CAS  Google Scholar 

  • Chockalingam A, Gnanavelu G, Venkatesan S, Elangovan S, Jagannathan V, Subramaniam T, Alagesan R, Dorairajan S (2005) Efficacy and optimal dose of sildenafil in primary pulmonary hypertension. Int J Cardiol 99:91–95

    PubMed  Google Scholar 

  • Chou LC, Huang LJ, Yang JS, Lee FY, Teng CM, Kuo SC (2007) Synthesis of furopyra-zole analogs of 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) as novel anti-leukemia agents. Bioorg Med Chem 15:1732–1740

    PubMed  CAS  Google Scholar 

  • Chun YS, Yeo EJ, Choi E, Teng CM, Bae JM, Kim MS, Park JW (2001) Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells. Biochem Pharmacol 61:947–954

    PubMed  CAS  Google Scholar 

  • D'Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115:343–349

    PubMed  Google Scholar 

  • Demirkoprulu N, Cetin M, Bagcivan I, Kaya T, Soydan AS, Karadas B, Cetin A (2005) Comparative relaxant effects of YC-1 and DETA/NO on spontaneous contractions and the levels of cGMP of isolated pregnant rat myometrium. Eur J Pharmacol 517:240–245

    PubMed  CAS  Google Scholar 

  • Dempsey OJ, Kerr KM, Gomersall L, Remmen H, Currie GP (2006) Idiopathic pulmonary fibrosis:an update. QJM 99:643–654

    PubMed  CAS  Google Scholar 

  • Denninger JW, Schelvis JP, Brandish PE, Zhao Y, Babcock GT, Marletta MA (2000) Interaction of soluble guanylate cyclase with YC-1:kinetic and resonance Raman studies. Biochemistry 39:4191–4198

    PubMed  CAS  Google Scholar 

  • Denton CP, Nihtyanova SI (2007) Therapy of pulmonary arterial hypertension in systemic sclerosis:an update. Curr Rheumatol Rep 9:158–164

    PubMed  CAS  Google Scholar 

  • Derbyshire ER, Marletta MA (2007) Butyl isocyanide as a probe of the activation mechanism of soluble guanylate cyclase:investigating the role of non-heme nitric oxide. J Biol Chem 282:35741–35748

    PubMed  CAS  Google Scholar 

  • Derbyshire ER, Gunn A, Ibrahim M, Spiro TG, Britt RD, Marletta MA (2008) Characterization of two different five-coordinate soluble guanylate cyclase ferrous-nitrosyl complexes. Biochemistry 47:3892–3899

    PubMed  CAS  Google Scholar 

  • Deruelle P, Balasubramaniam V, Kunig AM, Seedorf GJ, Markham NE, Abman SH (2006) BAY 41-2272, a direct activator of soluble guanylate cyclase, reduces right ventricular hypertrophy and prevents pulmonary vascular remodeling during chronic hypoxia in neonatal rats. Biol Neonate 90:135–144

    PubMed  CAS  Google Scholar 

  • Deruelle P, Grover TR, Abman SH (2005a) Pulmonary vascular effects of nitric oxide-cGMP augmentation in a model of chronic pulmonary hypertension in fetal and neonatal sheep. Am J Physiol Lung Cell Mol Physiol 289:L798–L806

    CAS  Google Scholar 

  • Deruelle P, Grover TR, Storme L, Abman SH (2005b) Effects of BAY 41-2272, a soluble guanylate cyclase activator, on pulmonary vascular reactivity in the ovine fetus. Am J Physiol Lung Cell Mol Physiol 288:L727–L733

    CAS  Google Scholar 

  • Dumitrascu R, Weissmann N, Ghofrani HA, Dony E, Beuerlein K, Schmidt H, Stasch JP, Gnoth MJ, Seeger W, Grimminger F, Schermuly RT (2006) Activation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling. Circulation 113:286–295

    PubMed  CAS  Google Scholar 

  • Dunkern TR, Feurstein D, Rossi GA, Sabatini F, Hatzelmann A (2007) Inhibition of TGF-beta induced lung fibroblast to myofibroblast conversion by phosphodiesterase inhibiting drugs and activators of soluble guanylyl cyclase. Eur J Pharmacol 572:12–22

    PubMed  CAS  Google Scholar 

  • Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling:from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27:2524–2531

    PubMed  CAS  Google Scholar 

  • Evgenov OV, Ichinose F, Evgenov NV, Gnoth MJ, Falkowski GE, Chang Y, Bloch KD, Zapol WM (2004) Soluble guanylate cyclase activator reverses acute pulmonary hypertension and augments the pulmonary vasodilator response to inhaled nitric oxide in awake lambs. Circulation 110:2253–2259

    PubMed  CAS  Google Scholar 

  • Evgenov OV, Kohane DS, Bloch KD, Stasch JP, Volpato GP, Bellas E, Evgenov NV, Buys ES, Gnoth MJ, Graveline AR, Liu R, Hess DR, Langer R, Zapol WM (2007) Inhaled agonists of soluble guanylate cyclase induce selective pulmonary vasodilation. Am J Respir Crit Care Med 176:1–8

    Google Scholar 

  • Evgenov OV, Egorina EM, Stasch JP, Sovershaev MA. Inhibition of expression and procoagulant activity of tissue factor by soluble guanylate cyclase agonists in monocytes and endothelial cells. Nitric Oxide. 2008; 19 (Suppl.):S61.

    Google Scholar 

  • Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, Stasch JP (2006) NO-independent stimulators and activators of soluble guanylate cyclase:discovery and therapeutic potential. Nat Rev Drug Discov 5:755–768

    PubMed  CAS  Google Scholar 

  • Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol:529–560

    Google Scholar 

  • Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P (2004) The burden of adult hypertension in the United States 1999 to 2000:a rising tide. Hypertension 44:398–404

    PubMed  CAS  Google Scholar 

  • Filippi S, Morelli A, Sandner P, Fibbi B, Mancina R, Marini M, Gacci M, Vignozzi L, Vannelli GB, Carini M, Forti G, Maggi M (2007) Characterization and functional role of androgen-dependent PDE5 activity in the bladder. Endocrinology 148:1019–1029

    PubMed  CAS  Google Scholar 

  • Franco V, Oparil S (2006) Is there a new treatment for hypertensive disease in the horizon?. Role of soluble guanylate cyclase. Hypertension 48:822–823

    PubMed  CAS  Google Scholar 

  • Freitas CF, Morganti RP, Annichino-Bizzacchi JM, De Nucci G, Antunes E (2007) Effect of BAY 41-2272 in the pulmonary hypertension induced by heparin-protamine complex in anaesthetized dogs. Clin Exp Pharmacol Physiol 34:10–14

    PubMed  CAS  Google Scholar 

  • Frey R, Mück W, Unger S, Artmeier-Brandt U, Weimann G, Wensing G (2008) Single-dose phar-macokinetics, pharmacodynamics, tolerability and safety of the soluble guanylate cyclase stimulator BAY 63–2521:an ascending-dose study in healthy male volunteers. J Clin Pharmacol 48:926–934

    PubMed  CAS  Google Scholar 

  • Friebe A, Koesling D (1998) Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol Pharmacol 53:123–127

    PubMed  CAS  Google Scholar 

  • Friebe A, Mullershausen F, Smolenski A, Walter U, Schultz G, Koesling D (1998) YC-1 potentiates nitric oxide- and carbon monoxide-induced cyclic GMP effects in human platelets. Mol Pharmacol 54:962–967

    PubMed  CAS  Google Scholar 

  • Friebe A, Russwurm M, Mergia E, Koesling D (1999) A point-mutated guanylyl cyclase with features of the YC-1-stimulated enzyme:implications for the YC-1 binding site?. Biochemistry 38:15253–15257

    PubMed  CAS  Google Scholar 

  • Friebe A, Schultz G, Koesling D (1996) Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. EMBO J 15:6863–6868

    PubMed  CAS  Google Scholar 

  • Friebe A, Wedel B, Harteneck C, Foerster J, Schultz G, Koesling D (1997) Functions of conserved cysteines of soluble guanylyl cyclase. Biochemistry 36:1194–1198

    PubMed  CAS  Google Scholar 

  • Gaedeke J, Neumayer HH, Peters H (2006) Pharmacological management of renal fibrotic disease. Expert Opin Pharmacother 7:377–386

    PubMed  CAS  Google Scholar 

  • Gaine SP, Rubin LJ (1998) Primary pulmonary hypertension. Lancet 352:719–725

    PubMed  CAS  Google Scholar 

  • Galle J, Zabel U, Hubner U, Hatzelmann A, Wagner B, Wanner C, Schmidt HH (1999) Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phos-phodiesterase activity. Br J Pharmacol 127:195–203

    PubMed  CAS  Google Scholar 

  • Garthwaite J. Concepts of neural nitric oxide-mediated transmission (2008). Eur J Neurosci. 27:2783–2802

    PubMed  Google Scholar 

  • Garthwaite G, Goodwin DA, Neale S, Riddall D, Garthwaite J (2002) Soluble guanylyl cyclase activator YC-1 protects white matter axons from nitric oxide toxicity and metabolic stress, probably through Na(+) channel inhibition. Mol Pharmacol 61:97–104

    PubMed  CAS  Google Scholar 

  • Ghofrani HA, Osterloh IH, Grimminger F (2006) Sildenafil:from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat Rev Drug Discov 5:689–702

    PubMed  CAS  Google Scholar 

  • Ghofrani HA, Weimann G, Frey R, Voswinckel R, Thamm M, Bölkow D, Weissmann N, Mück W, Unger S, Wensing G, Schermuly R, Grimminger F (2007) BAY 63–2521, an oral soluble guany-late cyclase stimulator, has a favourable safety profile, improves cardiopulmonary haemody-namics and has therapeutic potential in pulmonary hypertension. BMC Pharmacology 7:S8.

    Google Scholar 

  • Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333:214–221

    PubMed  CAS  Google Scholar 

  • GISSI-3 (1994) GISSI-3:effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Gruppo Italiano per lo Studio della Sopravvivenza nell'infarto Miocardico. Lancet 343:1115–1122

    Google Scholar 

  • Gladwin MT (2006) Deconstructing endothelial dysfunction:soluble guanylyl cyclase oxidation and the NO resistance syndrome. J Clin Invest 116:2330–2332

    PubMed  CAS  Google Scholar 

  • Gonzalez-Luis G, Cogolludo A, Moreno L, Lodi F, Tamargo J, Perez-Vizcaino F, Villamor E (2006) Relaxant effects of the soluble guanylate cyclase activator and NO sensitizer YC-1 in piglet pulmonary arteries. Biol Neonate 90:66–72

    PubMed  CAS  Google Scholar 

  • Gupte SA, Rupawalla T, Phillibert D Jr, Wolin MS (1999) NADPH and heme redox modulate pulmonary artery relaxation and guanylate cyclase activation by NO. Am J Physiol 277:L1124–L1132

    PubMed  CAS  Google Scholar 

  • Handy DE, Loscalzo J (2006) Nitric oxide and posttranslational modification of the vascular pro-teome:S-nitrosation of reactive thiols. Arterioscler Thromb Vasc Biol 26:1207–1214

    PubMed  CAS  Google Scholar 

  • Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    PubMed  CAS  Google Scholar 

  • Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115:509–517

    PubMed  CAS  Google Scholar 

  • Harrison DG, Cai H, Landmesser U, Griendling KK (2003) Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease. J Renin Angiotensin Aldosterone Syst 4:51–61

    PubMed  CAS  Google Scholar 

  • Hering KW, Artz JD, Pearson WH, Marletta MA (2006) The design and synthesis of YC-1 analogues as probes for soluble guanylate cyclase. Bioorg Med Chem Lett 16:618–621

    PubMed  CAS  Google Scholar 

  • Hobbs AJ (2002) Soluble guanylate cyclase:an old therapeutic target re-visited. Br J Pharmacol 136:637–640

    PubMed  CAS  Google Scholar 

  • Hobbs AJ, Moncada S (2003) Antiplatelet properties of a novel, non-NO-based soluble guanylate cyclase activator, BAY 41-2272. Vascul Pharmacol 40:149–154

    PubMed  CAS  Google Scholar 

  • Hoenicka M, Becker EM, Apeler H, Sirichoke T, Schroder H, Gerzer R, Stasch JP (1999) Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system:stimulation by YC-1, nitric oxide, and carbon monoxide. J Mol Med 77:14–23

    PubMed  CAS  Google Scholar 

  • Hohenstein B, Daniel C, Wagner A, Stasch JP, Hugo C (2005) Stimulation of soluble guanylyl cyclase inhibits mesangial cell proliferation and matrix accumulation in experimental glomeru-lonephritis. Am J Physiol Renal Physiol 288:F685–F693

    PubMed  CAS  Google Scholar 

  • Hsieh GC, O'Neill AB, Moreland RB, Sullivan JP, Brioni JD (2003) YC-1 potentiates the nitric oxide/cyclic GMP pathway in corpus cavernosum and facilitates penile erection in rats. Eur J Pharmacol 458:183–189

    PubMed  CAS  Google Scholar 

  • Hsu HK, Juan SH, Ho PY, Liang YC, Lin CH, Teng CM, Lee WS (2003) YC-1 inhibits proliferation of human vascular endothelial cells through a cyclic GMP-independent pathway. Biochem Pharmacol 66:263–271

    PubMed  CAS  Google Scholar 

  • Huang YT, Pan SL, Guh JH, Chang YL, Lee FY, Kuo SC, Teng CM (2005) YC-1 suppresses constitutive nuclear factor-kappaB activation and induces apoptosis in human prostate cancer cells. Mol Cancer Ther 4:1628–1635

    PubMed  CAS  Google Scholar 

  • Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Kon-stam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW, Antman EM, Smith SC, Jr., Adams CD, Anderson JL, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B (2005) ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure):developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation:endorsed by the Heart Rhythm Society. Circulation 112:e154–e235

    PubMed  Google Scholar 

  • Hussain MB, Hobbs AJ, MacAllister RJ (1999) Autoregulation of nitric oxide-soluble guanylate cyclase-cyclic GMP signalling in mouse thoracic aorta. Br J Pharmacol 128:1082–1088

    PubMed  CAS  Google Scholar 

  • Hwang TL, Wu CC, Guh JH, Teng CM (2003) Potentiation of tumor necrosis factor-alpha expression by YC-1 in alveolar macrophages through a cyclic GMP-independent pathway. Biochem Pharmacol 66:149–156

    PubMed  CAS  Google Scholar 

  • Ichinose F, Roberts JD, Jr., Zapol WM (2004) Inhaled nitric oxide:a selective pulmonary vasodilator:current uses and therapeutic potential. Circulation 109:3106–3111

    PubMed  Google Scholar 

  • Ignarro LJ, Bush PA, Buga GM, Wood KS, Fukuto JM, Rajfer J (1990) Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun 170:843–850

    PubMed  CAS  Google Scholar 

  • ISIS-4 Collaborative Group (1995) ISIS-4:a randomised factorial trial assessing early oral capto-pril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. Lancet 345:669–685

    Google Scholar 

  • Jackson EB Jr, Mukhopadhyay S, Tulis DA (2007) Pharmacologic modulators of soluble guanylate cyclase/cyclic guanosine monophosphate in the vascular system — from bench top to bedside. Curr Vasc Pharmacol 5:1–14

    PubMed  CAS  Google Scholar 

  • Kagota S, Yamaguchi Y, Tanaka N, Kubota Y, Kobayashi K, Nejime N, Nakamura K, Kunitomo M, Shinozuka K (2006) Disturbances in nitric oxide/cyclic guanosine monophosphate system in SHR/NDmcr-cp rats, a model of metabolic syndrome. Life Sci 78:1187–1196

    PubMed  CAS  Google Scholar 

  • Kalsi JS, Ralph DJ, Madge DJ, Kell PD, Cellek S (2004) A comparative study of sildenafil, NCX-911 and BAY41–2272 on the anococcygeus muscle of diabetic rats. Int J Impot Res 16:479–485

    PubMed  CAS  Google Scholar 

  • Kalsi JS, Rees RW, Hobbs AJ, Royle M, Kell PD, Ralph DJ, Moncada S, Cellek S (2003) BAY41— 2272, a novel nitric oxide independent soluble guanylate cyclase activator, relaxes human and rabbit corpus cavernosum in vitro. J Urol 169:761–766

    PubMed  CAS  Google Scholar 

  • Kessler R, Faller M, Weitzenblum E, Chaouat A, Aykut A, Ducolone A, Ehrhart M, Oswald-Mammosser M (2001) “Natural history” of pulmonary hypertension in a series of 131 patients with chronic obstructive lung disease. Am J Respir Crit Care Med 164:219–224

    PubMed  CAS  Google Scholar 

  • Kharitonov VG, Sharma VS, Magde D, Koesling D (1999) Kinetics and equilibria of soluble guanylate cyclase ligation by CO:effect of YC-1. Biochemistry 38:10699–10706

    PubMed  CAS  Google Scholar 

  • Kim D, Rybalkin SD, Pi X, Wang Y, Zhang C, Munzel T, Beavo JA, Berk BC, Yan C (2001) Up-regulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation 104:2338–2343

    PubMed  CAS  Google Scholar 

  • Klinger JR, Thaker S, Houtchens J, Preston IR, Hill NS, Farber HW (2006) Pulmonary hemody-namic responses to brain natriuretic peptide and sildenafil in patients with pulmonary arterial hypertension. Chest 129:417–425

    PubMed  CAS  Google Scholar 

  • Kloss S, Bouloumie A, Mulsch A (2000) Aging and chronic hypertension decrease expression of rat aortic soluble guanylyl cyclase. Hypertension 35:43–47

    PubMed  CAS  Google Scholar 

  • Knorr A, Hirth-Dietrich C, Alonso-Alija C, Härter M, Hahn M, Keim Y, Wunder F, Stasch JP (2008) Nitric oxide-independent activation of soluble guanylate cyclase by BAY 60-2770 in experimental liver fibrosis. Arzneimittelforschung 58:71–80

    PubMed  CAS  Google Scholar 

  • Ko FN, Wu CC, Kuo SC, Lee FY, Teng CM (1994) YC-1, a novel activator of platelet guanylate cyclase. Blood 84:4226–4233

    PubMed  CAS  Google Scholar 

  • Koenig G, Schreiber R, Wunder F, Stasch JP, Stahl E, Luithle J, Feurer A, Wirtz SN, Lang D (2004) 4-amino-substituted pyrimidine derivatives. USA; CA2492726

    Google Scholar 

  • Koglin M, Behrends S (2003) A functional domain of the alpha1 subunit of soluble guanylyl cy-clase is necessary for activation of the enzyme by nitric oxide and YC-1 but is not involved in heme binding. J Biol Chem 278:12590–12597

    PubMed  CAS  Google Scholar 

  • Koglin M, Stasch JP, Behrends S (2002) BAY 41-2272 activates two isoforms of nitric oxide-sensitive guanylyl cyclase. Biochem Biophys Res Commun 292:1057–1062

    PubMed  CAS  Google Scholar 

  • Kojda G, Kottenberg K, Hacker A, Noack E (1998) Alterations of the vascular and the myocardial guanylate cyclase/cGMP-system induced by long-term hypertension in rats. Pharm Acta Helv 73:27–35

    PubMed  CAS  Google Scholar 

  • Krasuski RA, Warner JJ, Wang A, Harrison JK, Tapson VF, Bashore TM (2000) Inhaled nitric oxide selectively dilates pulmonary vasculature in adult patients with pulmonary hypertension, irrespective of etiology. J Am Coll Cardiol 36:2204–2211

    PubMed  CAS  Google Scholar 

  • Kung HC, Hoyert DL, Xu J, Murphy SL (2007) Deaths:Preliminary Data for 2005. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, Hyattsville, MD. http://www.cdc.gov/nchs/ products/pubs/pubd/hestats/prelimdeaths05/prelimdeaths05.htm, accessed 24 January 2008

  • Lamothe M, Chang FJ, Balashova N, Shirokov R, Beuve A (2004) Functional characterization of nitric oxide and YC-1 activation of soluble guanylyl cyclase:structural implication for the YC-1 binding site?. Biochemistry 43:3039–3048

    PubMed  CAS  Google Scholar 

  • Lau CK, Yang ZF, Lam CT, Tam KH, Poon RT, Fan ST (2006) Suppression of hypoxia in-ducible factor-1alpha (HIF-1alpha) by YC-1 is dependent on murine double minute 2 (Mdm2). Biochem Biophys Res Commun 348:1443–1448

    PubMed  CAS  Google Scholar 

  • Layish DT, Tapson VF (1997) Pharmacologic hemodynamic support in massive pulmonary embolism. Chest 111:218–224

    PubMed  CAS  Google Scholar 

  • Lee FY, Lien JC, Huang LJ, Huang TM, Tsai SC, Teng CM, Wu CC, Cheng FC, Kuo SC (2001) Synthesis of 1-benzyl-3-(5′-hydroxymethyl-2′-furyl)indazole analogues as novel antiplatelet agents. J Med Chem 44:3746–3749

    PubMed  CAS  Google Scholar 

  • Lee YC, Martin E, Murad F (2000) Human recombinant soluble guanylyl cyclase:expression, purification, and regulation. Proc Natl Acad Sci USA 97:10763–10768

    PubMed  CAS  Google Scholar 

  • Li Y, Zhang D, Jin W, Shao C, Yan P, Xu C, Sheng H, Liu Y, Yu J, Xie Y, Zhao Y, Lu D, Nebert DW, Harrison DC, Huang W, Jin L (2006) Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. J Clin Invest 116:506–511

    PubMed  CAS  Google Scholar 

  • Liu YN, Pan SL, Peng CY, Guh JH, Huang DM, Chang YL, Lin CH, Pai HC, Kuo SC, Lee FY, Teng CM (2006) YC-1 [3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole] inhibits neointima formation in balloon-injured rat carotid through suppression of expressions and activities of matrix metalloproteinases 2 and 9. J Pharmacol Exp Ther 316:35–41

    PubMed  CAS  Google Scholar 

  • Liu YN, Pan SL, Peng CY, Huang DY, Guh JH, Kuo SC, Lee FY, Teng CM (2008) YC-1 induces heat shock protein 70 expression and prevents oxidized Ldl-mediated apoptosis in vascular smooth muscle cells. Shock 30:274–279

    PubMed  CAS  Google Scholar 

  • Lu DY, Tang CH, Liou HC, Teng CM, Jeng KC, Kuo SC, Lee FY, Fu WM (2007) YC-1 attenuates LPS-induced proinflammatory responses and activation of nuclear factor-kappaB in microglia. Br J Pharmacol 151:396–405

    PubMed  CAS  Google Scholar 

  • Luithle J, Koenig G, Stasch JP, Stahl E, Wirtz SN, Lang D, Feurer A, Schenke T, Wunder F, Schreiber R (2004) Morpholine-bridged indazole derivatives. USA; CA2500088

    Google Scholar 

  • Luscher TF, Barton M (2000) Endothelins and endothelin receptor antagonists:therapeutic considerations for a novel class of cardiovascular drugs. Circulation 102:2434–2440

    PubMed  CAS  Google Scholar 

  • Ma X, Sayed N, Beuve A, van den Akker F (2007) NO and CO differentially activate soluble guanylyl cyclase via a heme pivot-bend mechanism. EMBO J 26:578–588

    PubMed  CAS  Google Scholar 

  • MacPherson JD, Gillespie TD, Dunkerley HA, Maurice DH, Bennett BM (2006) Inhibition of phosphodiesterase 5 selectively reverses nitrate tolerance in the venous circulation. J Pharmacol Exp Ther 317:188–195

    PubMed  CAS  Google Scholar 

  • Makino R, Obayashi E, Homma N, Shiro Y, Hori H (2003) YC-1 facilitates release of the proximal His residue in the NO and CO complexes of soluble guanylate cyclase. J Biol Chem 278:11130–11137

    PubMed  CAS  Google Scholar 

  • Martin NI, Derbyshire ER, Marletta MA (2007) Synthesis and evaluation of a phosphonate analogue of the soluble guanylate cyclase activator YC-1. Bioorg Med Chem Lett 17:4938–4941

    PubMed  CAS  Google Scholar 

  • Masuyama H, Tsuruda T, Kato J, Imamura T, Asada Y, Stasch JP, Kitamura K, Eto T (2006) Soluble guanylate cyclase stimulation on cardiovascular remodeling in angiotensin II-induced hypertensive rats. Hypertension 48:972–978

    PubMed  CAS  Google Scholar 

  • Mayer B, Beretta M (2008) The enigma of nitroglycerin bioactivation and nitrate tolerance:news, views and troubles. Br J Pharmacol 155:170–184

    PubMed  CAS  Google Scholar 

  • McLaughlin BE, Chretien ML, Choi C, Brien JF, Nakatsu K, Marks GS (2000) Potentiation of carbon monoxide-induced relaxation of rat aorta by YC-1 [3-(5¢-hydroxymethyl-2¢-furyl)-1-benzylindazole]. Can J Physiol Pharmacol 78:343–349

    PubMed  CAS  Google Scholar 

  • Melichar VO, Behr-Roussel D, Zabel U, Uttenthal LO, Rodrigo J, Rupin A, Verbeuren TJ, Kumar HSA, Schmidt HH (2004) Reduced cGMP signaling associated with neointimal proliferation and vascular dysfunction in late-stage atherosclerosis. Proc Natl Acad Sci USA 101:16671–16676

    PubMed  CAS  Google Scholar 

  • Mergia E, Russwurm M, Zoidl G, Koesling D (2003) Major occurrence of the new alpha2beta1 isoform of NO-sensitive guanylyl cyclase in brain. Cell Signal 15:189–195

    PubMed  CAS  Google Scholar 

  • Messerli FH, Williams B, Ritz E (2007) Essential hypertension. Lancet 370:591–603

    PubMed  CAS  Google Scholar 

  • Mingone CJ, Ahmad M, Gupte SA, Chow JL, Wolin MS (2008) Heme oxygenase-1 induction depletes heme and attenuates pulmonary artery relaxation and guanylate cyclase activation by nitric oxide. Am J Physiol Heart Circ Physiol 294:H1244–H1250

    PubMed  CAS  Google Scholar 

  • Miller LN, Nakane M, Hsieh GC, Chang R, Kolasa T, Moreland RB, Brioni JD (2003) A-350619:a novel activator of soluble guanylyl cyclase. Life Sci 72:1015–1025

    PubMed  CAS  Google Scholar 

  • Mizusawa H, Hedlund P, Brioni JD, Sullivan JP, Andersson KE (2002) Nitric oxide independent activation of guanylate cyclase by YC-1 causes erectile responses in the rat. J Urol 167:2276–2281

    PubMed  CAS  Google Scholar 

  • Morawietz H, Weber M, Rueckschloss U, Lauer N, Hacker A, Kojda G (2001) Upregulation of vascular NAD(P)H oxidase subunit gp91phox and impairment of the nitric oxide signal trans-duction pathway in hypertension. Biochem Biophys Res Commun 285:1130–1135

    PubMed  CAS  Google Scholar 

  • Mullershausen F, Russwurm M, Friebe A, Koesling D (2004) Inhibition of phosphodiesterase type 5 by the activator of nitric oxide-sensitive guanylyl cyclase BAY 41-2272. Circulation 109:1711–1713

    PubMed  CAS  Google Scholar 

  • Mulsch A, Bara A, Mordvintcev P, Vanin A, Busse R (1995) Specificity of different organic nitrates to elicit NO formation in rabbit vascular tissues and organs in vivo. Br J Pharmacol 116:2743–2749

    PubMed  CAS  Google Scholar 

  • Mulsch A, Bauersachs J, Schafer A, Stasch JP, Kast R, Busse R (1997) Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Br J Pharmacol 120:681–689

    PubMed  CAS  Google Scholar 

  • Mulsch A, Oelze M, Kloss S, Mollnau H, Topfer A, Smolenski A, Walter U, Stasch JP, Warnholtz A, Hink U, Meinertz T, Munzel T (2001) Effects of in vivo nitroglycerin treatment on activity and expression of the guanylyl cyclase and cGMP-dependent protein kinase and their downstream target vasodilator-stimulated phosphoprotein in aorta. Circulation 103:2188–2194

    PubMed  CAS  Google Scholar 

  • Munzel T, Daiber A, Mulsch A (2005) Explaining the phenomenon of nitrate tolerance. Circ Res 97:618–628

    PubMed  Google Scholar 

  • Munzel T, Genth-Zotz S, Hink U (2007) Targeting heme-oxidized soluble guanylate cyclase:solution for all cardiorenal problems in heart failure?. Hypertension 49:974–976

    PubMed  Google Scholar 

  • Murad F (2006) Shattuck lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med 355:2003–2011

    PubMed  CAS  Google Scholar 

  • Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020:Global Burden of Disease Study. Lancet 349:1498–1504

    PubMed  CAS  Google Scholar 

  • Nagayama T, Zhang M, Hsu S, Takimoto E, Kass DA (2008) Sustained soluble guanylate cyclase stimulation offsets nitric-oxide synthase inhibition to restore acute cardiac modulation by silde-nafil. J Pharmacol Exp Ther. 326:380–387

    PubMed  CAS  Google Scholar 

  • Nakane M (2003) Soluble guanylyl cyclase:physiological role as an NO receptor and the potential molecular target for therapeutic application. Clin Chem Lab Med 41:865–870

    PubMed  CAS  Google Scholar 

  • Nakane M, Hsieh G, Miller LN, Chang R, Terranova MA, Moreland RB, Kolasa T, Brioni JD (2002) Activation of soluble guanylate cyclase causes relaxation of corpus cavernosum tissue:synergism of nitric oxide and YC-1. Int J Impot Res 14:121–127

    PubMed  CAS  Google Scholar 

  • Nakane M, Kolasa T, Chang R, Miller LN, Moreland RB, Brioni JD (2006) Acrylamide analog as a novel nitric oxide-independent soluble guanylyl cyclase activator. J Pharmacol Sci 102:231–238

    PubMed  CAS  Google Scholar 

  • National Institutes of Health (1993) Consensus development conference statement. National Institutes of Health. Impotence. December 7–9, 1992. Int J Impot Res 5:181–284

    Google Scholar 

  • Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR (1992) DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A 89:3030–3034

    PubMed  CAS  Google Scholar 

  • O'Donnell VB, Freeman BA (2001) Interactions between nitric oxide and lipid oxidation pathways:implications for vascular disease. Circ Res 88:12–21

    PubMed  Google Scholar 

  • Olschewski H, Walmrath D, Schermuly R, Ghofrani A, Grimminger F, Seeger W (1996) Aerosolized prostacyclin and iloprost in severe pulmonary hypertension. Ann Intern Med 124:820–824

    PubMed  CAS  Google Scholar 

  • O'Reilly DA, McLaughlin BE, Marks GS, Brien JF, Nakatsu K (2001) YC-1 enhances the responsiveness of tolerant vascular smooth muscle to glyceryl trinitrate. Can J Physiol Pharmacol 79:43–48

    PubMed  Google Scholar 

  • Pacher P, Schulz R, Liaudet L, Szabo C (2005) Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 26:302–310

    PubMed  CAS  Google Scholar 

  • PaganiED, VanAllerGS, O'Connor B, Silver PJ (1993) Reversal of nitroglycerin tolerance in vitro by the cGMP-phosphodiesterase inhibitor zaprinast. Eur J Pharmacol 243:141–147

    PubMed  CAS  Google Scholar 

  • Pan SL, Guh JH, Chang YL, Kuo SC, Lee FY, Teng CM (2004) YC-1 prevents sodium nitroprusside-mediated apoptosis in vascular smooth muscle cells. Cardiovasc Res 61:152–158

    PubMed  CAS  Google Scholar 

  • Pan SL, Guh JH, Peng CY, Chang YL, Cheng FC, Chang JH, Kuo SC, Lee FY, Teng CM (2005a) A potential role of YC-1 on the inhibition of cytokine release in peripheral blood mononuclear leukocytes and endotoxemic mouse models. Thromb Haemost 93:940–948

    CAS  Google Scholar 

  • Pan SL, Guh JH, Peng CY, Wang SW, Chang YL, Cheng FC, Chang JH, Kuo SC, Lee FY, Teng CM (2005b) YC-1 [3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole] inhibits endothelial cell functions induced by angiogenic factors in vitro and angiogenesis in vivo models. J Pharmacol Exp Ther 314:35–42

    CAS  Google Scholar 

  • Patel NM, Lederer DJ, Borczuk AC, Kawut SM (2007) Pulmonary hypertension in idiopathic pulmonary fibrosis. Chest 132:998–1006

    PubMed  Google Scholar 

  • Pauwels RA, Rabe KF (2004) Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet 364:613–620

    PubMed  Google Scholar 

  • Peacock AJ (2003) Treatment of pulmonary hypertension. BMJ 326:835–836

    PubMed  Google Scholar 

  • Pellicena P, Karow DS, Boon EM, Marletta MA, Kuriyan J (2004) Crystal structure of an oxygen-binding heme domain related to soluble guanylate cyclases. Proc Natl Acad Sci USA 101:12854–12859

    PubMed  CAS  Google Scholar 

  • Peters H, Daig U, Martini S, Ruckert M, Schaper F, Liefeldt L, Kramer S, Neumayer HH (2003) NO mediates antifibrotic actions of L-arginine supplementation following induction of anti-thy1 glomerulonephritis. Kidney Int 64:509–518

    PubMed  CAS  Google Scholar 

  • Peters H, Wang Y, Loof T, Martini S, Kron S, Kramer S, Neumayer HH (2004) Expression and activity of soluble guanylate cyclase in injury and repair of anti-thy1 glomerulonephritis. Kidney Int 66:2224–2236

    PubMed  CAS  Google Scholar 

  • Phoa N, Epe B (2002) Influence of nitric oxide on the generation and repair of oxidative DNA damage in mammalian cells. Carcinogenesis 23:469–475

    PubMed  CAS  Google Scholar 

  • Postma DS, Timens W (2006) Remodeling in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 3:434–439

    PubMed  CAS  Google Scholar 

  • Prins J, Blanker MH, Bohnen AM, Thomas S, Bosch JL (2002) Prevalence of erectile dysfunction:a systematic review of population-based studies. Int J Impot Res 14:422–432

    PubMed  CAS  Google Scholar 

  • Pyriochou A, Beis D, Koika V, Potytarchou C, Papadimitriou E, Zhou Z, Papapetropoulos A (2006) Soluble guanylyl cyclase activation promotes angiogenesis. J Pharmacol Exp Ther 319:663–671

    PubMed  CAS  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008

    PubMed  CAS  Google Scholar 

  • Radi R, Cassina A, Hodara R (2002) Nitric oxide and peroxynitrite interactions with mitochondria. Biol Chem 383:401–409

    PubMed  CAS  Google Scholar 

  • Rajfer J, Aronson WJ, Bush PA, Dorey FJ, Ignarro LJ (1992) Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med 326:90–94

    PubMed  CAS  Google Scholar 

  • Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O'Donnell CJ, Roger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T, Wasserthiel-Smoller S, Hong Y (2007) Heart disease and stroke statistics-2007 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:e69–e171

    PubMed  Google Scholar 

  • Rothermund L, Friebe A, Paul M, Koesling D, Kreutz R (2000) Acute blood pressure effects of YC-1-induced activation of soluble guanylyl cyclase in normotensive and hypertensive rats. Br J Pharmacol 130:205–208

    PubMed  CAS  Google Scholar 

  • Roy B, Garthwaite J (2006) Nitric oxide activation of guanylyl cyclase in cells revisited. Proc Natl Acad Sci USA 103:12185–12190

    PubMed  CAS  Google Scholar 

  • Ruetten H, Zabel U, Linz W, Schmidt HH (1999) Downregulation of soluble guanylyl cyclase in young and aging spontaneously hypertensive rats. Circ Res 85:534–541

    PubMed  CAS  Google Scholar 

  • Russwurm M, Koesling D (2004) NO activation of guanylyl cyclase. EMBO J 23:4443–4450

    PubMed  CAS  Google Scholar 

  • Russwurm M, Mergia E, Mullershausen F, Koesling D (2002) Inhibition of deactivation of NO-sensitive guanylyl cyclase accounts for the sensitizing effect of YC-1. J Biol Chem 277:24883– 24888

    PubMed  CAS  Google Scholar 

  • Sandner P, Hutter J, Tinel H, Ziegelbauer K, Bischoff E (2007) PDE5 inhibitors beyond erectile dysfunction. Int J Impot Res 19:533–543

    PubMed  CAS  Google Scholar 

  • Schermuly RT, Stasch JP, Pullamsetti SS, Middendorff R, Mueller HD, Schlüter KD, Dingendorf A, Kolosionek E, Kaulen C, Dumitrascu R, Weissmann N, Mittendorf J, Klepetko W, Seeger W, Ghofrani HA, Grimminger F (2008) Expression and function of soluble guanylate cyclase in pulmonary arterial hypertension. Eur Respir J 32:881–891

    PubMed  CAS  Google Scholar 

  • Schmidt K, Schrammel A, Koesling D, Mayer B (2001) Molecular mechanisms involved in the synergistic activation of soluble guanylyl cyclase by YC-1 and nitric oxide in endothelial cells. Mol Pharmacol 59:220–224

    PubMed  CAS  Google Scholar 

  • Schmidt P, Schramm M, Schroder H, Stasch JP (2003) Mechanisms of nitric oxide independent activation of soluble guanylyl cyclase. Eur J Pharmacol 468:167–174

    PubMed  CAS  Google Scholar 

  • Schmidt PM, Rothkegel C, Wunder F, Schroder H, Stasch JP (2005) Residues stabilizing the heme moiety of the nitric oxide sensor soluble guanylate cyclase. Eur J Pharmacol 513:67–74

    PubMed  CAS  Google Scholar 

  • Schmidt PM, Schramm M, Schroder H, Wunder F, Stasch JP (2004) Identification of residues crucially involved in the binding of the heme moiety of soluble guanylate cyclase. J Biol Chem 279:3025–3032

    PubMed  CAS  Google Scholar 

  • Selwood DL, Brummell DG, Budworth J, Burtin GE, Campbell RO, Chana SS, Charles IG, Fernandez PA, Glen RC, Goggin MC, Hobbs AJ, Kling MR, Liu Q, Madge DJ, Meillerais S, Powell KL, Reynolds K, Spacey GD, Stables JN, Tatlock MA, Wheeler KA, Wishart G, Woo CK (2001) Synthesis and biological evaluation of novel pyrazoles and indazoles as activators of the nitric oxide receptor, soluble guanylate cyclase. J Med Chem 44:78–93

    PubMed  CAS  Google Scholar 

  • Sharma VS, Magde D, Kharitonov VG, Koesling D (1999) Soluble guanylate cyclase:effect of YC-1 on ligation kinetics with carbon monoxide. Biochem Biophys Res Commun 254:188–191

    PubMed  CAS  Google Scholar 

  • Shin DH, Kim JH, Jung YJ, Kim KE, Jeong JM, Chun YS, Park JW (2007) Preclinical evaluation of YC-1, a HIF inhibitor, for the prevention of tumor spreading. Cancer Lett 255:107–116

    PubMed  CAS  Google Scholar 

  • Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, Gibbs S, Lebrec D, Speich R, Beghetti M, Rich S, Fishman A (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43:5S–12S

    PubMed  Google Scholar 

  • Slupski M, Szadujkis-Szadurski L, Grzesk G, Szadujkis-Szadurski R, Szadujkis-Szadurska K, Wlodarczyk Z, Masztalerz M, Piotrowiak I, Jasinski M (2007) Guanylate cyclase activators influence reactivity of human mesenteric superior arteries retrieved and preserved in the same conditions as transplanted kidneys. Transplant Proc 39:1350–1353

    PubMed  CAS  Google Scholar 

  • Smulders YM (2000) Pathophysiology and treatment of haemodynamic instability in acute pulmonary embolism:the pivotal role of pulmonary vasoconstriction. Cardiovasc Res 48:23–33

    PubMed  CAS  Google Scholar 

  • Speich R, Jenni R, Opravil M, Pfab M, Russi EW (1991) Primary pulmonary hypertension in HIV infection. Chest 100:1268–1271

    PubMed  CAS  Google Scholar 

  • Stahl E, Feurer A, Luithle J, Wirtz SN, Wunder F, Schreiber R, Stasch JP, Lang D, Koenig G (2004) Novel 2,5-distributed pyrimidine derivatives. USA; CA2492723

    Google Scholar 

  • Stasch JP, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Minuth T, Perzborn E, Schramm M, Straub A (2002a) Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543:in vitro studies. Br J Pharmacol 135:333–343

    CAS  Google Scholar 

  • Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Gerzer R, Minuth T, Perzborn E, Pleiss U, Schroder H, Schroeder W, Stahl E, Steinke W, Straub A, Schramm M (2001) NO-independent regulatory site on soluble guanylate cyclase. Nature 410:212–215

    PubMed  CAS  Google Scholar 

  • Stasch JP, Dembowsky K, Perzborn E, Stahl E, Schramm M (2002b) Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41–8543:in vivo studies. Br J Pharmacol 135:344–355

    CAS  Google Scholar 

  • Stasch JP, Schmidt PM, Nedvetsky PI, Nedvetskaya TY, HSA, Meurer S, Deile M, Taye A, Knorr A, Lapp H, Muller H, Turgay Y, Rothkegel C, Tersteegen A, Kemp-Harper B, Muller-Esterl W, Schmidt HH (2006) Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J Clin Invest 116:2552–2561

    PubMed  CAS  Google Scholar 

  • Stone JR, Marletta MA (1994) Soluble guanylate cyclase from bovine lung:activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 33:5636–5640

    PubMed  CAS  Google Scholar 

  • Stone JR, Marletta MA (1998) Synergistic activation of soluble guanylate cyclase by YC-1 and carbon monoxide:implications for the role of cleavage of the iron-histidine bond during activation by nitric oxide. Chem Biol 5:255–261

    CAS  Google Scholar 

  • Straub A, Benet-Buckholz J, Frode R, Kern A, Kohlsdorfer C, Schmitt P, Schwarz T, Siefert HM, Stasch JP (2002) Metabolites of orally active NO-independent pyrazolopyridine stimulators of soluble guanylate cyclase. Bioorg Med Chem 10:1711–1717

    PubMed  CAS  Google Scholar 

  • Straub A, Stasch JP, Alonso-Alija C, Benet-Buchholz J, Ducke B, Feurer A, Furstner C (2001) NO-independent stimulators of soluble guanylate cyclase. Bioorg Med Chem Lett 11:781–784

    PubMed  CAS  Google Scholar 

  • Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP, 3rd, Herderick EE, Cornhill JF (1999) Prevalence and extent of atherosclerosis in adolescents and young adults:implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 281:727–735

    PubMed  CAS  Google Scholar 

  • Teixeira CE, Priviero FB, Claudino MA, Baracat JS, De Nucci G, Webb RC, Antunes E (2006a) Stimulation of soluble guanylyl cyclase by BAY 41-2272 relaxes anococcygeus muscle:interaction with nitric oxide. Eur J Pharmacol 530:157–165

    CAS  Google Scholar 

  • Teixeira CE, Priviero FB, Webb RC (2006b) Molecular mechanisms underlying rat mesenteric artery vasorelaxation induced by the nitric oxide-independent soluble guanylyl cyclase stimulators BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimi din-4-ylamine] and YC-1 [3-(5′-hydroxymethyl-2′-furyl)-1-benzyl Indazole]. J Pharmacol Exp Ther 317:258–266

    CAS  Google Scholar 

  • Teixeira CE, Priviero FB, Webb RC (2007) Effects of 5-Cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrim idin-4-ylamine (BAY 41-2272) on smooth muscle tone, soluble guanylyl cyclase Activity, and NADPH oxidase activity/expression in corpus caver-nosum from wild-type, neuronal, and endothelial nitric-oxide synthase null mice. J Pharmacol Exp Ther 322:1093–1102

    PubMed  CAS  Google Scholar 

  • Teng CM, Wu CC, Ko FN, Lee FY, Kuo SC (1997) YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits platelet-rich thrombosis in mice. Eur J Pharmacol 320:161–166

    PubMed  CAS  Google Scholar 

  • Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR (1997) Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 278:1907–1916

    PubMed  CAS  Google Scholar 

  • Thadani U, Ripley TL (2007) Side effects of using nitrates to treat heart failure and the acute coronary syndromes, unstable angina and acute myocardial infarction. Expert Opin Drug Saf 6:385–396

    PubMed  CAS  Google Scholar 

  • Tinel H, Stelte-Ludwig B, Hutter J, Sandner P (2006) Pre-clinical evidence for the use of phosphodiesterase-5 inhibitors for treating benign prostatic hyperplasia and lower urinary tract symptoms. BJU Int 98:1259–1263

    PubMed  CAS  Google Scholar 

  • Toque HA, Antunes E, Teixeira CE, De Nucci G. Increased cyclic guanosine monophosphate synthesis and calcium entry blockade account for the relaxant activity of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41-2272 in the rabbit penile urethra. Urology. 2008 Sep; 72(3):711–5.

    Google Scholar 

  • Tsai IF, Lin CY, Huang CT, Lin YC, Yang CM, Liao CH (2007) Modulation of human monocyte-derived dendritic cells maturation by a soluble guanylate cyclase activator, YC-1, in a cyclic nucleotide independent manner. Int Immunopharmacol 7:1299–1310

    PubMed  CAS  Google Scholar 

  • Tuder RM, Cool CD, Geraci MW, Wang J, Abman SH, Wright L, Badesch D, Voelkel NF (1999) Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med 159:1925–1932

    PubMed  CAS  Google Scholar 

  • Tulis DA, Bohl Masters KS, Lipke EA, Schiesser RL, Evans AJ, Peyton KJ, Durante W, West JL, Schafer AI (2002) YC-1-mediated vascular protection through inhibition of smooth muscle cell proliferation and platelet function. Biochem Biophys Res Commun 291:1014–1021

    PubMed  CAS  Google Scholar 

  • Tulis DA, Durante W, Peyton KJ, Chapman GB, Evans AJ, Schafer AI (2000) YC-1, a benzyl inda-zole derivative, stimulates vascular cGMP and inhibits neointima formation. Biochem Biophys Res Commun 279:646–652

    PubMed  CAS  Google Scholar 

  • Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3:221–229

    PubMed  CAS  Google Scholar 

  • van Staveren WC, Markerink-van Ittersum M, Steinbusch HW, Behrends S, de Vente J (2005) Localization and characterization of cGMP-immunoreactive structures in rat brain slices after NO-dependent and NO-independent stimulation of soluble guanylyl cyclase. Brain Res 1036:77–89

    PubMed  Google Scholar 

  • Wang JP, Chang LC, Huang LJ, Kuo SC (2001) Inhibition of extracellular Ca(2+) entry by YC-1, an activator of soluble guanylyl cyclase, through a cyclic GMP-independent pathway in rat neutrophils. Biochem Pharmacol 62:679–684

    PubMed  CAS  Google Scholar 

  • Wang SW, Pan SL, Guh JH, Chen HL, Huang DM, Chang YL, Kuo SC, Lee FY, Teng CM (2005a) YC-1 [3-(5′-hydroxymethyl-2′-furyl)-1-benzyl Indazole] exhibits a novel antiproliferative effect and arrests the cell cycle in G0-G1 in human hepatocellular carcinoma cells. J Pharmacol Exp Ther 312:917–925

    CAS  Google Scholar 

  • Wang Y, Kramer S, Loof T, Martini S, Kron S, Kawachi H, Shimizu F, Neumayer HH, Peters H (2005b) Stimulation of soluble guanylate cyclase slows progression in anti-thy1-induced chronic glomerulosclerosis. Kidney Int 68:47–61

    CAS  Google Scholar 

  • Wang Y, Kramer S, Loof T, Martini S, Kron S, Kawachi H, Shimizu F, Neumayer HH, Peters H (2006) Enhancing cGMP in experimental progressive renal fibrosis:soluble guanylate cyclase stimulation vs. phosphodiesterase inhibition. Am J Physiol Renal Physiol 290:F167–F176

    PubMed  CAS  Google Scholar 

  • Weimann J, Ullrich R, Hromi J, Fujino Y, Clark MW, Bloch KD, Zapol WM (2000) Sildenafil is a pulmonary vasodilator in awake lambs with acute pulmonary hypertension. Anesthesiology 92:1702–1712

    PubMed  CAS  Google Scholar 

  • Wharton J, Strange JW, Moller GM, Growcott EJ, Ren X, Franklyn AP, Phillips SC, Wilkins MR (2005) Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am J Respir Crit Care Med 172:105–113

    PubMed  Google Scholar 

  • Winger JA, Derbyshire ER, Marletta MA (2007) Dissociation of nitric oxide from soluble guanylate cyclase and heme-nitric oxide/oxygen binding domain constructs. J Biol Chem 282:897–907

    PubMed  CAS  Google Scholar 

  • Wu CC, Ko FN, Kuo SC, Lee FY, Teng CM (1995) YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase. Br J Pharmacol 116:1973–1978

    PubMed  CAS  Google Scholar 

  • Wu CH, Chang WC, Chang GY, Kuo SC, Teng CM (2004) The inhibitory mechanism of YC-1, a benzyl indazole, on smooth muscle cell proliferation:an in vitro and in vivo study. J Pharmacol Sci 94:252–260

    PubMed  CAS  Google Scholar 

  • Wu SN, Hwang T, Teng CM, Li HF, Jan CR (2000) The mechanism of actions of 3-(5′-(hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1) on Ca(2+)-activated K(+) currents in GH(3) lactotrophs. Neuropharmacology 39:1788–1799

    PubMed  CAS  Google Scholar 

  • Wu SY, Pan SL, Chen TH, Liao CH, Huang DY, Guh JH, Chang YL, Kuo SC, Lee FY, Teng CM (2008) YC-1 induces apoptosis of human renal carcinoma A498 cells in vitro and in vivo through activation of the JNK pathway. Br J Pharmacol 155:505–513

    PubMed  CAS  Google Scholar 

  • Yang Z, Ming XF (2006) Recent advances in understanding endothelial dysfunction in atherosclerosis. Clin Med Res 4:53–65

    Article  PubMed  Google Scholar 

  • Yeo EJ, Chun YS, Cho YS, Kim J, Lee JC, Kim MS, Park JW (2003) YC-1:a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 95:516–525

    Article  PubMed  CAS  Google Scholar 

  • Yeo EJ, Chun YS, Park JW (2004) New anticancer strategies targeting HIF-1. Biochem Pharmacol 68:1061–1069

    PubMed  CAS  Google Scholar 

  • YeoEJ, Ryu JH, Chun YS, Cho YS, Jang IJ, Cho H, Kim J, Kim MS, ParkJW (2006) YC-1 induces S cell cycle arrest and apoptosis by activating checkpoint kinases. Cancer Res 66:6345–6352

    PubMed  CAS  Google Scholar 

  • Yoshina S, Tanaka A, Kuo SC (1978) [Studies on heterocyclic compounds. XXXIV. Synthesis of furo[3,2-c]pyrazole derivatives. (2). Electrophilic substitution of 1,3-diphenylfuro[3,2-c] pyrazole (author's transl)]. Yakugaku Zasshi 98:204–209

    PubMed  CAS  Google Scholar 

  • Zanfolin M, Faro R, Araujo EG, Guaraldo AM, Antunes E, De Nucci G (2006) Protective effects of BAY 41-2272 (sGC stimulator) on hypertension, heart, and cardiomyocyte hypertrophy induced by chronic L-NAME treatment in rats. J Cardiovasc Pharmacol 47:391–395

    PubMed  CAS  Google Scholar 

  • Zhang HQ, Zhiren X, Teodozyj K, Dinges J (2003) A concise synthesis of ortho-substituted aryl-acrylamides — potent activators of soluble guanylate cyclase. Tetrahedron Lett 44:8661–8663

    CAS  Google Scholar 

  • Zhao Q, Du J, Gu H, Teng X, Zhang Q, Qin H, Liu N (2007) Effects of YC-1 on hypoxia-inducible factor 1-driven transcription activity, cell proliferative vitality, and apoptosis in hypoxic human pancreatic cancer cells. Pancreas 34:242–247

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes-Peter Stasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Stasch, JP., Hobbs, A.J. (2009). NO-Independent, Haem-Dependent Soluble Guanylate Cyclase Stimulators. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_13

Download citation

Publish with us

Policies and ethics