Skip to main content

Freehand 3D Ultrasound Calibration: A Review

  • Chapter
Advanced Imaging in Biology and Medicine

Abstract

Freehand three-dimensional (3D) ultrasound is a technique for acquiring 3D ultrasound data by measuring the trajectory of a conventional 2D ultrasound probe as a clinician moves it across an object of interest.

The probe trajectory is measured by fixing some sort of position sensor onto it. The position sensor, however, can only measure its own trajectory, and a further six-degree-of-freedom transformation is required to map from the location and orientation of the position sensor to the location and orientation at which the ultrasound image is acquired. The process of determining this transformation is known as calibration. Accurate calibration is difficult to achieve and it is critical to the validity of the acquired data. This chapter describes the techniques that have been developed to solve this calibration problem and discusses their strengths and weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcazar JL (2005) Three-dimensional ultrasound in gynecology: current status and future perspectives. Curr Women's Health Rev 1:1–14

    Article  Google Scholar 

  • Ali A, Logeswaran R (2007) A visual probe localization and calibration system for cost-effective computer-aided 3D ultrasound. Comp Biol Med 37:1141–1147

    Article  Google Scholar 

  • Amin DV, Kanade T, Jaramaz B, DiGioia III AM, Nikou C, LaBarca RS, Moody Jr JE (2001) Calibration method for determining the physical location of the ultrasound image plane. In: Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science 2208). Springer, Berlin, pp 940–947

    Google Scholar 

  • Anagnostoudis A, Jan J (2005) Use of an electromagnetic calibrated pointer in 3D freehand ultrasound calibration. In: Proc Radioelektronika, Brno, Czech Republic, 3–4 May 2005

    Google Scholar 

  • Andreff N, Horaud R, Espiau B (2001) Robot hand-eye calibration using structure from motion. Int J Robot Res 20(3):228–248

    Article  Google Scholar 

  • Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-D point sets. IEEE Trans Pattern Anal Mach Intell 9(5):698–700

    Google Scholar 

  • Barratt DC, Penney GP, Chan CSK, Slomczykowski CM, Carter TJ, Edwards PJ, Hawkes DJ (2006) Self-calibrating 3D-ultrasound-based bone registration for minimally invasive orthopedic surgery. IEEE Trans Med Imag 25(3):312–323

    Article  Google Scholar 

  • Barry CD, Allott CP, John NW, Mellor PM, Arundel PA, Thomson DS, Waterton JC (1997) Three-dimensional freehand ultrasound: image reconstruction and volume analysis. Ultrasound Med Biol 23(8):1209–1224

    Article  PubMed  CAS  Google Scholar 

  • Beasley RA, Stefansic JD, Herline AJ, Guttierez L, Galloway Jr RL (1999) Registration of ultrasound images. Proc SPIE Med Imag 3658:125–132

    Article  Google Scholar 

  • Berg S, Torp H, Martens D, Steen E, Samstad S, Høivik I, Olstad B (1999) Dynamic three-dimensional freehand echocardiography using raw digital ultrasound data. Ultrasound Med Biol 25(5):745–753

    Article  PubMed  CAS  Google Scholar 

  • Blackall JM, Rueckert D, Maurer Jr CR, Penney GP, Hill DLG, Hawkes DJ (2000) An image registration approach to automated calibration for freehand 3D ultrasound. In: Proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science 1935. Springer, Berlin, pp 462–471

    Google Scholar 

  • Boctor EM, Jain A, Choti MA, Taylor RH, Fichtinger G (2003) A rapid calibration method for registration and 3D tracking of ultrasound images using spatial localizer. Proc SPIE 5035:521–532

    Article  Google Scholar 

  • Boctor EM, Viswanathan A, Choti M, Taylor RH, Fichtinger G, Hager G (2004) A novel closed form solution for ultrasound calibration. In: IEEE Int Symp Biomedical Imaging: Nano to Macro, Arlington, VA, 15–18 April 2004, 1:527–530

    Google Scholar 

  • Bouchet LG, Meeks SL, Goodchild G, Bova FJ, Buatti JM, Friedman, WA (2001) Calibration of three-dimensional ultrasound images for image-guided radiation therapy. Phys Med Biol 46:559–577

    Article  PubMed  CAS  Google Scholar 

  • Brendel B, Winter S, Ermert H (2004) A simple and accurate calibration method for 3D freehand ultrasound. Biomed Tech 49:872–873

    Google Scholar 

  • Brewer J (1978) Kronecker products and matrix calculus in system theory. IEEE Trans Circuit Syst 25(9):772–781

    Article  Google Scholar 

  • Carr JC (1996) Surface reconstruction in 3D medical imaging. Ph.D. thesis, University of Canterbury, Christchurch, New Zealand

    Google Scholar 

  • Cash C, Berman L, Treece G, Gee A, Prager R (2004) Three-dimensional reconstructions of the normal and abnormal neonatal foot using high-resolution freehand 3D ultrasound. In: Proceedings of the Radiological Society of North America (RSNA 2004), Chicago, IL, 28 Nov–3 Dec 2004

    Google Scholar 

  • Chen TK, Abolmaesumi P, Thurston AD, Ellis RE (2006) Automated 3D freehand ultrasound calibration with real-time accuracy control. In: Proceedings of the Ninth International Conference on Medical Image Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science 4190). Springer, Berlin, pp 899–906

    Google Scholar 

  • Clarke JC, Carlsson S, Zisserman A (1996) Detecting and tracking linear features efficiently. In: Proceedings of the British Machine Vision Conference 1996, Edinburgh. British Machine Vision Association, Malvern, UK, pp 415–424

    Google Scholar 

  • Coles CE, Cash CJC, Treece GM, Miller FNAC, Hoole ACF, Gee AH, Prager RW, Sinnatamby R, Britton P, Wilkinson JS, Purushotham AD, Burnet NG (2007) High definition three-dimensional ultrasound to localise the tumour bed: a breast radiotherapy planning study. Radiother Oncol 84(3):233–241

    Article  PubMed  Google Scholar 

  • Comeau RM, Fenster A, Peters TM (1998) Integrated MR and ultrasound imaging for improved image guidance in neurosurgery. Proc SPIE 3338:747–754

    Article  Google Scholar 

  • Comeau RM, Sadikot AF, Fenster A, Peters TM (2000) Intraoperative ultrasound for guidance and tissue correction in image-guided neurosurgery. Med Phys 27(4):787–800

    Article  PubMed  CAS  Google Scholar 

  • Dandekar S, Li Y, Molloy J, Hossack J (2005) A phantom with reduced complexity for spatial 3-D ultrasound calibration. Ultrasound Med Biol 31(8):1083–1093

    Article  PubMed  Google Scholar 

  • Detmer PR, Bashein G, Hodges T, Beach KW, Filer EP, Burns DH, Stradness Jr DE (1994) 3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation. Ultrasound Med Biol 20(9):923–936

    Article  PubMed  CAS  Google Scholar 

  • Eggert DW, Lorusso A, Fisher RB (1997) Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach Vision Appl 9:272–290

    Article  Google Scholar 

  • Fenster A, Downey DB, Cardinal HN (2001) Three-dimensional ultrasound imaging. Phys Med Biol 46:R67–R99

    Article  PubMed  CAS  Google Scholar 

  • Fenster A, Landry A, Downey DB, Hegele RA, Spence JD (2004a) 3D ultrasound imaging of the carotid arteries. Curr Drug Targets—Cardiovasc Hematol Disord 4(2):161–175

    Article  CAS  Google Scholar 

  • Fenster A, Surry KJM, Mills GR, Downey DB (2004b) 3D ultrasound guided breast biopsy system. Ultrasonics 42:769–774

    Article  CAS  Google Scholar 

  • Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  Google Scholar 

  • Gee AH, Prager RW, Treece GH, Berman LH (2003) Engineering a freehand 3D ultrasound system. Pattern Recognit Lett 24:757–777

    Article  Google Scholar 

  • Gee AH, Houghton NE, Treece GM, Prager RW (2005) A mechanical instrument for 3D ultrasound probe calibration. Ultrasound Med Biol 31(4):505–518

    Article  PubMed  Google Scholar 

  • Gobbi DG, Comeau RM, Peters TM (1999) Ultrasound probe tracking for real-time ultra-sound/MRI overlay and visualization of brain shift. In: Proceedings of the Second International Conference on Medical Image Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science 1679). Springer, Berlin, pp 920–927

    Google Scholar 

  • Gonçalves LF, Lee W, Espinoza J, Romero R (2005) Three- and 4-dimensional ultrasound in obstetric practice. Does it help? J Ultrasound Med 24:1599–1624

    PubMed  Google Scholar 

  • Gooding MJ, Kennedy SH, Noble JA (2005) Temporal calibration of freehand three-dimensional ultrasound using image alignment. Ultrasound Med Biol 31(7):919–927

    Article  PubMed  Google Scholar 

  • Hartov A, Eisner SD, Roberts DW, Paulsen KD, Platenik LA, Miga MI (1999) Error analysis for a free-hand three-dimensional ultrasound system for neuronavigation. Neurosurg Focus 6(3):5

    Article  Google Scholar 

  • Hastenteufel M, Mottl-Link S, Wolf I, de Simone R, Meinzer H-P (2003) A method for the calibration of 3D ultrasound transducers. Proc SPIE 5029:231–238

    Article  Google Scholar 

  • Hough PVC (1959) Machine analysis bubble chamber pictures. In: International Conference on High Energy Accelerators and Instrumentation. CERN, Geneva, pp 554–556

    Google Scholar 

  • Hsu P-W, Prager RW, Gee AH, Treece GM (2006) Rapid, easy and reliable calibration for freehand 3D ultrasound. Ultrasound Med Biol 32(6):823–835

    Article  PubMed  Google Scholar 

  • Hsu P-W, Prager RW, Houghton NE, Gee AH, Treece GM (2007) Accurate fiducial location for freehand 3D ultrasound calibration. Proc SPIE 6513:15

    Google Scholar 

  • Hsu P-W, Prager RW, Gee AH, Treece GM (2008a) Real-time freehand 3D ultrasound calibration. Ultrasound Med Biol 34(2):239–251

    Article  Google Scholar 

  • Hsu P-W, Treece GM, Prager RW, Houghton NE, Gee AH (2008b) Comparison of freehand 3D ultrasound calibration techniques using a stylus. Ultrasound Med Biol 34(10):1610–1621

    Article  Google Scholar 

  • Huang QH, Zheng YP, Lu MH, Chi ZR (2005) Development of a portable 3D ultrasound imaging system for musculosketetal tissues. Ultrasonics 43:153–163

    Article  PubMed  CAS  Google Scholar 

  • Kaspersen JH, Langø T, Lindseth F (2001) Wavelet-based edge detection in ultrasound images. Ultrasound Med Biol 27(1):89–99

    Article  PubMed  CAS  Google Scholar 

  • Khamene A, Sauer F (2005) A novel phantom-less spatial and temporal ultrasound calibration method. In: Proceedings of the Eighth International Conference on Medical Image Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science 3750). Springer, Berlin, pp 65–72

    Google Scholar 

  • Krupa A (2006) Automatic calibration of a robotized 3D ultrasound imaging system by visual servoing. In: Proc 2006 IEEE Int Conf on Robotics and Automation, Orlando, FL, 15–19 May 2006, pp 4136–4141

    Google Scholar 

  • Lange T, Eulenstein S (2002) Calibration of swept-volume 3-D ultrasound. In: Proceedings of Medical Image Understanding and Analysis, Portsmouth, UK, 22–23 July 2002, 3:29–32

    Google Scholar 

  • Langø T (2000) Ultrasound guided surgery: image processing and navigation. Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway

    Google Scholar 

  • Legget ME, Leotta DF, Bolson EL, McDonald JA, Martin RW, Li X-N, Otto CM, Sheehan FH (1998) System for quantitative three-dimensional echocardiography of the left ventricle based on a magnetic-field position and orientation sensing system. IEEE Trans Biomed Eng 45(4):494–504

    Article  PubMed  CAS  Google Scholar 

  • Leotta DF (2004) An efficient calibration method for freehand 3-D ultrasound imaging systems. Ultrasound Med Biol 30(7):999–1008

    Article  PubMed  Google Scholar 

  • Leotta DF, Detmer PR, Martin RW (1997) Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging. Ultrasound Med Biol 23(4):597–609

    Article  PubMed  CAS  Google Scholar 

  • Lindseth F, Langø T, Bang J (2002) Accuracy evaluation of a 3D ultrasound-based neuronavigation system. Comput Aided Surg 7:197–222

    Article  PubMed  Google Scholar 

  • Lindseth F, Bang J, Langø T (2003a) A robust and automatic method for evaluating accuracy in 3-D ultrasound-based navigation. Ultrasound Med Biol 29(10):1439–1452

    Article  Google Scholar 

  • Lindseth F, Tangen GA, Langø T, Bang J (2003b) Probe calibration for freehand 3-D ultrasound. Ultrasound Med Biol 29(11):1607–1623

    Article  Google Scholar 

  • Liu J, Gao X, Zhang Z, Gao S, Zhou J (1998) A new calibration method in 3D ultrasonic imaging system. In: Proc 20th Annu Int Conf of IEEE Eng Med Biol Soc, Hong Kong, 29 Oct–1 Nov 1998, 20:839–841

    Google Scholar 

  • Meairs S, Beyer J, Hennerici M (2000) Reconstruction and visualization of irregularly sampled three- and four-dimensional ultrasound data for cerebrovascular applications. Ultrasound Med Biol 26(2):263–272

    Article  PubMed  CAS  Google Scholar 

  • Meeks SL, Buatti JM, Bouchet LG, Bova FJ, Ryken TC, Pennington EC, Anderson KM, Friedman WA (2003) Ultrasound-guided extracranial radiosurgery: technique and application. Int J Radiat Oncol Biol Phys 55(4):1092–1101

    PubMed  Google Scholar 

  • Mercier L, Langø T, Lindsesth F, Collins DL (2005) A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med Biol 31(4):449–471

    Article  PubMed  Google Scholar 

  • More JJ ( 1977) The Levenberg—Marquardt algorithm: implementation and theory. In: Numerical analysis (Lecture Notes in Mathematics 630). Springer, Berlin, pp 105–116

    Google Scholar 

  • Muratore DM, Galloway RL Jr (2001) Beam calibration without a phantom for creating a 3-D freehand ultrasound system. Ultrasound Med Biol 27(11):1557–1566

    Article  PubMed  CAS  Google Scholar 

  • Nelson TR, Pretorius DH (1998) Three-dimensional ultrasound imaging. Ultrasound Med Biol 24(9):1243–1270

    Article  PubMed  CAS  Google Scholar 

  • Pagoulatos N, Edwards WS, Haynor DR, Kim Y (1999) Interactive 3-D registration of ultrasound and magnetic resonance images based on a magnetic position sensor. IEEE Trans Inf Technol Biomed 3(4):278–288

    Article  PubMed  CAS  Google Scholar 

  • Pagoulatos N, Haynor DR, Kim Y (2001) A fast calibration method for 3-D tracking of ultrasound images using a spatial localizer. Ultrasound Med Biol 27(9):1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Péria O, Chevalier L, François-Joubert A, Caravel J-P, Dalsoglio S, Lavallée S, Cinquin P (1995) Using a 3D position sensor for registration of SPECT and US images of the kidney. In: Proc First Int Conf on Computer Vision, Virtual Reality and Robotics in Medicine (Lecture Notes in Computer Science 905), Nice, France, 3–6 April 1995, pp 23–29

    Google Scholar 

  • Pluim JPW, Maintz JBA, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imag 22(8):986–1004

    Article  Google Scholar 

  • Poon TC, Rohling RN (2005) Comparison of calibration methods for spatial tracking of a 3-D ultrasound probe. Ultrasound Med Biol 31:1095–1108

    Article  PubMed  Google Scholar 

  • Poon TC, Rohling RN (2007) Tracking a 3-D ultrasound probe with constantly visible fiducials. Ultrasound Med Biol 33(1):152–157

    Article  PubMed  Google Scholar 

  • Prager RW, Rohling RN, Gee AH, Berman L (1998) Rapid calibration for 3-D freehand ultrasound. Ultrasound Med Biol 24(6):855–869

    Article  PubMed  CAS  Google Scholar 

  • Rousseau F, Hellier P, Barillot C (2003) Robust and automatic calibration method for 3D freehand ultrasound. In: Proceedings of the Sixth International Conference on Medical Image Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science 2879). Springer, Berlin, pp 440–448

    Google Scholar 

  • Rousseau F, Hellier P, Barillot C (2005) Confhusius: A robust and fully automatic calibration method for 3D freehand ultrasound. Med Image Anal 9(1): 25–38

    Article  PubMed  Google Scholar 

  • Rygh OM, Nagelhus Hernes TA, Lindseth F, Selbekk T, Brostrup T, Müller TB (2006) Intra-operative navigated 3-dimensional ultrasound angiography in tumor surgery. Surg Neurol 66(6):581–592

    Article  PubMed  Google Scholar 

  • Sato Y, Nakamoto M, Tamaki Y, Sasama T, Sakita I, Nakajima Y, Monden M, Tamura S (1998) Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization. IEEE Trans Med Imag 17(5):681–693

    Article  CAS  Google Scholar 

  • Sauer F, Khamene A, Bascle B, Schinunang L, Wenzel F, Vogt S (2001) Augmented reality visualization of ultrasound images: system description, calibration, and features. In: Proc IEEE ACM Int Symp on Augmented Reality, New York, 29–30 Oct 2001, pp 30–39

    Google Scholar 

  • Sawada A, Yoda K, Kokubo M, Kunieda T, Nagata Y, Hiraoka M (2004) A technique for nonin-vasive respiratory gated radiation treatment system based on a real time 3D ultrasound image correlation: a phantom study. Med Phys 31(2):245–250

    Article  PubMed  Google Scholar 

  • State A, Chen DT, Tector C, Brandt A, Chen H, Ohbuchi R, Bajura M, Fuchs H (1994) Case study: observing a volume rendered fetus within a pregnant patient. In: Proceedings of the Conference on Visualization '94, IEEE Visualization. IEEE Computer Society Press, Los Alamitos, CA, pp 364–368

    Google Scholar 

  • Studholme C, Hill DLG, Hawkes DJ (1999) An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit 32:71–86

    Article  Google Scholar 

  • Treece GM, Prager RW, Gee AH, Berman L (2001) 3D ultrasound measurement of large organ volume. Med Image Anal 5(1):41–54

    Article  PubMed  CAS  Google Scholar 

  • Treece GM, Prager RW, Gee AH, Berman L (2002) Correction of probe pressure artifacts in freehand 3D ultrasound. Med Image Anal 6:199–214

    Article  PubMed  CAS  Google Scholar 

  • Treece GM, Gee AH, Prager RW, Cash CJC, Berman LH (2003) High-definition freehand 3-D ultrasound. Ultrasound Med Biol 29(4):529–546

    Article  PubMed  Google Scholar 

  • Trobaugh JW, Richard WD, Smith KR, Bucholz RD (1994) Frameless stereotactic ultrasonogra-phy: method and applications. Comput Med Imag Graph 18(4):235–246

    Article  CAS  Google Scholar 

  • Umeyama S (1991) Least-squares estimation of transformation parameters between two point patterns. IEEE Trans Pattern Anal Mach Intell 13(4):376–380

    Article  Google Scholar 

  • Unsgaard G, Rygh OM, Selbekk T, Müller TB, Kolstad F, Lindseth F, Nagelhus Hernes TA (2006) Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir 148(3):235–253

    Article  CAS  Google Scholar 

  • Varandas J, Baptista P, Santos J, Martins R, Dias J (2004) VOLUS—a visualization system for 3D ultrasound data. Ultrasonics 42:689–694

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan A, Boctor EM, Taylor RH, Hager G, Fichtinger G (2004) Immediate ultrasound calibration with three poses and minimal image processing. In: Proceedings of the Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention (Lecture Notes in Computer Science 3217). Springer, Berlin, pp 446–454

    Google Scholar 

  • Welch JN, Johnson JA, Bax MR, Badr R, Shahidi R (2000) A real-time freehand 3D ultrasound system for image-guided surgery. IEEE Ultrasonics Symp 2:1601–1604

    Google Scholar 

  • Yagel S, Cohen SM, Shapiro I, Valsky DV (2007) 3D and 4D ultrasound in fetal cardiac scanning: a new look at the fetal heart. Ultrasound Obstet Gynecol 29(1):81–95

    Article  PubMed  CAS  Google Scholar 

  • Zhang WY, Rohling RN, Pai DK (2004) Surface extraction with a three-dimensional freehand ultrasound system. Ultrasound Med Biol 30(11):1461–1473

    Article  PubMed  Google Scholar 

  • Zhang H, Banovac F, White A, Cleary K (2006) Freehand 3D ultrasound calibration using an electromagnerically tracked needle. Proc SPIE Med Imag 6141:775–783

    Google Scholar 

  • Zitov′a B, Flusser J (2003) Image registratioin methods: a survey. Image Vision Comput 21:977– 1000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Prager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hsu, PW., Prager, R.W., Gee, A.H., Treece, G.M. (2009). Freehand 3D Ultrasound Calibration: A Review. In: Sensen, C.W., Hallgrímsson, B. (eds) Advanced Imaging in Biology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68993-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68993-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68992-8

  • Online ISBN: 978-3-540-68993-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics