Skip to main content

Molecular Response Prediction in Multimodality Treatment for Adenocarcinoma of the Esophagus and Esophagogastric Junction

  • Chapter
  • First Online:
Book cover Adenocarcinoma of the Esophagogastric Junction

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 182))

Abstract

Cancers arising from the esophagus are becoming more common in the United States and Europe. In 2009, an estimate of 14,530 new cases will be diagnosed and more than 90% will die of their disease. Esophageal cancer is currently the most rapidly increasing cancer in the western world and is coinciding with a shift in histological type and primary tumor location. Despite recent improvements in the detection, surgical resection, and (radio-) chemotherapy, the overall survival (OS) of esophageal cancer remains relatively poor. It is becoming increasingly apparent that neoadjuvant chemoradiation followed by surgery may be beneficial in terms of increasing resectability and OS compared to surgery alone. Results from clinical trials are encouraging; however, they also demonstrated that only patients with major histopathological response (pCR) will benefit from neoadjuvant therapy. In addition, these therapies are expensive and the prognoses of patients who do not respond to trimodality treatment strategies appear to be inferior to that of patients who had surgery alone. Accordingly, the development of validated predictive molecular markers may not only be helpful in identifying EA patients who are more likely to respond, but they will also be critical in selecting more efficient treatment strategies with the means of a tailored, targeted, and effective therapy to the molecular profile of both the patient and their disease while minimizing and avoiding life-threatening toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akamatsu M, Matsumoto T, Oka K et al (2003) c-erbB-2 oncoprotein expression related to chemoradioresistance in esophageal squamous cell carcinoma. Int J Radiat Oncol Biol Phys 57:1323–1327

    Article  PubMed  CAS  Google Scholar 

  • Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    Article  PubMed  CAS  Google Scholar 

  • Bennett WP, Hollstein MC, Metcalf RA et al (1992) p53 mutation and protein accumulation during multistage human esophageal carcinogenesis. Cancer Res 52:6092–6097

    PubMed  CAS  Google Scholar 

  • Blank KR, Rudoltz MS, Kao GD, Muschel RJ, McKenna WG (1997) The molecular regulation of apoptosis and implications for radiation oncology. Int J Radiat Biol 71:455–466

    Article  PubMed  CAS  Google Scholar 

  • Blot WJ, McLaughlin JK (1999) The changing epidemiology of esophageal cancer. Semin Oncol 26:2–8

    PubMed  CAS  Google Scholar 

  • Bollschweiler E, Wolfgarten E, Gutschow C, Holscher AH (2001) Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer 92:549–555

    Article  PubMed  CAS  Google Scholar 

  • Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–578

    Article  PubMed  CAS  Google Scholar 

  • Brock MV, Gou M, Akiyama Y et al (2003) Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin Cancer Res 9:2912–2919

    PubMed  CAS  Google Scholar 

  • Brucher BL, Stein HJ, Zimmermann F et al (2004) Responders benefit from neoadjuvant radio­chemotherapy in esophageal squamous cell carcinoma: results of a prospective phase-II trial. Eur J Surg Oncol 30:963–971

    PubMed  CAS  Google Scholar 

  • Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Article  PubMed  CAS  Google Scholar 

  • Dandekar DS, Lokeshwar BL (2004) Inhibition of cyclooxygenase (COX)-2 expression by Tet-inducible COX-2 antisense cDNA in hormone-refractory prostate cancer significantly slows tumor growth and improves efficacy of chemotherapeutic drugs. Clin Cancer Res 10:8037–8047

    Article  PubMed  CAS  Google Scholar 

  • Devesa SS, Blot WJ, Fraumeni JF Jr (1998) Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 83:2049–2053

    Article  PubMed  CAS  Google Scholar 

  • Enzinger PC, Mayer RJ (2003) Esophageal cancer. N Engl J Med 349:2241–2252

    Article  PubMed  CAS  Google Scholar 

  • Fan Z, Baselga J, Masui H, Mendelsohn J (1993) Antitumor effect of anti-epidermal growth factor receptor monoclonal antibodies plus cis-diamminedichloroplatinum on well established A431 cell xenografts. Cancer Res 53:4637–4642

    PubMed  CAS  Google Scholar 

  • Fiegl H, Millinger S, Mueller-Holzner E et al (2005) Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res 65:1141–1145

    Article  PubMed  CAS  Google Scholar 

  • Gebski V, Burmeister B, Smithers BM, Foo K, Zalcberg J, Simes J (2007) Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a meta-analysis. Lancet Oncol 8:226–234

    Article  PubMed  CAS  Google Scholar 

  • Gibault L, Metges JP, Conan-Charlet V et al (2005) Diffuse EGFR staining is associated with reduced overall survival in locally advanced oesophageal squamous cell cancer. Br J Cancer 93:107–115

    Article  PubMed  CAS  Google Scholar 

  • Gibson MK, Abraham SC, Wu TT et al (2003) Epidermal growth factor receptor, p53 mutation, and pathological response predict survival in patients with locally advanced esophageal cancer treated with preoperative chemoradiotherapy. Clin Cancer Res 9:6461–6468

    PubMed  CAS  Google Scholar 

  • Hagen JA, DeMeester SR, Peters JH, Chandrasoma P, DeMeester TR (2001) Curative resection for esophageal adenocarcinoma: analysis of 100 en bloc esophagectomies. Ann Surg 234:520–530; discussion 30–31

    Google Scholar 

  • Hamilton JP, Sato F, Greenwald BD et al (2006) Promoter methylation and response to chemotherapy and radiation in esophageal cancer. Clin Gastroenterol Hepatol 4:701–708

    Article  PubMed  CAS  Google Scholar 

  • Hamoui N, Peters JH, Schneider S et al (2004) Increased acid exposure in patients with gastroesophageal reflux disease influences cyclooxygenase-2 gene expression in the squamous epithelium of the lower esophagus. Arch Surg 139:712–716; discussion 6–7

    Google Scholar 

  • Han B, Liu J, Ma MJ, Zhao L (2005) Clinicopathological significance of heparanase and basic fibroblast growth factor expression in human esophageal cancer. World J Gastroenterol 11:2188–2192

    PubMed  CAS  Google Scholar 

  • Herbst RS, Shin DM (2002) Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer 94:1593–1611

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329:219–222

    Article  PubMed  CAS  Google Scholar 

  • Hickey K, Grehan D, Reid IM, O’Briain S, Walsh TN, Hennessy TP (1994) Expression of epidermal growth factor receptor and proliferating cell nuclear antigen predicts response of esophageal squamous cell carcinoma to chemoradiotherapy. Cancer 74:1693–1698

    Article  PubMed  CAS  Google Scholar 

  • Hironaka S, Hasebe T, Kamijo T et al (2002) Biopsy specimen microvessel density is a useful prognostic marker in patients with T(2-4)M(0) esophageal cancer treated with chemoradiotherapy. Clin Cancer Res 8:124–130

    PubMed  CAS  Google Scholar 

  • Hoffmann AC, Warnecke-Eberz U, Luebke T et al (2007) Survivin mRNA in peripheral blood is frequently detected and significantly decreased following resection of gastrointestinal cancers. J Surg Oncol 95:51–54

    Article  PubMed  CAS  Google Scholar 

  • Holscher AH, Schneider PM, Gutschow C, Schroder W (2007) Laparoscopic ischemic conditioning of the stomach for esophageal replacement. Ann Surg 245:241–246

    Article  PubMed  Google Scholar 

  • Ikeda G, Isaji S, Chandra B, Watanabe M, Kawarada Y (1999) Prognostic significance of biologic factors in squamous cell carcinoma of the esophagus. Cancer 86:1396–1405

    Article  PubMed  CAS  Google Scholar 

  • Ikeguchi M, Oka S, Gomyo Y, Tsujitani S, Maeta M, Kaibara N (2000) Combined analysis of p53 and retinoblastoma protein expressions in esophageal cancer. Ann Thorac Surg 70:913–917

    Article  PubMed  CAS  Google Scholar 

  • Imdahl A, Bognar G, Schulte-Monting J, Schoffel U, Farthmann EH, Ihling C (2002) Predictive factors for response to neoadjuvant therapy in patients with oesophageal cancer. Eur J Cardiothorac Surg 21:657–663

    Article  PubMed  CAS  Google Scholar 

  • Inada S, Koto T, Futami K, Arima S, Iwashita A (1999) Evaluation of malignancy and the prognosis of esophageal cancer based on an immunohistochemical study (p53, E-cadherin, epidermal growth factor receptor). Surg Today 29:493–503

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi Y, Matsumoto T, Niwa M et al (2004) CD147 and matrix metalloproteinase-2 protein expression as significant prognostic factors in esophageal squamous cell carcinoma. Cancer 101:1994–2000

    Article  PubMed  CAS  Google Scholar 

  • Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4:988–993

    Article  PubMed  CAS  Google Scholar 

  • Itami A, Shimada Y, Watanabe G, Imamura M (1999) Prognostic value of p27(Kip1) and CyclinD1 expression in esophageal cancer. Oncology 57:311–317

    Article  PubMed  CAS  Google Scholar 

  • Jass JR (2005) Serrated adenoma of the colorectum and the DNA-methylator phenotype. Nat Clin Pract Oncol 2:398–405

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  • Jen J, Wu L, Sidransky D (2000) An overview on the isolation and analysis of circulating tumor DNA in plasma and serum. Ann N Y Acad Sci 906:8–12

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  • Joshi MB, Shirota Y, Danenberg KD et al (2005) High gene expression of TS1, GSTP1, and ERCC1 are risk factors for survival in patients treated with trimodality therapy for esophageal cancer. Clin Cancer Res 11:2215–2221

    Article  PubMed  Google Scholar 

  • Karnes WE Jr, Weller SG, Adjei PN et al (1998) Inhibition of epidermal growth factor receptor kinase induces protease-dependent apoptosis in human colon cancer cells. Gastroenterology 114:930–939

    Article  PubMed  CAS  Google Scholar 

  • Kase S, Osaki M, Honjo S et al (2003) Expression of cyclo-oxygenase-2 is correlated with high intratumoral microvessel density and low apoptotic index in human esophageal squamous cell carcinomas. Virchows Arch 442:129–135

    PubMed  CAS  Google Scholar 

  • Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256:42–49

    Article  PubMed  CAS  Google Scholar 

  • Kishi K, Petersen S, Petersen C et al (2000) Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor. Cancer Res 60:1326–1331

    PubMed  CAS  Google Scholar 

  • Kitamura K, Saeki H, Kawaguchi H et al (2000) Immunohistochemical status of the p53 protein and Ki-67 antigen using biopsied specimens can predict a sensitivity to neoadjuvant therapy in patients with esophageal cancer. Hepatogastro­enterology 47:419–423

    PubMed  CAS  Google Scholar 

  • Koyanagi K, Mori T, O’Day SJ, Martinez SR, Wang HJ, Hoon DS (2006) Association of circulating tumor cells with serum tumor-related methylated DNA in peripheral blood of melanoma patients. Cancer Res 66:6111–6117

    Article  PubMed  CAS  Google Scholar 

  • Kraiss S, Quaiser A, Oren M, Montenarh M (1988) Oligomerization of oncoprotein p53. J Virol 62:4737–4744

    PubMed  CAS  Google Scholar 

  • Kulke MH, Odze RD, Mueller JD, Wang H, Redston M, Bertagnolli MM (2004) Prognostic significance of vascular endothelial growth factor and cyclooxygenase 2 expression in patients receiving preoperative chemoradiation for esophageal cancer. J Thorac Cardiovasc Surg 127:1579–1586

    Article  PubMed  CAS  Google Scholar 

  • Kuo KT, Chow KC, Wu YC et al (2003) Clinicopathologic significance of cyclooxygenase-2 overexpression in esophageal squamous cell carcinoma. Ann Thorac Surg 76:909–914

    Article  PubMed  Google Scholar 

  • Kuwahara M, Hirai T, Yoshida K et al (1999) p53, p21(Waf1/Cip1) and cyclin D1 protein expression and prognosis in esophageal cancer. Dis Esophagus 12:116–119

    Article  PubMed  CAS  Google Scholar 

  • Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266

    Article  PubMed  CAS  Google Scholar 

  • Laird PW (2005) Cancer epigenetics. Hum Mol Genet 14(spec no 1):R65–R76

    Google Scholar 

  • Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    Article  PubMed  CAS  Google Scholar 

  • Lecomte T, Berger A, Zinzindohoue F et al (2002) Detection of free-circulating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer 100:542–548

    Article  PubMed  CAS  Google Scholar 

  • Lenz HJ, Van Cutsem E, Khambata-Ford S et al (2006) Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol 24:4914–4921

    Article  PubMed  CAS  Google Scholar 

  • Leung WK, To KF, Chu ES et al (2005) Potential diagnostic and prognostic values of detecting promoter hypermethylation in the serum of patients with gastric cancer. Br J Cancer 92:2190–2194

    Article  PubMed  CAS  Google Scholar 

  • Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935

    Article  PubMed  CAS  Google Scholar 

  • Lord RV, Brabender J, Gandara D et al (2002) Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 8:2286–2291

    PubMed  CAS  Google Scholar 

  • Lordick F, Ott K, Krause BJ et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8:797–805

    Article  PubMed  Google Scholar 

  • Lowe SW, Bodis S, McClatchey A et al (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266:807–810

    Article  PubMed  CAS  Google Scholar 

  • Lurje G, Vallbohmer D, Collet PH et al (2007) COX-2 mRNA expression is significan­tly increased in acid-exposed compared to no­nexposed squamous epithelium in gastroeso­phageal reflux disease. J Gastrointest Surg 11:1105–1111

    Article  PubMed  Google Scholar 

  • Lurje G, Nagashima F, Zhang W et al (2008) Polymorphisms in COX-2 and EGFR are associated with progression-free survival independent of K-ras in mCRC patients treated with single agent cetuximab. Clin Cancer Res 14:7884–7895

    Article  PubMed  CAS  Google Scholar 

  • Lurje G, Leers JM, Pohl A, Oezcelik A, Zhang W, Ayazi S, Winder T, Ning Y, Yang D, Klipfel NE, Chandrasoma P, Hagen JA, Demeester SR, Demeester TR, Lenz HJ (2010) Genetic variations in angiogenesis pathway genes predict tumor recurrence in localized adenocarcinoma of the esophagus. Ann Surg 251(5):857–864

    Article  PubMed  Google Scholar 

  • Luthra R, Wu TT, Luthra MG et al (2006) Gene expression profiling of localized esophageal carcinomas: association with pathologic response to preoperative chemoradiation. J Clin Oncol 24:259–267

    Article  PubMed  CAS  Google Scholar 

  • Mariette C, Piessen G, Triboulet JP (2007) Therapeutic strategies in oesophageal carcinoma: role of surgery and other modalities. Lancet Oncol 8:545–553

    Article  PubMed  Google Scholar 

  • McLeod HL, Yu J (2003) Cancer pharmacogenomics: SNPs, chips, and the individual patient. Cancer Invest 21:630–640

    Article  PubMed  CAS  Google Scholar 

  • Metzger R, Leichman CG, Danenberg KD et al (1998) ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 16:309–316

    PubMed  CAS  Google Scholar 

  • Metzger R, Schneider PM, Warnecke-Eberz U, Brabender J, Holscher AH (2004) Molecular biology of esophageal cancer. Onkologie 27:200–206

    Article  PubMed  CAS  Google Scholar 

  • Miyazono F, Metzger R, Warnecke-Eberz U et al (2004) Quantitative c-erbB-2 but not c-erbB-1 mRNA expression is a promising marker to predict minor histopathologic response to neoadjuvant radiochemotherapy in oesophageal cancer. Br J Cancer 91:666–672

    PubMed  CAS  Google Scholar 

  • Montesano R, Hollstein M, Hainaut P (1996) Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: a review. Int J Cancer 69:225–235

    Article  PubMed  CAS  Google Scholar 

  • Nakashima S, Natsugoe S, Matsumoto M et al (2000) Expression of p53 and p21 is useful for the prediction of preoperative chemotherapeutic effects in esophageal carcinoma. Anticancer Res 20:1933–1937

    PubMed  CAS  Google Scholar 

  • Oshima M, Dinchuk JE, Kargman SL et al (1996) Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87:803–809

    Article  PubMed  CAS  Google Scholar 

  • Paulson TG, Reid BJ (2004) Focus on Barrett’s esophagus and esophageal adenocarcinoma. Cancer Cell 6:11–16

    Article  PubMed  CAS  Google Scholar 

  • Peyre CG, Demeester SR, Rizzetto C et al (2007) Vagal-sparing esophagectomy: the ideal operation for intramucosal adenocarcinoma and barrett with high-grade dysplasia. Ann Surg 246:665–674

    Article  PubMed  Google Scholar 

  • Pohl H, Welch HG (2005) The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst 97:142–146

    Article  PubMed  Google Scholar 

  • Reardon JT, Sancar A (2006) Repair of DNA-polypeptide crosslinks by human excision nuclease. Proc Natl Acad Sci U S A 103:4056–4061

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro U Jr, Finkelstein SD, Safatle-Ribeiro AV et al (1998) p53 sequence analysis predicts treatment response and outcome of patients with esophageal carcinoma. Cancer 83:7–18

    Article  PubMed  CAS  Google Scholar 

  • Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232

    Article  PubMed  CAS  Google Scholar 

  • Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ (2004) Phase II trial of cetuximab in patients with refractory colorectal ­cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22:1201–1208

    Article  PubMed  CAS  Google Scholar 

  • Sarbia M, Stahl M, Fink U, Willers R, Seeber S, Gabbert HE (1998) Expression of apoptosis-regulating proteins and outcome of esophageal cancer patients treated by combined therapy modalities. Clin Cancer Res 4:2991–2997

    PubMed  CAS  Google Scholar 

  • Schneider PM, Baldus SE, Metzger R et al (2005a) Histomorphologic tumor regression and lymph node metastases determine prognosis following neoadjuvant radiochemotherapy for esophageal cancer: implications for response classification. Ann Surg 242:684–692

    Article  PubMed  Google Scholar 

  • Schneider S, Uchida K, Brabender J et al (2005b) Downregulation of TS, DPD, ERCC1, GST-Pi, EGFR, and HER2 gene expression after neoadjuvant three-modality treatment in patients with esophageal cancer. J Am Coll Surg 200:336–344

    Article  PubMed  Google Scholar 

  • Sharma R, Chattopadhyay TK, Mathur M, Ralhan R (2004) Prognostic significance of stromelysin-3 and tissue inhibitor of matrix metalloproteinase-2 in esophageal cancer. Oncology 67:300–309

    Article  PubMed  CAS  Google Scholar 

  • Sherman CA, Turrisi AT, Wallace MB, Reed CE (2002) Locally advanced esophageal cancer. Curr Treat Options Oncol 3:475–485

    Article  PubMed  Google Scholar 

  • Shimada Y, Watanabe G, Yamasaki S et al (2000) Histological response of cisplatin predicts patients’ survival in oesophageal cancer and p53 protein accumulation in pretreatment biopsy is associated with cisplatin sensitivity. Eur J Cancer 36:987–993

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Hoshino T, Okazumi S et al (2002) Expression of angiogenic factors predicts response to chemoradiotherapy and prognosis of oesophageal squamous cell carcinoma. Br J Cancer 86:552–557

    Article  PubMed  CAS  Google Scholar 

  • Shirota Y, Stoehlmacher J, Brabender J et al (2001) ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 19:4298–4304

    PubMed  CAS  Google Scholar 

  • Sohda M, Ishikawa H, Masuda N et al (2004) Pretreatment evaluation of combined HIF-1alpha, p53 and p21 expression is a useful and sensitive indicator of response to radiation and chemotherapy in esophageal cancer. Int J Cancer 110:838–844

    Article  PubMed  CAS  Google Scholar 

  • Stoehlmacher J, Lenz HJ (2003) Cyclooxygenase-2 inhibitors in colorectal cancer. Semin Oncol 30:10–16

    PubMed  CAS  Google Scholar 

  • Tanioka Y, Yoshida T, Yagawa T et al (2003) Matrix metalloproteinase-7 and matrix metalloproteinase-9 are associated with unfavourable prognosis in superficial oesophageal cancer. Br J Cancer 89:2116–2121

    Article  PubMed  CAS  Google Scholar 

  • Terashita Y, Ishiguro H, Haruki N et al (2004) Excision repair cross complementing 3 ­expression is involved in patient prognosis and tumor progression in esophageal cancer. Oncol Rep 12:827–831

    PubMed  CAS  Google Scholar 

  • Tsujii M, DuBois RN (1995) Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83:493–501

    Article  PubMed  CAS  Google Scholar 

  • Tsujii M, Kawano S, DuBois RN (1997) Cyclo­oxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci U S A 94:3336–3340

    Article  PubMed  CAS  Google Scholar 

  • Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716

    Article  PubMed  CAS  Google Scholar 

  • Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M (2001) Rand­omized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 19:305–313

    PubMed  CAS  Google Scholar 

  • Usadel H, Brabender J, Danenberg KD et al (2002) Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res 62:371–375

    PubMed  CAS  Google Scholar 

  • Vallbohmer D, Peters JH, Oh D et al (2005) Survivin, a potential biomarker in the development of Barrett’s adenocarcinoma. Surgery 138:701–706; discussion 6–7

    Google Scholar 

  • Vallbohmer D, Kuhn E, Warnecke-Eberz U et al (2008) Failure in downregulation of intratumoral survivin expression following neoadjuvant chemoradiation in esophageal cancer. Pharm­acogenomics 9:681–690

    Article  PubMed  CAS  Google Scholar 

  • Wallner M, Herbst A, Behrens A et al (2006) Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clin Cancer Res 12:7347–7352

    Article  PubMed  CAS  Google Scholar 

  • Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy TP (1996) A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 335:462–467

    Article  PubMed  CAS  Google Scholar 

  • Warnecke-Eberz U, Metzger R, Miyazono F et al (2004) High specificity of quantitative excision repair cross-complementing 1 messenger RNA expression for prediction of minor histopathological response to neoadjuvant radiochemotherapy in esophageal cancer. Clin Cancer Res 10:3794–3799

    Article  PubMed  CAS  Google Scholar 

  • Warnecke-Eberz U, Hokita S, Xi H et al (2005) Overexpression of survivin mRNA is associated with a favorable prognosis following neoadjuvant radiochemotherapy in esophageal cancer. Oncol Rep 13:1241–1246

    PubMed  CAS  Google Scholar 

  • Widschwendter A, Muller HM, Fiegl H et al (2004) DNA methylation in serum and tumors of cer­vical cancer patients. Clin Cancer Res 10:565–571

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Fan Z, Masui H, Rosen N, Mendelsohn J (1995) Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J Clin Invest 95:1897–1905

    Article  PubMed  CAS  Google Scholar 

  • Xi H, Baldus SE, Warnecke-Eberz U et al (2005) High cyclooxygenase-2 expression following neoadjuvant radiochemotherapy is associated with minor histopathologic response and poor prognosis in esophageal cancer. Clin Cancer Res 11:8341–8347

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM (1992) Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–948

    Article  PubMed  CAS  Google Scholar 

  • Zacherl J, Sendler A, Stein HJ et al (2003) Current status of neoadjuvant therapy for adenocarcinoma of the distal esophagus. World J Surg 27:1067–1074

    PubMed  Google Scholar 

  • Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabbert HE, Schror K (1999) Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 59:198–204

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Yvonne Bogdanovich and the San Pedro Guild Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Lurje .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lurje, G., Lenz, HJ. (2009). Molecular Response Prediction in Multimodality Treatment for Adenocarcinoma of the Esophagus and Esophagogastric Junction. In: Schneider, P. (eds) Adenocarcinoma of the Esophagogastric Junction. Recent Results in Cancer Research, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70579-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70579-6_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70578-9

  • Online ISBN: 978-3-540-70579-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics