Skip to main content

Branched-chain Organic Acidurias/Acidaemias

  • Chapter

Abstract

Branched-chain organic acidurias or organic acidaemias are a group of disorders that result from an abnormality of specific enzymes involving the catabolism of branched-chain amino acids (BCAAs). Collectively, the most commonly encountered are maple syrup urine disease (MSUD), isovaleric aciduria (IVA), propionic aciduria (PA) and methyl malonic aciduria (MMA). They can present clinically as a severe neonatal-onset form of metabolic distress, an acute and intermittent late-onset form, or a chronic progressive form presenting as hypotonia, failure to thrive, and developmental delay. Other rare disorders involving leucine, isoleucine, and valine catabolism are 3-methylcrotonyl glycinuria, 3-methylglutaconic (3-MGC) aciduria, short-/branched-chain acyl-CoA dehydrogenase deficiency, 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, isobutyryl-CoA dehydrogenase deficiency, 3-hydroxyisobutyric aciduria, and malonic aciduria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gascon GC, Ozand PT, Brismar J (1994) Movement disorders in childhood organic acidurias clinical, neuroimaging, and biochemical correlations. Brain Dev 16:94–103

    Article  PubMed  Google Scholar 

  2. Fariello G, Dionisi-Vici C, Orazi C et al. (1996) Cranial ultrasonography in maple syrup urine disease. AJNR Am J Neuroradiol 17:311–315

    PubMed  CAS  Google Scholar 

  3. Morton DH, Strauss KA, Robinson DL et al. (2002) Diagnosis and treatment of maple syrup urine disease: a study of 36 patients. Pediatrics 109:999–1008

    Article  PubMed  Google Scholar 

  4. Treacy E, Clow CL, Reade TR et al. (1992) Maple syrup urine disease: interrelations between branched-chain amino-, oxo- and hydroxyacids; implications for treatment; associations with CNS dysmyelination. J Inherit Metab Dis 15:121–135

    Article  PubMed  CAS  Google Scholar 

  5. Schoenberger S, Schweiger B, Schwahn B et al. (2004) Dysmyelination in the brain of adolescents and young adults with maple syrup urine disease. Mol Genet Metab 82:69–75

    Article  Google Scholar 

  6. Kleopa KA, Raizen DM, Friedrich CA, Brown MJ, Bird SJ (2001) Acute axonal neuropathy in maple syrup urine disease. Muscle Nerve 24:284–287

    Article  PubMed  CAS  Google Scholar 

  7. Brismar J, Ozand PT (1994) CT and MR of the brain in disorders of the propionate and methylmalonate metabolism. AJNR Am J Neuroradiol 15:1459–1473

    PubMed  CAS  Google Scholar 

  8. Chemelli AP, Schocke M, Sperl W et al. (2000) Magnetic resonance spectroscopy (MRS) in five patients with treated propionic acidemia. J Magn Reson Imaging 11:596–600

    Article  PubMed  CAS  Google Scholar 

  9. Williams ZR, Hurley PE, Altiparmark UE et al. (2009) Late onset optic neuropathy in methylmalonic and propionic acidemia. Am J Ophthalmol 147: 929–933

    Article  PubMed  CAS  Google Scholar 

  10. Hörster F, Garbade SF, Zwickler T et al. (2009) Prediction of outcome in isolated methylmalonic acidurias: combined use of clinical and biochemical parameters. J Inherit Metab Dis 32:630–639

    Article  PubMed  Google Scholar 

  11. Rutledge SL, Geraghty M, Mroczek E et al. (1993) Tubulointerstitial nephritis in methylmalonic acidemia. Pediatr Nephrol 7:81–82

    Article  PubMed  CAS  Google Scholar 

  12. Leonard JV (1995) The management and outcome of propionic and methylmalonic acidaemia. J Inherit Metab Dis 18:430–434

    Article  PubMed  CAS  Google Scholar 

  13. Lane TN, Spraker MK, Parker SS (2007) Propionic acidemia manifesting with low isoleucine generalized exfoliative dermatosis. Pediatr Dermatol 24:508–510

    Article  PubMed  Google Scholar 

  14. Gilmore A, Bock H-G, Nowicki M (2008) Hyperamylasemia/hyperlipasemia in a child with propionic acidemia. Am J Med Genet A 146A: 3090–3091

    Article  PubMed  Google Scholar 

  15. Romano S, Valayannopoulos V, Touati G et al. (2010) Cardiomyopathies in propionic aciduria are reversible after liver transplantation. J Pediatr 156:128–134

    Article  PubMed  Google Scholar 

  16. Baumgartner D, Schöll-Burgi S, Sass JO et al. (2007) Prolonged QTc intervals and decreased left ventricular contractility in patients with propionic acidemia. J Pediatr 150: 192–197

    Article  PubMed  Google Scholar 

  17. Sato S, Kasahara M, Fukuda A et al. (2009) Liver transplantation in a patient with propionic acidemia requiring extracorporeal membrane oxygenation during severe metabolic decompensation. Pediatr Transplant 13:790–793

    Article  PubMed  CAS  Google Scholar 

  18. Morath MA, Okun JG, Müller IB et al. (2008) Neurodegeneration and chronic renal failure in methylmalonic aciduria a pathophysiological approach. J Inherit Metab Dis 31:35–43

    Article  PubMed  CAS  Google Scholar 

  19. Sbai D, Narcy C, Thompson GN et al. (1994) Contribution of oddchain fatty acid oxidation to propionate production in disorders of propionate metabolism. Am J Nutr 59:1332–1337

    CAS  Google Scholar 

  20. Leonard JV (1996) Stable isotope studies in propionic and methylmalonic acidaemia. Eur J Pediatr 156 [Suppl 1]:S67-S69

    Google Scholar 

  21. Aevarsson A, Chuang JL, Wynn RM et al. (2000) Crystal structure of human branched-chain α-ketoacid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease. Structure 8:277–291

    Article  PubMed  CAS  Google Scholar 

  22. Ensenauer R, Vockley J, Willard JM et al. ( 2004) A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet 75:1136–1142

    Article  PubMed  CAS  Google Scholar 

  23. Perez-Cerda C, Clavero S, Perez B et al. (2003) Functional analysis of PCCB mutations causing propionic acidemia based on expression studies in deficient human skin fibroblasts. Biochim Biophys Acta 1638:43–49

    PubMed  CAS  Google Scholar 

  24. Perez B, Desviat LR, Rodriguez-Pombo P et al. (2003) Propionic acidemia: identification of twenty–four novel mutations in Europe and North America. Mol Genet Metab 78:59–67

    Article  PubMed  CAS  Google Scholar 

  25. Yorifuji T, Kawai M, Muroi J et al. (2002) Unexpectedly high prevalence of the mild form of propionic acidemia in Japan: presence of a common mutation and possible clinical implications. Hum Genet 111:161–165

    Article  PubMed  CAS  Google Scholar 

  26. Acquaviva C, Benoist JF, Pereira S et al. (2005) Molecular basis of methylmalonyl-CoA mutase apoenzyme defect in 40 European patients affected by mut (0) and mut (-) forms of methylmalonic acidemia: identification of 29 novel mutations in the MUT gene. Hum Mutat 25:167–176

    Article  PubMed  CAS  Google Scholar 

  27. Lemer-Ellis JP, Dobson CM, Wai T et al. (2004) Mutations in the MMAA gene in patients with the cblA disorder of vitamin B12 metabolism. Hum Mutat 24:509–516

    Article  Google Scholar 

  28. Jorge-Finnigan A, Aguado C, Sanchez-Alcudia R et al. (2010) Functional and structural analysis of five mutations identified in methylmalonic acidurie cblB type. Hum Mutat 31:1–10

    Article  Google Scholar 

  29. Martínez MA, Rincón A, Desviat LR, Merinero B, Ugarte M, Pérez B (2005) Genetic analysis of three genes causing isolated methylmalonic acidemia: identification of 21 novel allelic variants. Mol Genet Metab 84:317–325

    Article  PubMed  Google Scholar 

  30. Elpeleg O, Miller C, Hershkovitz E et al. (2005) Deficiency of the ADP-forming succinyl-CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am J Hum Genet 76:1081–1086

    Article  PubMed  CAS  Google Scholar 

  31. Carrozzo R, Dionisi-Vici C, Steuerwald U et al. (2007) SUCLA2 Mutations are associated with mild methylmalonic aciduria, Leigh-like encephalomyopathy, dystonia and deafness. Brain 130:862–874

    Article  PubMed  Google Scholar 

  32. Ostergaard E, Hansen FJ, Sorensen N, et al. (2007) Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 130:853–861

    Article  PubMed  Google Scholar 

  33. Ostergaard E, Christensen E, Kristensen E et al. (2007) Deficiency of the alpha subunit of succinate-coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am J Hum Genet 81:383–387

    Article  PubMed  CAS  Google Scholar 

  34. Ostergaard E, Schwartz M, Batbayli M et al. (2010) A novel missense mutation in SUCLG1 associated with mitochondrial DNA depletion, encephalomyopathic form, with methylmalonic aciduria. Eur J Pediatr 169:201–205

    Article  PubMed  Google Scholar 

  35. Bikker H, Bakker HD, Abeling NG et al. (2006) A homozygous nonsense mutation in the methylmalonyl-CoA epimerase gene (MCEE) results in mild methylmalonic aciduria. Hum Mutat 27: 640–643

    Article  PubMed  CAS  Google Scholar 

  36. Dobson MC, Gradinger A, Longo N et al. (2006) Homozygous nonsense mutation in the MCEE gene and siRNA suppression of methylmalonyl-CoA epimerase expression: a novel cause of mild methylmalonic acidurie. Mol Genet Metab 88: 327–333

    Article  PubMed  CAS  Google Scholar 

  37. Filipowicz HR, Ernst SL, Ashurst CL, Pasquali M, Longo N (2006) Metabolic changes associated with hyperammonemia in patients with propionic acidemia. Mol Genet Metab 88:123–130

    Article  PubMed  CAS  Google Scholar 

  38. Nissim I (1999) New aspects of glutamine/glutamate metabolism: the role of acute pH changes. Am J Physiol 277:F493–497

    PubMed  CAS  Google Scholar 

  39. Wilcken B, Wiley V, Hammond J, Carpenter K (2003) Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med 348:2304–2312

    Article  PubMed  CAS  Google Scholar 

  40. Schulze A, Lindner M, Kohlmüller D et al. (2003) Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications. Pediatrics 111:1399–1406

    Article  PubMed  Google Scholar 

  41. Rinaldo P, Tortorelli S, Matern D (2004) Recent developments and new applications of tandem mass spectrometry in newborn screening. Curr Opin Pediatr 16:427–433

    Article  PubMed  Google Scholar 

  42. MacDonald A, Dixon M, White F (2008) Disorders of amino acid metabolism, organic acidemias and urea cycle defects. In: Shaw V, Lawson M (eds) Clinical paediatric dietetics, 3rd edn. Blackwell, Oxford, UK, chap 17

    Google Scholar 

  43. Touati G, Valayannopoulos V, Mention K et al. (2006) Methylmalonic and propionic acidurias: management without or with a few supplements of specific amino acid mixtures. J Inherit Metab Dis 29:288–299

    Article  PubMed  CAS  Google Scholar 

  44. Puliyanda DP, Harmon WE, Peterschmitt MJ, Irons M, Somers MJ (2002) Utility of hemodialysis in maple syrup urine disease. Pediatr Nephrol 17:239–242)

    Article  PubMed  Google Scholar 

  45. Strauss KA, Wardley B, Robinson D et al. (2010) Classical maple syrup urine disease and brain development: principles of management and formula design. Mol Genet Metab 99: 333–345

    Article  PubMed  CAS  Google Scholar 

  46. Grünewald S, Hinrichs F, Wendel U (1998) Pregnancy in a woman with maple syrup urine disease. J Inher Metab Dis 21:89–94

    Article  PubMed  Google Scholar 

  47. Strauss KA, Mazariegos GV, Sindhi R et al. (2006) Elective liver transplantation for the treatment of classical maple syrup urine disease. Am J Transplant 6: 557–564

    Article  PubMed  CAS  Google Scholar 

  48. Khanna A, Hart M, Nyhan WL et al. (2006) Domino liver transplantation in maple syrup urine disease. Liver Transplant 12: 876–882

    Article  Google Scholar 

  49. Hilliges C, Awiszus D, Wendel U (1993) Intellectual performance of children with maple urine disease. Eur J Pediatr 152:144–147

    Article  PubMed  CAS  Google Scholar 

  50. Hoffmann B, Helbling C, Schadewaldt P, Wendel U (2006) Impact of longitudinal plasma leucine levels in the intellectual outcome in patients with classic MSUD. Pediatr Res 59:17–20

    Article  PubMed  CAS  Google Scholar 

  51. Fries MH, Rinaldo P, Schmidt-Sommerfeld E et al. (1996) Isovaleric acidemia: response to a leucine load after three weeks of supplementation with glycine, l-carnitine, and combined glycine-carnitine therapy. J Pediatr 129:449–452

    Article  PubMed  CAS  Google Scholar 

  52. Vockley J, Ensenauer R (2006) Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C Semin Med Genet 142:95–103

    Google Scholar 

  53. Shih VE, Aubry RH, De Grande G et al. (1984) Maternal isovaleric acidemia. J Pediatr 105:77–78

    Article  PubMed  CAS  Google Scholar 

  54. Picca S, Dionisi-Vici C, Abeni D et al. (2001) Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol 16:862–867

    Article  PubMed  CAS  Google Scholar 

  55. Filippi L, Gozzimi E, Fiorini et al. (2010) N-Carbamoylglutamate in emergency management of hyperammonemia in neonatal onset propionic and methylmalonic aciduria. Neonatology 97: 286–290

    Article  PubMed  CAS  Google Scholar 

  56. Matern D, Seydewitz, HH, Lehnert W et al. (1996) Primary treatment of propionic acidemia complicated by acute thiamine deficiency. J Pediatr 129:758–760

    Article  PubMed  CAS  Google Scholar 

  57. Touati G, Ogier de Baulny H, Rabier D et al. (2003) Beneficial effects of growth hormone treatment in children with methylmalonic and propionic acidurias (abstract). J Inherit Metab Dis 26 [Suppl 2]:40

    Google Scholar 

  58. Baumgartner ER, Viardot C (1995) Long-term follow-up of 77 patients with isolated methylmalonic acidaemia. J Inherit Metab Dis 18:138–142

    Article  Google Scholar 

  59. De Baulny HO, Benoist JF, Rigal O et al. (2005) Methylmalonic and propionic acidemias: management and outcome. J Inherit Metab Dis 28:415–423

    Article  PubMed  CAS  Google Scholar 

  60. Dionisi Vici C, Deodato F, Roschinger W et al. (2006) »Classical« organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J Inherit Metab Dis 29:383–389

    Article  PubMed  CAS  Google Scholar 

  61. Lubrano R, Eli M, Rossi M et al. (2007) Renal transplant in methylmalonic acidemia: could it be the best option? Report on a case at ten years and review of the literature. Pediatr Nephrol 22:1209–1214

    Article  PubMed  Google Scholar 

  62. Diss E, Iams J, Reed N et al. (1995) Meythylmalonic aciduria in pregnancy: a case report. Am J Obstet Gynecol 172:1057–1059

    Article  PubMed  CAS  Google Scholar 

  63. Deodato F, Rizzo C, Boenzi S et al. (2002) Successful pregnancy in a woman with mut- methylmalonic acidaemia. J Inherit Metab Dis 25:133–134

    Article  PubMed  CAS  Google Scholar 

  64. Kasahara M, Horikawa R, Tagawa M et al. (2006) Current role of liver transplantation for methylmalonic acidemai: a review of literature. Pediatr Transplant 10: 943–947

    Article  PubMed  Google Scholar 

  65. Barshes NR, Vanatta, Patel AJ et al. (2006) Evaluation and management of patients with propionic acidemia undergoing liver transplantation: a comprehensive review. Pediatr Transplant 10: 773–78

    Article  PubMed  Google Scholar 

  66. Lubrano R, Elli M, Rossi M et al. (2007) Renal transplant in methylmalonic acidemia: could it be the best option? Report on a case at 10 years and review of the literature. Pediatr Nephrol 22:1209–1214

    Article  PubMed  Google Scholar 

  67. Stricki M, Suormala T, Fowler B, Valle D, Baumgartner MR (2009) Cryptic exon activation by disruption exon splice enhancer: novel mechanism causing 3-methylcrotonyl-CoA carboxylase deficiency. J Biol Chem 284: 28953–28957

    Article  Google Scholar 

  68. Baumgartner MR, Dantas MF, Suormala T et al. (2004) Isolated 3-methylcrotonyl-CoA carboxylase deficiency: evidence for an allele-specific dominant negative effect and responsiveness to biotin therapy. Am J Hum Genet 75:790–800

    Article  PubMed  CAS  Google Scholar 

  69. Arnold GL, Koeberl DD, Matern D et al. (2008) A Delphi-based consensus clinical practice protocol for the diagnosis and management of 3-methylcrotonyl CoA carboxylase deficiency. Mol Genet Metab 93:363–370

    Article  PubMed  CAS  Google Scholar 

  70. Wortmann SB, Kluijtmans LA, Engelke UF et al. (2010) The 3-methylglutaconic acidurias: what’s new ? J Inher Metab Dis Sep 30 (Epub ahead of print)

    Google Scholar 

  71. Ijlst L, Loupatty FJ, Ruiter JP et al. (2002) 3-Methylglutaconic aciduria type I is caused by mutations in AUH. Am J Hum Genet 71:1463–1466

    Article  PubMed  CAS  Google Scholar 

  72. Mack M, Schniegler-Mattox U, Peters V et al. (2006) Biochemical characterization of human 3-methylglutaconyl-CoA hydratase and its role in leucine metabolism. FEBS J 273:2012–2022

    Article  PubMed  CAS  Google Scholar 

  73. Gunay-Aygun M, Gahl WA, Anikster Y (updated 2009) 3-Methylglutaconic aciduria type III. In Pagon RA, Bird TC, Dolan CR, Stephens K (eds) GeneReviews [internet]. University of Washington, Seattle 1993–2006, 28 Jul

    Google Scholar 

  74. Wortmann SB, Rodenburg RJ, Jonckheere A et al. (2009) Biochemical and genetic analysis of 3-methylglutaconic acidurie type IV: a diagnostic strategy. Brain 132:136–146

    Article  PubMed  Google Scholar 

  75. Di Rosa G, Deodato F, Loupatty FJ et al. (2006) Hypertrophic cardiomyopathy, cataract, developmental delay, lactic acidosis: a novel subtype of 3-methylglutaconic aciduria. J Inherit Metab Dis 29:546–550

    Article  PubMed  CAS  Google Scholar 

  76. Houstek J, Kmoch S, Zeman J (2009) TMEM70-protein – a novel ancillary factor of mammalian ATP synthase. Biochim Biophys Acta 1787:529–532

    Article  PubMed  CAS  Google Scholar 

  77. Davey KM, Parboosingh JS, McLeod DR et al. (2006) Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. J Med Genet 43:385–393

    Article  PubMed  CAS  Google Scholar 

  78. Sass JO, Ensenauer R, Röschinger W et al. (2008) 2-Methylbutyrylcoenzyme A dehydrogenase deficiency: functional and molecular studies on a defect in isoleucine catabolism. Mol Genet Metab 93:30–35

    Article  PubMed  CAS  Google Scholar 

  79. Garcia-Villoria J, Navarro-Sastre A, Fons C et al. (2009) Study of patients and carriers with 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency: difficulties in the diagnosis. Clin Biochem 42:27–33

    Article  PubMed  CAS  Google Scholar 

  80. Yang SY, He XY, Miller D (2007) HSD17B10: a gene involved in cognitive function through metabolism of isoleucine and neuroactive steroids. Mol Genet Metab 92:36–42

    Article  PubMed  CAS  Google Scholar 

  81. Pedersen CB, Bischoff C, Christensen E et al. (2006) Variations in IBD (ACAD8) in children with elevated C4-acylcarnitine detected by tandem mass spectrometry newborn screening. Pediatr Res 60:315–320

    Article  PubMed  CAS  Google Scholar 

  82. Oglesbee D, He M, Majumber N et al. (2007) Development of a newborn screening follow-up algorithm for the diagnosis of isobutyryl-CoA dehydrogenase deficiency. Genet Med 9:108–116

    Article  PubMed  CAS  Google Scholar 

  83. Chambliss KL, Gray RG, Rylance G et al. (2000) Molecular characterization of methylmalonate semialdehyde dehydrogenase deficiency. J Inherit Metab Dis 23 497–504

    Article  PubMed  CAS  Google Scholar 

  84. Brown GK, Huint SM, Scholem R et al. (1982) Hydroxyisobutyrylcoenzyme A deacylase deficiency: a defect in valine metabolism associated with physical malformations. Pediatrics 70:532–538

    PubMed  CAS  Google Scholar 

  85. Salomons GS, Jakobs C, Landegge Pope L et al. (2007) Clinical, enzymatic and molecular characterization of nine new patients with malonyl- coenzyme A decarboxylase deficiency. J Inherit Metab Dis 30: 23–28

    Article  PubMed  CAS  Google Scholar 

  86. Sloan JL, Johnston JJ, Manoli I et al. (2011) Exone sequencing identifies ACSF 3 as a cause of combined malonic and methymlonic aciduria. Nature Genetics 43: 883–886

    Article  PubMed  CAS  Google Scholar 

  87. Footitt EJ, Stafford J, Dixon M et al. (2010) Use of a long-chain triglyceride-restricted/medium-chain triglyceride-supplemented diet in a case of malonyl-CoA decarboxylase deficiency with cardiomyopathy. J Inherit Metab Dis DOI 10.1007/s10545-010-9137-z

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baulny, H.O., Dionisi-Vici, C., Wendel, U. (2012). Branched-chain Organic Acidurias/Acidaemias. In: Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15720-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15720-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15719-6

  • Online ISBN: 978-3-642-15720-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics