Skip to main content

Surgical Phases Detection from Microscope Videos by Combining SVM and HMM

  • Conference paper
Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging (MCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6533))

Included in the following conference series:

Abstract

In order to better understand and describe surgical procedures by surgical process models, the field of workflow segmentation has recently emerged. It aims to recognize high-level surgical tasks in the Operating Room, with the help of sensors or human-based systems. Our approach focused on the automatic recognition of surgical phases by microscope images analysis. We used a hybrid method that combined Support Vector Machine and discrete Hidden Markov Model. We first performed features extraction and selection on surgical microscope frames to create an image database. SVMs were trained to extract surgical scene information, and then outputs were used as observations for training a discrete HMM. Our framework was tested on pituitary surgery, where six phases were identified by neurosurgeons. Cross-validation studies permitted to find a percentage of detected phases of 93% that will allow the use of the system in clinical applications such as post-operative videos indexation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cleary, K., Chung, H.Y., Mun, S.K.: OR 2020: The operating room of the future. Laparoendoscopic and Advanced Surgical Techniques 15(5), 495–500 (2005)

    Article  Google Scholar 

  2. Jannin, P., Morandi, X.: Surgical models for computer-assisted neurosurgery. Neuroimage 37(3), 783–791 (2007)

    Article  Google Scholar 

  3. Neumuth, T., Jannin, P., Strauss, G., Meixensberger, J., Burgert, O.: Validation of Knowledge Acquisition for Surgical Process Models. J. Am. Med. Inform. Assoc. 16(1), 72–82 (2008)

    Article  Google Scholar 

  4. Morineau, T., Morandi, X., Le Moëllic, N., Diabira, S., Haegelen, C., Hénaux, P.L., Jannin, P.: Decision making during preoperative surgical planning. Human Factors 51(1), 66–77 (2009)

    Article  Google Scholar 

  5. Darzi, A., Mackay, S.: Skills assessment of surgeons. Surg. 131(2), 121–124 (2002)

    Article  Google Scholar 

  6. Padoy, N., Blum, T., Feuner, H., Berger, M.O., Navab, N.: On-line recognition of surgical activity for monitoring in the operating room. In: Proc. of IAAI (2008)

    Google Scholar 

  7. Bouarfa, L., Jonker, P.P., Dankelman, J.: Discovery of high-level tasks in the operating room. Journal of Biomedical Informatics (in Press, 2010)

    Google Scholar 

  8. Ahmadi, S.A., Padoy, N., Rybachuk, K., Feussner, H., Heinin, S.M., Navab, N.: Motif discovery in OR sensor data with application to surgical workflow analysis and activity detection. In: M2CAI Workshop, MICCAI, London (2009)

    Google Scholar 

  9. James, A., Vieira, D., Lo, B.P.L., Darzi, A., Yang, G.-Z.: Eye-gaze driven surgical workflow segmentation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 110–117. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Nara, A., Izumi, K., Iseki, H., Suzuki, T., Nambu, K., Sakurai, Y.: Surgical workflow analysis based on staff’s trajectory patterns. In: M2CAI Workshop, MICCAI, London (2009)

    Google Scholar 

  11. Speidel, S., Sudra, G., Senemaud, J., Drentschew, M., Müller-stich, B.P., Gun, C., Dillmann, R.: Situation modeling and situation recognition for a context-aware augmented reality system. Progression in Biomedical Optics and Imaging 9(1), 35 (2008)

    Google Scholar 

  12. Sánchez-González, P., Gayá, F., Cano, A.M., Gómez, E.J.: Segmentation and 3D reconstruction approaches for the design of laparoscopic augmented reality environments. In: Bello, F., Edwards, E. (eds.) ISBMS 2008. LNCS, vol. 5104, pp. 127–134. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Bhatia, B., Oates, T., Xiao, Y., Hu, P.: Real-time identification of operating room state from video. In: AAAI, pp. 1761–1766 (2007)

    Google Scholar 

  14. Xiao, Y., Hu, P., Hu, H., Ho, D., Dexter, F., Mackenzie, C.F., Seagull, F.J.: An algorithm for processing vital sign monitoring data to remotely identify operating room occupancy in real-time. Anesth Analg. 101(3), 823–832 (2005)

    Article  Google Scholar 

  15. MacKenzie, C.L., Ibbotson, A.J., Cao, C.G.L., Lomax, A.: Hierarchical decomposition of laparoscopic surgery: a human factors approach to investigating the operating room environment. Min. Invas. Ther. All Technol. 10(3), 121–128 (2001)

    Article  Google Scholar 

  16. Neumuth, T., Czygan, M., Goldstein, D., Strauss, G., Meixensberger, J., Burgert, O. Computer assisted acquisition of surgical process models with a sensors-driven ontology. In: M2CAI Workshop, MICCAI, London (2009)

    Google Scholar 

  17. Lalys, F., Riffaud, L., Morandi, X., Jannin, P.: Automatic phases recognition in pituitary surgeries by microscope images classification. In: Navab, N., Jannin, P. (eds.) IPCAI 2010. LNCS, vol. 6135, pp. 34–44. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Ezzat, S., Asa, S.L., Couldwell, W.T., Barr, C.E., Dodge, W.E., Vance, M.L., McCutcheon, I.E.: The prevalence of pituitary adenomas: a systematic review. Cancer 101(3), 613–622 (2004)

    Article  Google Scholar 

  19. Smeulders, A., Worrin, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  20. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. on Systems, Man, and Cybernetics 3(6), 610–621 (1973)

    Article  Google Scholar 

  21. Hu, M.: Visual pattern recognition by moment invariants. Trans. Inf. Theory 8(2), 79–87 (1962)

    MATH  Google Scholar 

  22. Ahmed, N., Natarajan, T., Rao, R.: Discrete Cosine Transform. IEEE Trans. Comp., 90–93 (1974)

    Google Scholar 

  23. Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  24. Mak, M.W., Kung, S.Y.: Fusion of feature selection methods for pairwise scoring SVM. Neurocomputing 71, 3104–3113 (2008)

    Article  Google Scholar 

  25. Guyon, I., Weston, J., Barhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machine. Machine Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  26. Hamming, R.W.: Coding and Information Theory. Prentice-Hall Inc., Englewood Cliffs (1980)

    MATH  Google Scholar 

  27. Crammer, K., Singer, Y.: On the Algorithm implementation of multiclass SVMs. JMLR (2001)

    Google Scholar 

  28. Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc of IEEE 77(2) (1989)

    Google Scholar 

  29. Viterbi, A.: Errors bounds for convolutional codes. IEEE TIT 13(2), 260–269 (1967)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lalys, F., Riffaud, L., Morandi, X., Jannin, P. (2011). Surgical Phases Detection from Microscope Videos by Combining SVM and HMM. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2010. Lecture Notes in Computer Science, vol 6533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18421-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18421-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18420-8

  • Online ISBN: 978-3-642-18421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics