Skip to main content

The Reticular Formation and Some Related Nuclei

  • Chapter
  • First Online:

Abstract

Almost a century ago, Constantin von Economo observed that in patients with encephalitis lethargica, lesions in the upper brain stem and posterior hypothalamus impaired consciousness. From lesion studies in cats and anatomical data, the idea arose that the brain stem reticular formation is the origin of the ascending reticular activating system (ARAS) that would operate through the intralaminar nuclei and activate widespread regions of the cerebral cortex. This view of the reticular formation has been extensively modified and nowadays four main components of the brain stem reticular formation can be distinguished: (1) the classic reticular nuclei (Sect. 5.2); (2) monoaminergic nuclei such as the serotonergic raphe nuclei, the noradrenergic locus coeruleus and noradrenergic cell groups of the lower brain stem (Sect. 5.3); (3) cholinergic nuclei in the mesopontine tegmentum, including the laterodorsal and pedunculopontine tegmental nuclei (Sect. 5.4) and (4) autonomic nuclei such as the parabrachial nucleus, the periaqueductal grey and the nucleus of the solitary tract.

Although the basic notion of the ARAS concept, that structures in the brain stem regulate states of consciousness, still holds true, a much more complex picture has emerged. Experimental work in laboratory animals suggests that the following structures play key roles in the maintenance and modulation of wakefulness: cholinergic nuclei in the upper brain stem and basal forebrain; noradrenergic nuclei, in particular the locus coeruleus; a histaminergic projection from the tuberomammillary nucleus in the posterior hypothalamus; and dopaminergic and serotonergic pathways from the ventral tegmental area and raphe nuclei, respectively. These nuclei all participate in an ascending activating system to the cerebral cortex (Sect. 5.5). The hypothalamus also contains orexinergic neurons, that are crucial for maintaining normal wakefulness, and a sleep-promoting region in the ventrolateral preoptic area. These groups have mutually inhibiting connections, known as the sleep switch (Sect. 5.6). Some sleep disorders in which these structures are involved are discussed in Clinical cases (Sect. 5.7). Damage to the upper brain stem reticular formation is known to cause the most radical disturbance of consciousness, i.e. coma, as illustrated in several Clinical cases (Sect. 5.7).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aletrino MA, Vogels OJM, van Domburg PHMF, ten Donkelaar HJ (1992) Cell loss in the nucleus raphes dorsalis in Alzheimer’s disease. Neurobiol Aging 13:461–468

    PubMed  CAS  Google Scholar 

  • Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol (Berl) 61:101–108

    CAS  Google Scholar 

  • Arnulf I (2005) Excessive daytime sleepiness in parkinsonism. Sleep Med Rev 9:185–200

    PubMed  Google Scholar 

  • Arnulf I, Konofal E, Merino-Andreus M, Houeto JL, Mesnage V, Welter ML et al (2002) Parkinson’s disease and sleepiness: an integral part of PD. Neurology 58:1019–1024

    PubMed  CAS  Google Scholar 

  • Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Chang C, Alexinsky T (1991) Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog Brain Res 88:501–520

    PubMed  CAS  Google Scholar 

  • Baker KG, Törk I, Hornung J-P, Halasz P (1989) The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study. Exp Brain Res 77:257–270

    PubMed  CAS  Google Scholar 

  • Baker KG, Halliday GM, Törk I (1990) Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol 301:147–161

    PubMed  CAS  Google Scholar 

  • Baker KG, Halliday GM, Hornung J-P, Geffen LB, Cotton RGH, Törk I (1991) Distribution, morphology and number of monoamine-­synthesizing and substance P-containing neurons in the human dorsal raphe nucleus. Neuroscience 42:757–775

    PubMed  CAS  Google Scholar 

  • Bassetti C (2001) Disturbances of consciousness and sleep-wake functions. In: Bogousslavsky J, Caplan LR (eds) Stroke Syndromes, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Bassetti C, Mathis J, Hess CW (1994a) Multimodal electrophysiological studies including motor evoked potentials in patients with locked-in syndrome: report of six patients. J Neurol Neurosurg Psychiatry 57:1403–1406

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bassetti C, Bogousslavsky J, Eskenasy-Cottier AC, Janzer RC, Regli FR (1994b) Spontaneous intracranial dissection in the anterior circulation. Cerebrovasc Dis 4:170–174

    Google Scholar 

  • Bechterew W (1885a) Über eine bisher unbekannte Verbindung der grossen Oliven mit dem Grosshirn. Neurol Zbl 4:194–196

    Google Scholar 

  • Bechterew W (1885b) Über die Längsfaserzüge der Formatio reticularis medullae oblongatae et pontis. Neurol Zbl 4:337–346

    Google Scholar 

  • Benarroch EE (2008) The midline and intralaminar thalamic nuclei. Anatomic and functional specificity and implications in neurologic disease. Neurology 71:944–949

    PubMed  Google Scholar 

  • Benarroch EE (2009) The locus ceruleus norepinephrine system. Functional organization and potential clinical significance. Neurology 73:1699–1704

    PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299:187–228

    PubMed  CAS  Google Scholar 

  • Berman AC (1968) The brain stem of the Cat: a cytoarchitectonic atlas with stereotaxic coordinates. University of Wisconsin Press, Madison, WI

    Google Scholar 

  • Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. Handb Chem Neuroanat 2:55–122

    Google Scholar 

  • Blessing WW (2004) Lower brain stem regulation of visceral, cardiovascular, and respiratory function. In: Paxinos G, Mai JK (eds) The Human Nervous System, 2nd edn. Elsevier, Amsterdam, pp 464–478

    Google Scholar 

  • Boeve B, Dickson D, Olson E, Shepard J, Silber M, Ferman T et al (2007a) Insights into REM sleep behavior disorder pathophysiology in brainstem-predominant Lewy body disease. Sleep Med 8:60–64

    PubMed Central  PubMed  CAS  Google Scholar 

  • Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE et al (2007b) Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 130:2770–2788

    PubMed  CAS  Google Scholar 

  • Bogerts B (1981) A brainstem atlas of catecholaminergic neurons in man, using melanin as a natural marker. J Comp Neurol 197:63–80

    PubMed  CAS  Google Scholar 

  • Bourgin P, Zeitzer JM, Mignot E (2008) CSF hypocretin-1 assessment in sleep and nheurological disorders. Lancet Neurol 7:649–662

    PubMed  CAS  Google Scholar 

  • Braak H (1970) Über die Kerngebiete des menschlichen Hirnstammes. II. Die Raphekerne. Z Zellforsch 107:123–141

    PubMed  CAS  Google Scholar 

  • Brazier MAB (1980) Trails leading to the concept of the ascending reticular system: the state of knowledge before 1949. In: Hobson JA, Brazier MAB (eds) The reticular formation revisited. Raven, New York, pp 31–52

    Google Scholar 

  • Bremer F (1935) Cerveau isolé et physiologie du sommeil. C R Soc Biol (Paris) 118:1235–1241

    Google Scholar 

  • Bremer F (1937) L’activité cérébral au cours du sommeil et de la narcose. Contribution à l’étude du mécanisme du sommeil. Bull Acad R Med Belg 4:68–86

    Google Scholar 

  • Brockhaus H (1942) Vergleichend-anatomische Untersuchungen über den Basalkernkomplex. J Psychol Neurol (Lpz) 51:57–95

    Google Scholar 

  • Brodal A (1957) The reticular formation of the brain stem: anatomical aspects and functional correlations. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Brodal A, Rossi GF (1955) Ascending fibers in brain stem reticular formation of cats. Arch Neurol Psychiatry (Chic) 74:68–87

    CAS  Google Scholar 

  • Brodal A, Taber E, Walberg F (1960) The raphe nuclei of the brain stem in the cat. II. Efferent connections. J Comp Neurol 114:239–259

    Google Scholar 

  • Cairns H, Oldfield RC, Pennybacker JB, Whitteridge D (1941) Akinetic mutism with an epidermoid cyst of the third ventricle. Brain 64:273–290

    Google Scholar 

  • Caplan LR (1980) Top of the basilar syndrome. Neurology 30:72–79

    PubMed  CAS  Google Scholar 

  • Chase TN, Moretti L, Prensky AL (1968) Clinical and electroencephalographic manifestations of vascular lesions of the pons. Neurology 18:357–368

    PubMed  CAS  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    PubMed  CAS  Google Scholar 

  • Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1997) Spatiotem­poral patterns of spindle oscillations in cortex and thalamus. J Neurosci 17:1179–1196

    PubMed  CAS  Google Scholar 

  • Curcio CA, Kemper T (1984) Nucleus raphe dorsalis in dementia of the Alzheimer type: neurofibrillary changes and neuronal packing density. J Neuropathol Exp Neurol 43:359–368

    PubMed  CAS  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62(Suppl 232):1–55

    Google Scholar 

  • Dahlström A, Fuxe K (1965) Ibid. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand 64(Suppl 247):1–36

    Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327

    PubMed Central  PubMed  Google Scholar 

  • Dement W, Kleitman N (1955) Cyclic variations in EEG during sleep and their relation to eye movements, body mobility and dreaming. Electroencephalogr Clin Neurophysiol 9:673–690

    Google Scholar 

  • Dement W, Kleitman N (1957) The relation of eye movements during sleep to dream activity: an objective method for the study of dreaming. J Exp Psychol 53:89–97

    Google Scholar 

  • Divac I (1975) Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb. Review of some functional correlates. Brain Res 93:385–398

    PubMed  CAS  Google Scholar 

  • Duvernoy HM (1995) The human brain stem and cerebellum. Surface, structure, vascularization and three-dimensional sectional anatomy with MRI. Springer, Wien, New York

    Google Scholar 

  • Edley SM, Graybiel AM (1983) The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta. J Comp Neurol 217:187–215

    PubMed  CAS  Google Scholar 

  • Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M et al (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21:1656–1662

    PubMed  CAS  Google Scholar 

  • Falck B, Hillarp N-A, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354

    CAS  Google Scholar 

  • Fisher CM (1977) Bilateral occlusion of basilar artery branches. J Neurol Neurosurg Psychiatry 40:1182–1189

    PubMed Central  PubMed  CAS  Google Scholar 

  • Foix CE, Nicolesco J (1925) Anatomie cérébrale; les noyaux gris centraux et la région mésencéphalo-sous-optique; suivie d’un appendice sur l’anatomie pathologique de la maladie de Parkinson. Masson, Paris

    Google Scholar 

  • Forel AH (1877) Untersuchungen über die Haubenregion und ihre Verknüpfungen im Gehirne des Menschen und einiger Säugethiere, mit Beiträgen zu den Methoden der Gehirnuntersuchung. Arch Psychiatr Nervenkr 7:393–495

    Google Scholar 

  • Fronczek R, Overeem S, Lee SYY, Hegeman IM, van Pelt J, van Duinen SG et al (2007) Hypocretin (orexin) loss in Parkinson’s ­disease. Brain 130:1577–1585

    PubMed  Google Scholar 

  • Gelineau JBE (1880) De la narcolepsie. Gaz Hôp (Paris) 53:626–637

    Google Scholar 

  • Gerashchenko D, Blanco-Centurion C, Greco MA, Shiromani PJ (2003) Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience 116:225–235

    Google Scholar 

  • Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57

    PubMed  CAS  Google Scholar 

  • Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130

    PubMed  CAS  Google Scholar 

  • Hallanger AE, Wainer BH (1988) Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 274:483–515

    PubMed  CAS  Google Scholar 

  • Halliday GM (2004) Substantia nigra and locus coeruleus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 449–463

    Google Scholar 

  • Halliday GM, Törk I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat and human. J Comp Neurol 252:423–445

    PubMed  CAS  Google Scholar 

  • Hedreen JC, Strubble RG, Whitehouse PJ, Price DL (1984) Topography of the magnocellular basal forebrain system in human brain. J Neuropathol Exp Neurol 43:1–21

    PubMed  CAS  Google Scholar 

  • Hobson JA (1999) Sleep and dreaming. In: Zigmund MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental neuroscience. Academic, San Diego, CA, pp 1207–1227

    Google Scholar 

  • Hobson JA, Pace-Schott EF (2002) The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev Neurosci 3:679–693

    PubMed  CAS  Google Scholar 

  • Hobson JA, Scheibel AB (1980) The brainstem core: sensorimotor integration and behavioral state control. Neurosci Res Prog Bull 18:1–73

    CAS  Google Scholar 

  • Hobson JA, Steriade M (1986) The neuronal basis of behavioral state control. In: Bloom FE (ed) Handbook of physiology, sect 1: the nervous system, vol IV, Intrinsic regulatory systems. American Physiological Society, Bethesda, MD, pp 701–823

    Google Scholar 

  • Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58

    PubMed  CAS  Google Scholar 

  • Holstege G, Kuypers HGJM (1977) Propriobulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. I. An anterograde degeneration study in the cat. Brain 100:239–264

    PubMed  CAS  Google Scholar 

  • Holstege G, Kuypers HGJM, Dekker JJ (1977) Ibid. II. An autoradiographic tracing study in cat. Brain 100:265–286

    Google Scholar 

  • Hoogendijk WJG, Pool CW, Troost D, van Zwieten E, Swaab DF (1995) Image analyser-assisted morphometry of the locus coeruleus in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Brain 118:131–143

    PubMed  Google Scholar 

  • Hornung J-P (2004) Raphe nuclei. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 425–448

    Google Scholar 

  • Inglis WL, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29

    PubMed  CAS  Google Scholar 

  • Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543

    PubMed Central  PubMed  CAS  Google Scholar 

  • Jones BE (1998a) The neural basis of consciousness across the sleep-waking cycle. Adv Neurol 73:75–94

    Google Scholar 

  • Jones EG (1998b) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85:331–345

    PubMed  CAS  Google Scholar 

  • Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601

    PubMed  CAS  Google Scholar 

  • Jones EG, Leavitt RY (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol 154:349–377

    PubMed  CAS  Google Scholar 

  • Jones BE, Yang TZ (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde axonal transport in the rat. J Comp Neurol 242:56–92

    PubMed  CAS  Google Scholar 

  • Jones EG, Burton H, Saper CB, Swanson LW (1976) Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J Comp Neurol 167:385–420

    PubMed  CAS  Google Scholar 

  • Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic connections to frontal and parietal cortex in the rhesus monkey. Science 187:660–662

    PubMed  CAS  Google Scholar 

  • Kohnstamm O (1899) Über Ursprungskerne spinaler Bahnen im Hirnstamm, speziell über das Atemzentrum. Arch Psychiatr Nervenkr 32:681–684

    Google Scholar 

  • Kohnstamm O, Quensel F (1908) Das Centrum receptorium der Formatio reticularis (Abstract). Neurol Zbl 27:1046–1047

    Google Scholar 

  • Kohnstamm O, Quensel F (1909) Centrum receptorium der Formatio reticularis und gekreuzt aufsteigende Bahn. Dtsch Z Nervenheilk 36:182–188

    Google Scholar 

  • Koutcherov Y, Huang X-F, Halliday G, Paxinos G (2004) Organization of human brain stem nuclei. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 267–320

    Google Scholar 

  • Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209

    PubMed  CAS  Google Scholar 

  • Lavoie B, Parent A (1994b) Ibid. Projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231

    PubMed  CAS  Google Scholar 

  • Leontovich TA, Zhukova GP (1963) The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of carnivores. J Comp Neurol 121:347–379

    PubMed  CAS  Google Scholar 

  • Levey AI, Hallanger AE, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124

    PubMed  Google Scholar 

  • Lewandowsky M (1904) Untersuchungen über die Leitungsbahnen der Truncus cerebri und ihren Zusammenhang mit denen der Medulla spinalis und der Cortex cerebri. Fischer, Jena

    Google Scholar 

  • Lhermitte F, Gautier JC, Marteau R, Chain F (1963) Troubles de la conscience et mutisme akinétique. Rev Neurol (Paris) 109:115–131

    CAS  Google Scholar 

  • Lim AS, Lozano AM, Moro E, Hamani C, Hutchison WD, Dostrovsky JO et al (2007) Characterization of REM-sleep associated ponto-geniculo-occipital waves in the human pons. Sleep 30:823–827

    PubMed Central  PubMed  Google Scholar 

  • Lin JS (2000) Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev 4:471–503

    PubMed  CAS  Google Scholar 

  • Lin JS, Sakai K, Jouvet M (1988) Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology 27:111–122

    PubMed  CAS  Google Scholar 

  • Lin JS, Sakai K, Jouvet M (1994) Hypothalamo-preoptic histaminergic projections in sleep-wake control in the cat. Eur J Neurosci 6:618–625

    PubMed  CAS  Google Scholar 

  • Lin JS, Hou Y, Sakai K, Jouvet M (1996) Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J Neurosci 16:1523–1537

    PubMed  CAS  Google Scholar 

  • Lindsley DB, Bowden JW, Magoun HW (1949) Effect upon the EEG of acute injury to the brain stem activating system. Electroencephalogr Clin Neurophysiol 1:475–486

    PubMed  CAS  Google Scholar 

  • Lindsley DB, Schreiner LH, Knowles WB, Magoun MS, Magoun HW (1950) Behavioral and EEG changes following chronic brainstem lesions in the cat. Electroencephalogr Clin Neurophysiol 2:483–498

    PubMed  CAS  Google Scholar 

  • Lindvall O, Björklund A (1978) Organization of catecholamine neurons in the rat central nervous system. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 9, Chemical pathways in the brain. Plenum, New York, pp 139–231

    Google Scholar 

  • Llinás R, Ribary U, Contreras D, Pedroarena C (1998) The neuronal basis for consciousness. Philos Trans R Soc Lond B 353:1841–1849

    Google Scholar 

  • Loeb C (1958) Electroencephalographic changes during the state of coma. Electroencephalogr Clin Neurophysiol 10:589–606

    PubMed  CAS  Google Scholar 

  • Lorente de Nó R (1938) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, New York, pp 291–340

    Google Scholar 

  • Loughlin SE, Foote SL, Fallon JH (1982) Locus coeruleus projections in cortex: topography, morphology and collateralization. Brain Res Bull 9:287–294

    PubMed  CAS  Google Scholar 

  • Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441:589–594

    PubMed  CAS  Google Scholar 

  • Macchi G, Bentivoglio M (1982) The organization of the efferent projections of the thalamic intralaminar nuclei: past, present, and future of the anatomical approach. Ital J Neurol Sci 2:83–96

    Google Scholar 

  • Mann DMA, Yates PO (1983) Pathological basis for neurotransmitter changes in Parkinson’s disease. Neuropathol Appl Neurobiol 9:3–19

    PubMed  CAS  Google Scholar 

  • Mann DMA, Yates PO, Hawkes J (1983) The pathology of the human locus coeruleus. Clin Neuropathol 2:1–17

    PubMed  CAS  Google Scholar 

  • Marcyniuk B, Mann DMA, Yates PO (1986) Loss of nerve cells from locus coeruleus in Alzheimer’s disease is topographically arranged. Neurosci Lett 64:247–252

    PubMed  CAS  Google Scholar 

  • Martin GF, Holstege G, Mehler WR (1990) Reticular formation of the pons and medulla. In: Paxinos G (ed) The human nervous system. Academic, San Diego, CA, pp 203–220

    Google Scholar 

  • McCarley RW (1999) Sleep neurophysiology: basic mechanisms underlying control of wakefulness and sleep. In: Chokroverty S (ed) Sleep disorders medicine, 2nd edn. Butterworth Heinemann, Boston, MA, pp 21–50

    Google Scholar 

  • McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural mathematical model. Science 189:58–60

    PubMed  CAS  Google Scholar 

  • McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20:185–215

    PubMed  CAS  Google Scholar 

  • Meessen H, Olszewski J (1949) A Cytoarchitectonic Atlas of the Rhombencephalon of the Rabbit. Karger, Basel

    Google Scholar 

  • Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 27:585–588

    PubMed  CAS  Google Scholar 

  • Mesulam M-M (2000) Attentional networks, confusional states and neglect syndromes. In: Mesulam M-M (ed) Principles of behavioral and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 174–256

    Google Scholar 

  • Mesulam M-M, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275:216–240

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ (1984) Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107:253–274

    PubMed  Google Scholar 

  • Mesulam M-M, Van Hoesen GW (1976) Acetylcholinesterase-rich projections from the basal forebrain of the rhesus monkey to neocortex. Brain Res 109:152–157

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1983a) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ, Wainer BH, Levey AI (1983b) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 281:611–633

    Google Scholar 

  • Meynert T (1872) Vom Gehirne der Säugethiere. In: Stricker S (Hrsg) Handbuch der Lehre von den Geweben des Menschen und der Thiere, Vol 2. Engelmann, Leipzig, pp 694–808 (English translation by Putnam JJ, 1872: Stricker S (ed) A manual of histology. William Wood, New York, pp 650–766)

    Google Scholar 

  • Mignot E, Zeitzer JM (2007) Neurobiology of narcolepsy and hypersomnia. In: Gilman S (ed) Neurobiology of disease. Elsevier Academic, San Diego, CA, pp 715–722

    Google Scholar 

  • Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem SB et al (2002) The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 59:1553–1562

    PubMed  Google Scholar 

  • Minagar A, David NJ (1999) Bilateral infarction in the territory of the anterior cerebral arteries. Neurology 52:886–888

    PubMed  CAS  Google Scholar 

  • Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168

    PubMed  CAS  Google Scholar 

  • Morison RS, Dempsey EW (1942) A study of thalamocortical relations. Am J Physiol 135:281–292

    Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    PubMed  CAS  Google Scholar 

  • Nakano I, Hirano A (1983) Neuron loss in the nucleus basalis of Meynert in Parkinson-dementia complex of Guam. Ann Neurol 13:87–91

    PubMed  CAS  Google Scholar 

  • Nauta WJH (1946) Hypothalamic regulation of sleep in rats: an experimental study. J Neurophysiol 9:285–316

    PubMed  CAS  Google Scholar 

  • Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RF (eds) Reticular formation of the brain. Little Brown, Boston, MA, pp 3–30

    Google Scholar 

  • Němcová V, Petrovický P, ten Donkelaar HJ (1997) The dorsal tegmentum of the pontomesencephalic junction of the rat – immunohistochemistry (choline acetyltransferase, tyrosine hydroxylase, substance P) and NADPH-diaphorase histochemistry in frontal and horizontal sections. J Brain Res 38:231–241

    Google Scholar 

  • Němcová V, Petrovický P, ten Donkelaar HJ (2000) The effect of electrolytic thalamic lesions on the nitric oxide synthase (NOS) expression of neurons of the laterodorsal and pedunculopontine tegmental nuclei in rats. J Chem Neuroanat 17:227–232

    PubMed  Google Scholar 

  • Newman DB (1985a) Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei. J Hirnforsch 26:187–226

    PubMed  CAS  Google Scholar 

  • Newman DB (1985b) Ibid. II. Pontine and mesencephalic nuclei. J Hirnforsch 26:385–418

    PubMed  CAS  Google Scholar 

  • Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580

    PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (2007) The human central nervous system, 4th edn. Springer, Berlin

    Google Scholar 

  • Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388:1–40

    PubMed  CAS  Google Scholar 

  • Ohm TG, Heilmann R, Braak H (1989) The human oral raphe system: architectonics and neuronal types in pigment-Nissl preparations. Anat Embryol (Berl) 180:37–43

    CAS  Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel

    Google Scholar 

  • Overeem S, Mignot E, van Dijk JG, Lammers GJ (2001) Narcolepsy: clinical features, new pathophysiologic insights, and future perspectives. J Clin Neurophysiol 18:78–105

    PubMed  CAS  Google Scholar 

  • Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605

    PubMed  CAS  Google Scholar 

  • Panula P, Airaksinen MS, Pirvola U, Kotilainen E (1990) A histamine-containing neuronal system in human brain. Neuroscience 34:127–132

    PubMed  CAS  Google Scholar 

  • Paré D, Smith Y, Parent A, Steriade M (1988) Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25:69–86

    PubMed  Google Scholar 

  • Parent A, Paré D, Smith Y, Steriade M (1988) Basal forebrain cholinergic and noncholinergic projections to the thalamus and brain stem in cats and monkeys. J Comp Neurol 277:281–301

    PubMed  CAS  Google Scholar 

  • Parvizi J, Damasio AR (2003) Neuroanatomical correlates of brainstem coma. Brain 126:1524–1536

    PubMed  Google Scholar 

  • Pavlasek J, Petrovický P (1994) The reticular formation and the reti­culospinal system. Veda Publ House Slovak Acad Sciences, Bratislava

    Google Scholar 

  • Paxinos G, Huang X-F (1995) Atlas of the human brainstem. Academic, San Diego, CA

    Google Scholar 

  • Pearson J, Goldstein M, Markey K, Brandeis L (1983) Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8:3–32

    PubMed  CAS  Google Scholar 

  • Petrovický P (1966) A comparative study of the reticular formation of the guinea pig. J Comp Neurol 128:85–108

    PubMed  Google Scholar 

  • Petrovický P (1980) Reticular formation and its raphe system. I. Cyto-architectonics with comparative aspects. Acta Univ Carol Med Monogr (Prague) 99:1–117

    Google Scholar 

  • Petrovický P (1981) Reticular formation and its raphe system. II. Connections with some functional aspects. Acta Univ Carol Med Monogr (Prague) 103:1–165

    Google Scholar 

  • Petrovický P (1990) Thalamic afferents from the brain stem. An experimental study using retrograde single and double labelling with HRP and iron-dextran in the rat. I. Medial and lateral reticular formation. J Hirnforsch 30:551–563

    Google Scholar 

  • Petrovický P, Kolesárová D, Slavinská V (1990) Thalamic afferents from the brain stem. An experimental study using retrograde single and double labelling with HRP and iron-dextran in the rat. II. Nucleus laterodorsalis and subnucleus compactus nuclei pedunculopontini. J Hirnforsch 31:375–383

    PubMed  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    PubMed  CAS  Google Scholar 

  • Peyron C, Faraco J, Ropers W, Ripley B, Overeem S, Charney Y et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991–997

    PubMed  CAS  Google Scholar 

  • Plum F, Posner JB (1980) The diagnosis of stupor and coma, 3rd edn. Davis, Philadelphia, PA

    Google Scholar 

  • Poirier LJ, Parent A, Marchand R, Butcher LL (1977) Morphological characteristics of the acetylcholinesterase-containing neurons in the CNS of DFP-treated monkeys. Part I. Extrapyramidal and related structures. J Neurol Sci 31:181–198

    PubMed  CAS  Google Scholar 

  • Posner JB, Saper CB, Schiff ND, Plum F (2007) Plum and Posner’s diagnosis of stupor and coma, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Probst M (1899) Über vom Vierhügel, von der Brücke und vom Kleinhirn aufsteigende Bahnen. Dtsch Z Nervenheilk 15:192–221

    Google Scholar 

  • Probst M (1902) Zur Kenntnis der Schleifenschicht und über centripetale Rückenmarksfasern zum Deiterschen Kern, zum Sehhügel und zur Substantia reticularis. Monatsschr Psychiatr Neurol 11:3–12

    Google Scholar 

  • Quensel F, Kohnstamm O (1907) Preparate mit aktiven Zellde­generationen nach Hirnstammverletzung beim Kaninchen. Neurol Zbl 26:1138–1139

    Google Scholar 

  • Ramón y Cajal S (1899–1904) Textura del Sistema Nervioso del Hombre y de los Vertebrados. Madrid (1909–1911 French version: Histologie du système nerveux de l’homme et des vertébrés, Maloine, Paris)

    Google Scholar 

  • Ramón y Cajal S (1900) Contribución al estudio de la via sensitiva central y de la estructura del tálamo óptico. Rev Trimestr Micrograf V:185–198

    Google Scholar 

  • Ramón-Moliner E, Nauta WJH (1966) The isodendritic core of the brain stem. J Comp Neurol 126:311–335

    PubMed  Google Scholar 

  • Ranson SW (1939) Somnolence caused by hypothalamic lesions in the monkey. Arch Neurol Psychiatry 41:1–23

    Google Scholar 

  • Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. NIH Public No 204, NIH, Washington, DC

    Google Scholar 

  • Rechtschaffen A, Siegel J (2000) Sleep and dreaming. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 936–947

    Google Scholar 

  • Reil JC (1809) Untersuchungen über den Bau des grossen Gehirns im Menschen. Vierte Fortsetzung VIII. Arch Physiol (Halle) 9:136–146

    Google Scholar 

  • Robertson RT, Feiner AR (1982) Diencephalic projections from the pontine reticular formation: autoradiographic studies in the cat. Brain Res 239:3–16

    PubMed  CAS  Google Scholar 

  • Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528

    PubMed  CAS  Google Scholar 

  • Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181

    PubMed  CAS  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    PubMed  CAS  Google Scholar 

  • Saper CB (1987) Diffuse cortical projection systems: anatomical organization and role in cortical function. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, vol V, Higher functions of the brain. American Physiological Society, Bethesda, MD, pp 169–210

    Google Scholar 

  • Saper CB (1990) Cholinergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, CA, pp 1095–1113

    Google Scholar 

  • Saper CB, Chelimsky TC (1984) A cytoarchitectonic and histochemical study of nucleus basalis and associated cell groups in the normal human brain. Neuroscience 13:1023–1037

    PubMed  CAS  Google Scholar 

  • Saper CB, Petito CK (1982) Correspondence of melanin-pigmented neurons in human brain with A1-A14 catecholamine cell groups. Brain 105:87–101

    PubMed  CAS  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731

    PubMed  CAS  Google Scholar 

  • Saper CB, Lu J, Chou TC, Gooley J (2005a) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28:152–157

    PubMed  CAS  Google Scholar 

  • Saper CB, Cano G, Scammell TE (2005b) Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 439:92–98

    Google Scholar 

  • Scheibel AB, Scheibel ME (1958) Structural substrates for integrative patterns in the brainstem reticular core. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain. Little Brown, Boston, MA, pp 31–55

    Google Scholar 

  • Segarra J (1970) Cerebral vascular disease and behaviour. I. The syndrome of the mesencephalic artery. Arch Neurol 22:408–418

    PubMed  CAS  Google Scholar 

  • Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271:216–219

    PubMed  CAS  Google Scholar 

  • Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721

    PubMed  CAS  Google Scholar 

  • Shute CCD, Lewis PR (1967) The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497–520

    PubMed  CAS  Google Scholar 

  • Starzl TE, Taylor CW, Magoun HW (1951) Collateral afferent excitation of reticular formation and brain stem. J Neurophysiol 14:479–496

    PubMed Central  PubMed  CAS  Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat – cell bodies and terminals. Neuroscience 6:557–618

    PubMed  CAS  Google Scholar 

  • Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101:243–276

    PubMed  CAS  Google Scholar 

  • Steriade M (2001) Impact of network activities on neuronal properties of corticothalamic systems. J Neurophysiol 86:1–39

    PubMed  CAS  Google Scholar 

  • Steriade M, Llinás R (1988) The functional states of the thalamus and associated neuronal interplay. Physiol Rev 68:649–742

    PubMed  CAS  Google Scholar 

  • Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum, New York

    Google Scholar 

  • Steriade M, Ropert N, Kitsikis A, Oakson G (1980) Ascending activating neuronal networks in midbrain reticular core and related rostral systems. In: Hobson JA, Brazier MAB (eds) The reticular formation revisited. Raven, New York, pp 125–167

    Google Scholar 

  • Steriade M, Oakson G, Ropert N (1982) Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle. Exp Brain Res 46:37–51

    PubMed  CAS  Google Scholar 

  • Steriade M, Paré D, Parent A, Smith Y (1988) Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25:47–67

    PubMed  CAS  Google Scholar 

  • Steriade M, Datta S, Paré D, Oakson G, Curro-Dossi RC (1990) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical ystems. J Neurosci 10:2541–2549

    PubMed  CAS  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    PubMed  CAS  Google Scholar 

  • Stumpf WE, Jennes L (1984) The A-B-C (Allocortex-Brainstem-Core) circuitry of endocrine-autonomic integration and regulation: a proposed hypothesis on the anatomical functional relationships between estradiol sites of action and peptidergic-aminergic neuronal systems. Peptides 5:221–226

    PubMed  CAS  Google Scholar 

  • Tagliavini F, Pilleri G (1983) Neuronal counts in basal nucleus of Meynert in Alzheimer disease and in simple senile dementia. Lancet 1:469–470

    PubMed  CAS  Google Scholar 

  • Takeda N, Inagaki S, Taguchi Y, Tohyama M, Watanabe T, Wada H (1984) Origins of histamine-containing fibers in the cerebral cortex of rats studied by immunohistochemistry with histidine decarboxylase as a marker and transection. Brain Res 323:55–63

    PubMed  CAS  Google Scholar 

  • Teasdale G, Jennett B (1976) Assessment and prognosis of coma after head injury. Acta Neurochir (Wien) 34:45–55

    CAS  Google Scholar 

  • ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Maarssen, Elsevier, pp 981–1141 (in Dutch)

    Google Scholar 

  • Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M et al (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474

    PubMed  CAS  Google Scholar 

  • Thannickal TC, Siegel JM, Moore RY (2003) Pattern of hypocretin (orexin) soma and axon loss, and gliosis, in human narcolepsy. Brain Pathol 13:340–351

    PubMed  Google Scholar 

  • Thannickal TC, Lai Y-Y, Siegel JM (2007) Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 130:1586–1595

    PubMed  Google Scholar 

  • Tomlinson BE, Irving D, Blessed D (1981) Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 49:419–428

    PubMed  CAS  Google Scholar 

  • Törk I, Hornung J-P (1990) Raphe nuclei and the serotonergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, CA, pp 1001–1022

    Google Scholar 

  • Uchiyama M, Isse K, Tanaka K, Yokota N, Hamamoto H, Aida S et al (1995) Incidental Lewy body disease in a patient with REM sleep behavior disorder. Neurology 45:709–712

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48

    PubMed  CAS  Google Scholar 

  • Valverde F (1961) Reticular formation of the pons and medulla oblongata. A Golgi study. J Comp Neurol 116:71–99

    PubMed  CAS  Google Scholar 

  • Valverde F (1962) Reticular formation of the albino rat’s brain stem; cytoarchitecture and corticofugal connections. J Comp Neurol 119:25–53

    PubMed  CAS  Google Scholar 

  • van Domburg PHMF, ten Donkelaar HJ, Notermans SLH (1996) Akinetic mutism with bithalamic infarction. Neurophysiological correlates. J Neurol Sci 139:58–65

    PubMed  Google Scholar 

  • van Gehuchten A (1901) Recherches sur les voies sensitives centrales. Névraxe 3:235–261

    Google Scholar 

  • Vertes RP (1984) Brainstem control of the events of REM sleep. Prog Neurobiol 22:241–288

    PubMed  CAS  Google Scholar 

  • Vertes RP (1990a) Fundamentals of brainstem anatomy: a behavioral perspective. In: Klemm WR, Vertes RP (eds) Brainstem mechanisms of behavior. Wiley, New York, pp 33–103

    Google Scholar 

  • Vertes RP (1990b) Brainstem mechanisms of slow-wave sleep and REM sleep. In: Klemm WR, Vertes RP (eds) Brainstem mechanisms of behavior. Wiley, New York, pp 535–583

    Google Scholar 

  • Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe in the rat. J Comp Neurol 313:643–668

    PubMed  CAS  Google Scholar 

  • Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893–926

    PubMed  CAS  Google Scholar 

  • Vertes RP, Martin GF (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J Comp Neurol 275:511–541

    PubMed  CAS  Google Scholar 

  • Vogels OJM (1990) The nucleus basalis of Meynert complex and adjacent structures in normal aging and Alzheimer’s disease. Thesis, University of Nijmegen

    Google Scholar 

  • Vogels OJM, Broere CAJ, ter Laak HJ, ten Donkelaar HJ, Nieuwenhuys R, Schulte BPM (1990) Cell loss and shrinkage in the nucleus basalis of Meynert complex in Alzheimer’s disease. Neurobiol Aging 11:3–13

    PubMed  CAS  Google Scholar 

  • von Economo C (1920) Die Encephalitis lethargica, ihre Nachkrankheiten und ihre Behandlung. Urban & Schwarzenberg, Berlin (English translation 1931: Encephalitis Lethargica: its sequelae and treatment. Oxford University Press, London)

    Google Scholar 

  • von Economo C (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259

    Google Scholar 

  • von Kölliker A (1896) Handbuch der Gewebelehre des Menschen, vol 2, 6th edn, Nervensystem des Menschen und der Thiere. Engelmann, Leipzig

    Google Scholar 

  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, DeLong MR (1982) Alzheimer’s disease and senile dementias: loss of neurons in the basal forebrain. Science 215:1237–1239

    PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson’s disease. Ann Neurol 13:243–248

    PubMed  CAS  Google Scholar 

  • Winn P (1998) Frontal syndrome as a consequence of lesions in the pedunculopontine tegmental nucleus: a short theoretical review. Brain Res Bull 47:551–563

    PubMed  CAS  Google Scholar 

  • Winn P (2006) How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 248:234–250

    PubMed  Google Scholar 

  • Woolf NJ, Harrison JB, Buchwald JS (1990) Cholinergic neurons of the feline pontomesencephalon. II. Ascending anatomical projections. Brain Res 520:55–72

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Hirano A (1985) Nucleus raphe dorsalis in Alzheimer’s disease: neurofibrillary tangles and loss of large neurons. Ann Neurol 17:573–577

    PubMed  CAS  Google Scholar 

  • Zeman A (2001) Consciousness. Brain 124:1263–1289

    PubMed  CAS  Google Scholar 

  • Zepelin H (1983) A life span perspective on sleep. In: Mayes A (ed) Sleep mechanisms and functions in humans and animals: an evolutionary perspective. Cambridge University Press, Cambridge, pp 126–160

    Google Scholar 

  • Zweig RM, Whitehouse PJ, Casanova MF, Walker LC, Jankel WR, Price DL (1987) Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol 22:18–25

    PubMed  CAS  Google Scholar 

  • Zweig RM, Ross CA, Hedreen JC, Steele C, Cardillo JE, Whitehouse PJ et al (1988) The neuropathology of aminergic nuclei in Alzheimer’s disease. Ann Neurol 24:233–242

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J. (2011). The Reticular Formation and Some Related Nuclei. In: Clinical Neuroanatomy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19134-3_5

Download citation

Publish with us

Policies and ethics