Skip to main content

Platelet Interaction with the Vessel Wall

  • Chapter
  • First Online:
Antiplatelet Agents

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 210))

Abstract

Platelets have attracted a growing interest among basic scientists and clinicians, as they have been shown to play an important role in many physiological and pathophysiological conditions. Beyond hemostasis, platelets participate in wound healing, inflammation, infectious diseases, maintenance of the endothelial barrier function, angiogenesis, and tumor metastasis. Over the last 50 years enormous progress has been made in our understanding of the role of platelets in hemostasis. Platelets circulate in blood in a resting state, but they are able to react immediately upon a vessel wall injury by adhering to the exposed collagen, followed by platelet–platelet interaction to form a plug that effectively seals the injured vessel wall to prevent excessive blood loss. Comparable events will take place on a rupturing atherosclerotic plaque, which may result in a platelet-rich thrombus. This chapter will address the molecular basis of platelet adhesion and aggregation, the regulation of platelet function and the interaction of primary and secondary hemostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbanyo FR, Sixma JJ, de Groot PG, Languino LR, Plow EF (1993) Thrombospondin-platelet interactions. Role of divalent cations, wall shear rate, and platelet membrane glycoproteins. J Clin Invest 92:288–296

    PubMed  CAS  Google Scholar 

  • Andre P, Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, Phillips DR, Wagner DD (2002) CD40L stabilizes arterial thrombi by a beta3 integrin–dependent mechanism. Nat Med 8:247–252

    PubMed  CAS  Google Scholar 

  • Andrews RK, Gardiner EE, Shen Y, Whisstock JC, Berndt MC (2003) Glycoprotein Ib-IX-V. Int J Biochem Cell Biol 35:1170–1174

    PubMed  CAS  Google Scholar 

  • Angelillo-Scherrer A, de Frutos P, Aparicio C, Melis E, Savi P, Lupu F, Arnout J, Dewerchin M, Hoylaerts M, Herbert J, Collen D, Dahlback B, Carmeliet P (2001) Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat Med 7:215–221

    PubMed  CAS  Google Scholar 

  • Baglia FA, Shrimpton CN, Lopez JA, Walsh PN (2003) The glycoprotein Ib-IX-V complex mediates localization of factor XI to lipid rafts on the platelet membrane. J Biol Chem 278:21744–21750

    PubMed  CAS  Google Scholar 

  • Beumer S, Heijnen HF, IJsseldijk MJ, Orlando E, de Groot PG, Sixma JJ (1995) Platelet adhesion to fibronectin in flow: the importance of von Willebrand factor and glycoprotein Ib. Blood 86:3452-3460

    Google Scholar 

  • Bradford HN, Pixley RA, Colman RW (2000) Human factor XII binding to the glycoprotein Ib-IX-V complex inhibits thrombin-induced platelet aggregation. J Biol Chem 275:22756–22763

    PubMed  CAS  Google Scholar 

  • Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H (2011) Platelets at work in primary hemostasis. Blood Rev 25:155–167

    PubMed  CAS  Google Scholar 

  • Broze GJ Jr, Girard TJ, Novotny WF (1990) Regulation of coagulation by a multivalent Kunitz-type inhibitor. Biochemistry 29:7539–7546

    PubMed  CAS  Google Scholar 

  • Camire RM, Pollak ES, Kaushansky K, Tracy PB (1998) Secretable human platelet-derived factor V originates from the plasma pool. Blood 92:3035–3041

    PubMed  CAS  Google Scholar 

  • Cattaneo M (2011) Bleeding manifestations of congenital and drug-induced defects of the platelet P2Y12 receptor for adenosine diphosphate. Thromb Haemost 105(Suppl 1):S67–S74

    PubMed  CAS  Google Scholar 

  • Cattaneo M, Lecchi A, Lombardi R, Gachet C, Zighetti ML (2000) Platelets from a patient heterozygous for the defect of P2CYC receptors for ADP have a secretion defect despite normal thromboxane A2 production and normal granule stores: further evidence that some cases of platelet ‘primary secretion defect’ are heterozygous for a defect of P2CYC receptors. Arterioscler Thromb Vasc Biol 20:E101–E106

    PubMed  CAS  Google Scholar 

  • Chauhan AK, Walsh MT, Zhu G, Ginsburg D, Wagner DD, Motto DG (2008) The combined roles of ADAMTS13 and VWF in murine models of TTP, endotoxemia, and thrombosis. Blood 111:3452–3457

    PubMed  CAS  Google Scholar 

  • Chen H, Locke D, Liu Y, Liu C, Kahn ML (2002) The platelet receptor GPVI mediates both adhesion and signaling responses to collagen in a receptor density-dependent fashion. J Biol Chem 277:3011–3019

    PubMed  CAS  Google Scholar 

  • Clauser S, Bachelot-Lozat C, Fontana P, Gaussem P, Remones V, Aiach M, Borgel D (2006) Physiological plasma Gas6 levels do not influence platelet aggregation. Arterioscler Thromb Vasc Biol 26:e22

    PubMed  Google Scholar 

  • Clemetson KJ (2007) A short history of platelet glycoprotein Ib complex. Thromb Haemost 98:63–68

    PubMed  CAS  Google Scholar 

  • Cohen I, Gerrard JM, White JG (1982) Ultrastructure of clots during isometric contraction. J Cell Biol 93:775–787

    PubMed  CAS  Google Scholar 

  • Cosemans JM, Van Kruchten R, Olieslagers S, Schurgers LJ, Verheyen FK, Munnix IC, Waltenberger J, Angelillo-Scherrer A, Hoylaerts MF, Carmeliet P, Heemskerk JW (2010) Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. J Thromb Haemost 8:1797–1808

    PubMed  CAS  Google Scholar 

  • Davies MJ, Bland JM, Hangartner JR, Angelini A, Thomas AC (1989) Factors influencing the presence or absence of acute coronary artery thrombi in sudden ischaemic death. Eur Heart J 10:203–208

    PubMed  CAS  Google Scholar 

  • de Groot PG, Sixma JJ (2002) Platelet adhesion. In: Gresele P, Page CP, Fuster V, Vermylen J (eds) Platelets in thrombotic and non thrombotic disorders: pathophysiology, pharmacology and therapeutics. Cambridge University Press, Cambridge

    Google Scholar 

  • Denis C, Methia N, Frenette PS, Rayburn H, Ullman-Cullere M, Hynes RO, Wagner DD (1998) A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci USA 95:9524–9529

    PubMed  CAS  Google Scholar 

  • Dong JF (2005) Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J Thromb Haemost 3:1710–1716

    PubMed  CAS  Google Scholar 

  • Du X (2007) Signaling and regulation of the platelet glycoprotein Ib-IX-V complex. Curr Opin Hematol 14:262–269

    PubMed  CAS  Google Scholar 

  • Duckers C, Simioni P, Spiezia L, Radu C, Dabrilli P, Gavasso S, Rosing J, Castoldi E (2010) Residual platelet factor V ensures thrombin generation in patients with severe congenital factor V deficiency and mild bleeding symptoms. Blood 115:879–886

    PubMed  CAS  Google Scholar 

  • Esmon CT (2003) The protein C pathway. Chest 124:26S–32S

    PubMed  CAS  Google Scholar 

  • French JE, Macfarlane RG, Sanders AG (1964) The structure of haemostatic plugs and experimental thrombi in small arteries. Br J Exp Pathol 45:467–474

    PubMed  CAS  Google Scholar 

  • Frenette PS, Johnson RC, Hynes RO, Wagner DD (1995) Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci USA 92:7450–7454

    PubMed  CAS  Google Scholar 

  • Furie B, Furie BC (2005) Thrombus formation in vivo. J Clin Invest 115:3355–3362

    PubMed  CAS  Google Scholar 

  • Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11:123–134

    PubMed  CAS  Google Scholar 

  • Gayle RB 3rd, Maliszewski CR, Gimpel SD, Schoenborn MA, Caspary RG, Richards C, Brasel K, Price V, Drosopoulos JH, Islam N, Alyonycheva TN, Broekman MJ, Marcus AJ (1998) Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39. J Clin Invest 101:1851–1859

    PubMed  CAS  Google Scholar 

  • Gruner S, Prostredna M, Schulte V, Krieg T, Eckes B, Brakebusch C, Nieswandt B (2003) Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood 102:4021–4027

    PubMed  Google Scholar 

  • Hackeng TM, Sere KM, Tans G, Rosing J (2006) Protein S stimulates inhibition of the tissue factor pathway by tissue factor pathway inhibitor. Proc Natl Acad Sci USA 103:3106–3111

    PubMed  CAS  Google Scholar 

  • Hantgan RR, Endenburg SC, Cavero I, Marguerie G, Uzan A, Sixma JJ, de Groot PG (1992) Inhibition of platelet adhesion to fibrin(ogen) in flowing whole blood by Arg-Gly-Asp and fibrinogen gamma-chain carboxy terminal peptides. Thromb Haemost 68:694–700

    PubMed  CAS  Google Scholar 

  • Hindriks G, Ijsseldijk MJ, Sonnenberg A, Sixma JJ, de Groot PG (1992) Platelet adhesion to laminin: role of Ca2+ and Mg2+ ions, shear rate, and platelet membrane glycoproteins. Blood 79:928–935

    PubMed  CAS  Google Scholar 

  • Huizinga EG, Tsuji S, Romijn RA, Schiphorst ME, de Groot PG, Sixma JJ, Gros P (2002) Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science 297:1176–1179

    PubMed  CAS  Google Scholar 

  • Jung SM, Moroi M (2008) Platelet glycoprotein VI. Adv Exp Med Biol 640:53–63

    PubMed  CAS  Google Scholar 

  • Jurk K, Clemetson KJ, de Groot PG, Brodde MF, Steiner M, Savion N, Varon D, Sixma JJ, Van Aken H, Kehrel BE (2003) Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (GPIb): an alternative/backup mechanism to von Willebrand factor. FASEB J 17:1490–1492

    PubMed  CAS  Google Scholar 

  • Kato K, Kanaji T, Russell S, Kunicki TJ, Furihata K, Kanaji S, Marchese P, Reininger A, Ruggeri ZM, Ware J (2003) The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. Blood 102:1701–1707

    PubMed  CAS  Google Scholar 

  • Kawamoto Y, Kaibara M (1990) Procoagulant activity of collagen. Effect of difference in type and structure of collagen. Biochim Biophys Acta 1035:361–368

    PubMed  CAS  Google Scholar 

  • Kim J, Zhang CZ, Zhang X, Springer TA (2010) A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature 466:992–995

    PubMed  CAS  Google Scholar 

  • Kiyoi T, Tomiyama Y, Honda S, Tadokoro S, Arai M, Kashiwagi H, Kosugi S, Kato H, Kurata Y, Matsuzawa Y (2003) A naturally occurring Tyr143His alpha IIb mutation abolishes alpha IIb beta 3 function for soluble ligands but retains its ability for mediating cell adhesion and clot retraction: comparison with other mutations causing ligand-binding defects. Blood 101:3485–3491

    PubMed  CAS  Google Scholar 

  • Konstantinides S, Ware J, Marchese P, Almus-Jacobs F, Loskutoff DJ, Ruggeri ZM (2006) Distinct antithrombotic consequences of platelet glycoprotein Ibalpha and VI deficiency in a mouse model of arterial thrombosis. J Thromb Haemost 4:2014–2021

    PubMed  CAS  Google Scholar 

  • Lankhof H, van Hoeij M, Schiphorst ME, Bracke M, Wu YP, Ijsseldijk MJ, Vink T, de Groot PG, Sixma JJ (1996) A3 domain is essential for interaction of von Willebrand factor with collagen type III. Thromb Haemost 75:950–958

    PubMed  CAS  Google Scholar 

  • Leger AJ, Covic L, Kuliopulos A (2006) Protease-activated receptors in cardiovascular diseases. Circulation 114:1070–1077

    PubMed  CAS  Google Scholar 

  • Lisman T, Raynal N, Groeneveld D, Maddox B, Peachey AR, Huizinga EG, de Groot PG, Farndale RW (2006) A single high-affinity binding site for von Willebrand factor in collagen III, identified using synthetic triple-helical peptides. Blood 108:3753–3756

    PubMed  CAS  Google Scholar 

  • Lubnitzky S (1885) Die Zusammensetzung des Thrombus in Arterienwunden in den ersten funf Tagen. Naunyn-Schmeidebergs Arch Pharmacol 19:185

    Google Scholar 

  • Luo SZ, Mo X, Afshar-Kharghan V, Srinivasan S, Lopez JA, Li R (2007) Glycoprotein Ibalpha forms disulfide bonds with 2 glycoprotein Ibbeta subunits in the resting platelet. Blood 109:603–609

    PubMed  CAS  Google Scholar 

  • Maroney SA, Haberichter SL, Friese P, Collins ML, Ferrel JP, Dale GL, Mast AE (2007) Active tissue factor pathway inhibitor is expressed on the surface of coated platelets. Blood 109:1931–1937

    PubMed  CAS  Google Scholar 

  • Maynard DM, Heijnen HF, Gahl WA, Gunay-Aygun M (2010) The alpha-granule proteome: novel proteins in normal and ghost granules in gray platelet syndrome. J Thromb Haemost 8:1786–1796

    PubMed  CAS  Google Scholar 

  • Muller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, Schmidbauer S, Gahl WA, Morrissey JH, Renne T (2009) Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139:1143–1156

    PubMed  CAS  Google Scholar 

  • Nachman RL, Rafii S (2008) Platelets, petechiae, and preservation of the vascular wall. N Engl J Med 359:1261–1270

    PubMed  CAS  Google Scholar 

  • Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15:665–673

    PubMed  CAS  Google Scholar 

  • Newman PJ, Newman DK (2003) Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol 23:953–964

    PubMed  CAS  Google Scholar 

  • Nieswandt B, Varga-Szabo D, Elvers M (2009) Integrins in platelet activation. J Thromb Haemost 7(Suppl 1):206–209

    PubMed  CAS  Google Scholar 

  • Nieswandt B, Pleines I, Bender M (2011) Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke. J Thromb Haemost 9(Suppl 1):92–104

    PubMed  CAS  Google Scholar 

  • Niewiarowski S, Bankowski E, Fiedoruk T (1964) Adsorption of Hageman factor (Factor XII) on collagen. Experientia 20:367–368

    PubMed  CAS  Google Scholar 

  • Noe L, Peeters K, Izzi B, Van Geet C, Freson K (2010) Regulators of platelet cAMP levels: clinical and therapeutic implications. Curr Med Chem 17:2897–2905

    PubMed  CAS  Google Scholar 

  • Nurden AT (2011) Platelets, inflammation and tissue regeneration. Thromb Haemost 105(Suppl 1):S13–S33

    PubMed  CAS  Google Scholar 

  • Nurden A, Nurden P (2011) Advances in our understanding of the molecular basis of disorders of platelet function. J Thromb Haemost 9(Suppl 1):76–91

    PubMed  CAS  Google Scholar 

  • Offermanns S (2006) Activation of platelet function through G protein-coupled receptors. Circ Res 99:1293–1304

    PubMed  CAS  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    PubMed  CAS  Google Scholar 

  • Prevost N, Woulfe DS, Tognolini M, Tanaka T, Jian W, Fortna RR, Jiang H, Brass LF (2004) Signaling by ephrinB1 and Eph kinases in platelets promotes Rap1 activation, platelet adhesion, and aggregation via effector pathways that do not require phosphorylation of ephrinB1. Blood 103:1348–1355

    PubMed  CAS  Google Scholar 

  • Prevost N, Woulfe DS, Jiang H, Stalker TJ, Marchese P, Ruggeri ZM, Brass LF (2005) Eph kinases and ephrins support thrombus growth and stability by regulating integrin outside-in signaling in platelets. Proc Natl Acad Sci USA 102:9820–9825

    PubMed  CAS  Google Scholar 

  • Pries AR, Secomb TW, Jacobs H, Sperandio M, Osterloh K, Gaehtgens P (1997) Microvascular blood flow resistance: role of endothelial surface layer. Am J Physiol 273:H2272–H2279

    PubMed  CAS  Google Scholar 

  • Pugh N, Simpson AM, Smethurst PA, de Groot PG, Raynal N, Farndale RW (2010) Synergism between platelet collagen receptors defined using receptor-specific collagen-mimetic peptide substrata in flowing blood. Blood 115:5069–5079

    PubMed  CAS  Google Scholar 

  • Ramesh S, Morrell CN, Tarango C, Thomas GD, Yuhanna IS, Girardi G, Herz J, Urbanus RT, de Groot PG, Thorpe PE, Salmon JE, Shaul PW, Mineo C (2011) Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via beta2GPI and apoER2. J Clin Invest 121:120–131

    PubMed  CAS  Google Scholar 

  • Reitsma S, Oude Egbrink MG, Heijnen VV, Megens RT, Engels W, Vink H, Slaaf DW, van Zandvoort MA (2011) Endothelial glycocalyx thickness and platelet-vessel wall interactions during atherogenesis. Thromb Haemost 106(5):939–46. doi:10.1160/TH11-02-0133

    PubMed  CAS  Google Scholar 

  • Renne T, Pozgajova M, Gruner S, Schuh K, Pauer HU, Burfeind P, Gailani D, Nieswandt B (2005) Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 202:271–281

    PubMed  CAS  Google Scholar 

  • Rosen ED, Gailani D, Castellino FJ (2002) FXI is essential for thrombus formation following FeCl3-induced injury of the carotid artery in the mouse. Thromb Haemost 87:774–776

    PubMed  CAS  Google Scholar 

  • Ross R, Glomset JA (1976) The pathogenesis of atherosclerosis (first of two parts). N Engl J Med 295:369–377

    PubMed  CAS  Google Scholar 

  • Ruggeri ZM (2000) Old concepts and new developments in the study of platelet aggregation. J Clin Invest 105:699–701

    PubMed  CAS  Google Scholar 

  • Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279:44250–44257

    PubMed  CAS  Google Scholar 

  • Sabrkhany S, Griffioen AW, Oude Egbrink MG (2011) The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta 1815:189–196

    PubMed  CAS  Google Scholar 

  • Sadler JE (2005) von Willebrand factor: two sides of a coin. J Thromb Haemost 3:1702–1709

    PubMed  CAS  Google Scholar 

  • Sakariassen KS, Bolhuis PA, Sixma JJ (1979) Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-Von Willebrand factor bound to the subendothelium. Nature 279:636–638

    PubMed  CAS  Google Scholar 

  • Santoro SA (1986) Identification of a 160,000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen. Cell 46:913–920

    PubMed  CAS  Google Scholar 

  • Savage B, Saldivar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84:289–297

    PubMed  CAS  Google Scholar 

  • Savage B, Almus-Jacobs F, Ruggeri ZM (1998) Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94:657–666

    PubMed  CAS  Google Scholar 

  • Savage B, Sixma JJ, Ruggeri ZM (2002) Functional self-association of von Willebrand factor during platelet adhesion under flow. Proc Natl Acad Sci USA 99:425–430

    PubMed  CAS  Google Scholar 

  • Semple JW, Italiano JE Jr, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11:264–274

    PubMed  CAS  Google Scholar 

  • Sixma JJ, van den Berg A (1984) The haemostatic plug in haemophilia A: a morphological study of haemostatic plug formation in bleeding time skin wounds of patients with severe haemophilia A. Br J Haematol 58:741–753

    PubMed  CAS  Google Scholar 

  • Sixma JJ, Sakariassen KS, Beeser-Visser NH, Ottenhof-Rovers M, Bolhuis PA (1984) Adhesion of platelets to human artery subendothelium: effect of factor VIII-von Willebrand factor of various multimeric composition. Blood 63:128–139

    PubMed  CAS  Google Scholar 

  • Smith SA, Morrissey JH (2008) Polyphosphate enhances fibrin clot structure. Blood 112:2810–2816

    PubMed  CAS  Google Scholar 

  • Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH (2006) Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci USA 103:903–908

    PubMed  CAS  Google Scholar 

  • Smith SA, Choi SH, Davis-Harrison R, Huyck J, Boettcher J, Rienstra CM, Morrissey JH (2010) Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood 116:4353–4359

    PubMed  CAS  Google Scholar 

  • Stalker TJ, Wu J, Morgans A, Traxler EA, Wang L, Chatterjee MS, Lee D, Quertermous T, Hall RA, Hammer DA, Diamond SL, Brass LF (2009) Endothelial cell specific adhesion molecule (ESAM) localizes to platelet-platelet contacts and regulates thrombus formation in vivo. J Thromb Haemost 7:1886–1896

    PubMed  CAS  Google Scholar 

  • Stegner D, Nieswandt B (2011) Platelet receptor signaling in thrombus formation. J Mol Med (Berl) 89:109–121

    CAS  Google Scholar 

  • Stitham J, Arehart EJ, Gleim SR, Douville KL, Hwa J (2007) Human prostacyclin receptor structure and function from naturally-occurring and synthetic mutations. Prostaglandins Other Lipid Mediat 82:95–108

    PubMed  CAS  Google Scholar 

  • Stitham J, Arehart E, Elderon L, Gleim SR, Douville K, Kasza Z, Fetalvero K, MacKenzie T, Robb J, Martin KA, Hwa J (2011) Comprehensive biochemical analysis of rare prostacyclin receptor variants: study of association of signaling with coronary artery obstruction. J Biol Chem 286:7060–7069

    PubMed  CAS  Google Scholar 

  • Storey RF (2011) New P2Y inhibitors. Heart 97:1262–1267

    PubMed  CAS  Google Scholar 

  • Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838

    PubMed  CAS  Google Scholar 

  • Thiery JP, Bessis M (1956) Mechanism of platelet genesis; in vitro study by cinemicrophotography. Rev Hematol 11:162–174

    PubMed  CAS  Google Scholar 

  • Tucker EI, Marzec UM, White TC, Hurst S, Rugonyi S, McCarty OJ, Gailani D, Gruber A, Hanson SR (2009) Prevention of vascular graft occlusion and thrombus-associated thrombin generation by inhibition of factor XI. Blood 113:936–944

    PubMed  CAS  Google Scholar 

  • Ulrichts H, Udvardy M, Lenting PJ, Pareyn I, Vandeputte N, Vanhoorelbeke K, Deckmyn H (2006) Shielding of the A1 domain by the D'D3 domains of von Willebrand factor modulates its interaction with platelet glycoprotein Ib-IX-V. J Biol Chem 281:4699–4707

    PubMed  CAS  Google Scholar 

  • van Hinsbergh VW (2012) Endothelium-role in regulation of coagulation and inflammation. Semin Immunopathol 34(1):93–106. doi:10.1007/s00281-011-0285-5

    PubMed  Google Scholar 

  • Wang X, Smith PL, Hsu MY, Gailani D, Schumacher WA, Ogletree ML, Seiffert DA (2006) Effects of factor XI deficiency on ferric chloride-induced vena cava thrombosis in mice. J Thromb Haemost 4:1982–1988

    PubMed  CAS  Google Scholar 

  • Ward CM, Kestin AS, Newman PJ (2000) A Leu262Pro mutation in the integrin beta(3) subunit results in an alpha(IIb)-beta(3) complex that binds fibrin but not fibrinogen. Blood 96:161–169

    PubMed  CAS  Google Scholar 

  • Ware J, Russell S, Ruggeri ZM (2000) Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci USA 97:2803–2808

    PubMed  CAS  Google Scholar 

  • Watson SP, Herbert JM, Pollitt AY (2010) GPVI and CLEC-2 in hemostasis and vascular integrity. J Thromb Haemost 8:1456–1467

    PubMed  CAS  Google Scholar 

  • Weiss HJ, Turitto VT, Baumgartner HR (1991) Further evidence that glycoprotein IIb-IIIa mediates platelet spreading on subendothelium. Thromb Haemost 65:202–205

    PubMed  CAS  Google Scholar 

  • White JG (2002) Morphology and ultrastructure of platelets. In: Gresele P, Page CP, Fuster V, Vermylen J (eds) Platelets in thrombotic and non-thrombotic disorders: pathophysiology, pharmacology and therapeutics. Cambridge University Press, Cambridge

    Google Scholar 

  • White-Adams TC, Berny MA, Tucker EI, Gertz JM, Gailani D, Urbanus RT, de Groot PG, Gruber A, McCarty OJ (2009) Identification of coagulation factor XI as a ligand for platelet apolipoprotein E receptor 2 (ApoER2). Arterioscler Thromb Vasc Biol 29:1602–1607

    PubMed  CAS  Google Scholar 

  • Wilner GD, Nossel HL, LeRoy EC (1968) Activation of Hageman factor by collagen. J Clin Invest 47:2608–2615

    PubMed  CAS  Google Scholar 

  • Yeaman MR (2010) Platelets in defense against bacterial pathogens. Cell Mol Life Sci 67:525–544

    PubMed  CAS  Google Scholar 

  • Yuhki K, Kashiwagi H, Kojima F, Kawabe J, Ushikubi F (2010) Roles of prostanoids in the pathogenesis of cardiovascular diseases. Int Angiol 29:19–27

    PubMed  CAS  Google Scholar 

  • Yuhki K, Kojima F, Kashiwagi H, Kawabe J, Fujino T, Narumiya S, Ushikubi F (2011) Roles of prostanoids in the pathogenesis of cardiovascular diseases: novel insights from knockout mouse studies. Pharmacol Ther 129:195–205

    PubMed  CAS  Google Scholar 

  • Zhang H, Lowenberg EC, Crosby JR, MacLeod AR, Zhao C, Gao D, Black C, Revenko AS, Meijers JC, Stroes ES, Levi M, Monia BP (2010) Inhibition of the intrinsic coagulation pathway factor XI by antisense oligonucleotides: a novel antithrombotic strategy with lowered bleeding risk. Blood 116:4684–4692

    PubMed  CAS  Google Scholar 

  • Zhu L, Bergmeier W, Wu J, Jiang H, Stalker TJ, Cieslak M, Fan R, Boumsell L, Kumanogoh A, Kikutani H, Tamagnone L, Wagner DD, Milla ME, Brass LF (2007) Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc Natl Acad Sci USA 104:1621–1626

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Groot, P.G., Urbanus, R.T., Roest, M. (2012). Platelet Interaction with the Vessel Wall. In: Gresele, P., Born, G., Patrono, C., Page, C. (eds) Antiplatelet Agents. Handbook of Experimental Pharmacology, vol 210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29423-5_4

Download citation

Publish with us

Policies and ethics