Skip to main content

Nutriomes and Personalised Nutrition for DNA Damage Prevention, Telomere Integrity Maintenance and Cancer Growth Control

  • Conference paper
  • First Online:
Advances in Nutrition and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 159))

Abstract

DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array systems with high-content analysis diagnostics of DNA damage, cell death and cell growth, it is possible to define, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control. This knowledge can also be used to improve culture systems for cells used in therapeutics such as stem cells to ensure that they are not genetically aberrant when returned to the body. Furthermore, this information could be used to design dietary patterns that deliver the micronutrient combinations and concentrations required for preventing DNA damage by micronutrient deficiency or excess. Using this approach, new knowledge could be obtained to identify the dietary restrictions and/or supplementations required to control specific cancers, which is particularly important given that reliable validated advice is not yet available for those diagnosed with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MRI:

Magnetic resonance imaging

TRF1; TRF2:

Telomeric-repeat binding factors 1 and 2

MTHFR:

Methylenetetrahydrofolate reductase

ADH1:

Alcohol dehydrogenase

ALDH2:

Aldehyde dehydrogenase

CBMN Cyt:

Cytokinesis-blocked micronucleus cytome

MTAP:

Methylthioadenosine phosphorylase

References

  1. Fenech MF (2010) Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future. Am J Clin Nutr 91(5):1438S–1454S

    Article  PubMed  CAS  Google Scholar 

  2. Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  PubMed  CAS  Google Scholar 

  3. Larsson NG (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79:683–706

    Article  PubMed  CAS  Google Scholar 

  4. Behrens MI, Lendon C, Roe CM (2009) A common biological mechanism in cancer and Alzheimer’s disease? Curr Alzheimer Res 6:196–204

    Article  PubMed  CAS  Google Scholar 

  5. Coppede F, Migliore L (2009) DNA damage and repair in Alzheimer’s disease. Curr Alzheimer Res 6:36–47

    Article  PubMed  CAS  Google Scholar 

  6. Iarmarcovai G, Bonassi S, Botta A, Baan RA, Orsiere T (2008) Genetic polymorphisms and micronucleus formation: a review of the literature. Mutat Res 658:215–233

    Article  PubMed  CAS  Google Scholar 

  7. Jiang J, Zhang X, Yang H, Wang W (2009) Polymorphisms of DNA repair genes: ADPRT, XRCC1, and XPD and cancer risk in genetic epidemiology. Methods Mol Biol 471:305–333

    Article  PubMed  CAS  Google Scholar 

  8. Mocellin S, Verdi D, Nitti D (2009) DNA repair gene polymorphisms and risk of cutaneous melanoma: a systematic review and meta-analysis. Carcinogenesis 30:1735–1743

    Article  PubMed  CAS  Google Scholar 

  9. Ames BN (2003) The metabolic tune-up: metabolic harmony and disease prevention. J Nutr 133:1544S–1548S

    PubMed  CAS  Google Scholar 

  10. Ames BN, Wakimoto P (2002) Are vitamin and mineral deficiencies a major cancer risk? Nat Rev Cancer 2:694–704

    Article  PubMed  CAS  Google Scholar 

  11. Claycombe KJ, Meydani SN (2001) Vitamin E and genome stability. Mutat Res 475:37–44

    Article  PubMed  CAS  Google Scholar 

  12. Dreosti IE (2001) Zinc and the gene. Mutat Res 475:161–167

    Article  PubMed  CAS  Google Scholar 

  13. Fenech M (2001) Recommended dietary allowances (RDAs) for genomic stability. Mutat Res 480–481:51–54

    Article  PubMed  Google Scholar 

  14. Fenech M (2001) The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat Res 475:57–67

    Article  PubMed  CAS  Google Scholar 

  15. Fenech M (2003) Nutritional treatment of genome instability: a paradigm shift in disease prevention and in the setting of recommended dietary allowances. Nutr Res Rev 16:109–122

    Article  PubMed  CAS  Google Scholar 

  16. Fenech M (2008) Genome health nutrigenomics and nutrigenetics–diagnosis and nutritional treatment of genome damage on an individual basis. Food Chem Toxicol 46:1365–1370

    Article  PubMed  CAS  Google Scholar 

  17. Fenech M, Ferguson LR (2001) Vitamins/minerals and genomic stability in humans. Mutat Res 475:1–6

    Article  PubMed  CAS  Google Scholar 

  18. Fenech M (2010) Folate, DNA damage and the aging brain. Mech Ageing Dev 131(4):236–241

    Article  PubMed  CAS  Google Scholar 

  19. Ferguson LR, Philpott M (2008) Nutrition and mutagenesis. Annu Rev Nutr 28:313–329

    Article  PubMed  CAS  Google Scholar 

  20. Hageman GJ, Stierum RH (2001) Niacin, poly (ADP-ribose) polymerase-1 and genomic stability. Mutat Res 475:45–56

    Article  PubMed  CAS  Google Scholar 

  21. Halliwell B (2001) Vitamin C and genomic stability. Mutat Res 475:29–35

    Article  PubMed  CAS  Google Scholar 

  22. Hartwig A (2001) Role of magnesium in genomic stability. Mutat Res 475:113–121

    Article  PubMed  CAS  Google Scholar 

  23. Ho E, Ames BN (2002) Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci USA 99:16770–16775

    Article  PubMed  CAS  Google Scholar 

  24. Keen CL, Zidenberg-Cherr S (2003) Manganese. In: Zeigler EE, Filer LJ (eds) Present knowledge in nutrition. ILSI Press, Washington DC

    Google Scholar 

  25. Lovell MA (2009) A potential role for alterations of zinc and zinc transport proteins in the progression of Alzheimer’s disease. J Alzheimers Dis 16:471–483

    PubMed  CAS  Google Scholar 

  26. Park S, Johnson MA (2006) What is an adequate dose of oral vitamin B12 in older people with poor vitamin B12 status? Nutr Rev 64:373–378

    Article  PubMed  Google Scholar 

  27. van Ommen B, El-Sohemy A, Hesketh J, Kaput J, Fenech M, Evelo CT, McArdle HJ, Bouwman J, Lietz G, Mathers JC, Fairweather-Tait S, van Kranen H, Elliott R, Wopereis S, Ferguson LR, Meplan C, Perozzi G, Allen L, Rivero D (2010) The micronutrient genomics project: a community-driven knowledge base for micronutrient research. Genes Nutr 5:285–296

    Article  PubMed  Google Scholar 

  28. Crott JW, Mashiyama ST, Ames BN, Fenech M (2001) The effect of folic acid deficiency and MTHFR C677T polymorphism on chromosome damage in human lymphocytes in vitro. Cancer Epidemiol Biomarkers Prev 10:1089–1096

    PubMed  CAS  Google Scholar 

  29. Kimura M, Umegaki K, Higuchi M, Thomas P, Fenech M (2004) Methylenetetrahydrofolate reductase C677T polymorphism, folic acid and riboflavin are important determinants of genome stability in cultured human lymphocytes. J Nutr 134:48–56

    PubMed  CAS  Google Scholar 

  30. Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, Muller I (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11:11

    Article  PubMed  Google Scholar 

  31. Vukicevic V, Jauch A, Dinger TC, Gebauer L, Hornich V, Bornstein SR, Ehrhart-Bornstein M, Muller AM (2010) Genetic instability and diminished differentiation capacity in long-term cultured mouse neurosphere cells. Mech Ageing Dev 131:124–132

    Article  PubMed  CAS  Google Scholar 

  32. Fenech M, Baghurst P, Luderer W, Turner J, Record S, Ceppi M, Bonassi S (2005) Low intake of calcium, folate, nicotinic acid, vitamin E, retinol, beta-carotene and high intake of pantothenic acid, biotin and riboflavin are significantly associated with increased genome instability–results from a dietary intake and micronucleus index survey in South Australia. Carcinogenesis 26:991–999

    Article  PubMed  CAS  Google Scholar 

  33. Bowman GL, Silbert LC, Howieson D, Dodge HH, Traber MG, Frei B, Kaye JA, Shannon J, Quinn JF (2012) Nutrient biomarker patterns, cognitive function, and MRI measures of brain aging. Neurology 78:241–249

    Article  PubMed  CAS  Google Scholar 

  34. Nishida C, Uauy R, Kumanyika S, Shetty P (2004) The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: process, product and policy implications. Public Health Nutr 7:245–250

    PubMed  Google Scholar 

  35. Fenech M (2012) Folate (vitamin B9) and vitamin B12 and their function in the maintenance of nuclear and mitochondrial genome integrity. Mutat Res 733:21–33

    Article  PubMed  CAS  Google Scholar 

  36. Stover PJ (2009) One-carbon metabolism-genome interactions in folate-associated pathologies. J Nutr 139:2402–2405

    Article  PubMed  CAS  Google Scholar 

  37. de Lange T (2010) How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol 75:167–177

    Article  PubMed  Google Scholar 

  38. Sfeir A, de Lange T (2012) Removal of shelterin reveals the telomere end-protection problem. Science 336:593–597

    Article  PubMed  CAS  Google Scholar 

  39. Bull C, Fenech M (2008) Genome-health nutrigenomics and nutrigenetics: nutritional requirements or ‘nutriomes’ for chromosomal stability and telomere maintenance at the individual level. Proc Nutr Soc 67:146–156

    Article  PubMed  CAS  Google Scholar 

  40. Paul L (2011) Diet, nutrition and telomere length. J Nutr Biochem 22:895–901

    Article  PubMed  CAS  Google Scholar 

  41. Bull CF, O’Callaghan NJ, Mayrhofer G, Fenech MF (2009) Telomere length in lymphocytes of older South Australian men may be inversely associated with plasma homocysteine. Rejuvenation Res 12:341–349

    Article  PubMed  CAS  Google Scholar 

  42. Cassidy A, De Vivo I, Liu Y, Han J, Prescott J, Hunter DJ, Rimm EB (2010) Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr 91:1273–1280

    Article  PubMed  CAS  Google Scholar 

  43. Farzaneh-Far R, Lin J, Epel ES, Harris WS, Blackburn EH, Whooley MA (2010) Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA 303:250–257

    Article  PubMed  CAS  Google Scholar 

  44. Nettleton JA, Diez-Roux A, Jenny NS, Fitzpatrick AL, Jacobs DR Jr (2008) Dietary patterns, food groups, and telomere length in the multi-ethnic study of atherosclerosis (MESA). Am J Clin Nutr 88:1405–1412

    PubMed  CAS  Google Scholar 

  45. O’Callaghan NJ, Clifton PM, Noakes M, Fenech M (2009) Weight loss in obese men is associated with increased telomere length and decreased abasic sites in rectal mucosa. Rejuvenation Res 12:169–176

    Article  PubMed  Google Scholar 

  46. Richards JB, Valdes AM, Gardner JP, Paximadas D, Kimura M, Nessa A, Lu X, Surdulescu GL, Swaminathan R, Spector TD, Aviv A (2007) Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J Clin Nutr 86:1420–1425

    PubMed  CAS  Google Scholar 

  47. Xu Q, Parks CG, DeRoo LA, Cawthon RM, Sandler DP, Chen H (2009) Multivitamin use and telomere length in women. Am J Clin Nutr 89:1857–1863

    Article  PubMed  CAS  Google Scholar 

  48. Hou L, Zhang X, Gawron AJ, Liu J (2012) Surrogate tissue telomere length and cancer risk: shorter or longer? Cancer Lett 319:130–135

    Article  PubMed  CAS  Google Scholar 

  49. Atkuri KR, Herzenberg LA (2005) Culturing at atmospheric oxygen levels impacts lymphocyte function. Proc Natl Acad Sci USA 102:3756–3759

    Article  PubMed  CAS  Google Scholar 

  50. Atkuri KR, Herzenberg LA, Niemi AK, Cowan T (2007) Importance of culturing primary lymphocytes at physiological oxygen levels. Proc Natl Acad Sci USA 104:4547–4552

    Article  PubMed  CAS  Google Scholar 

  51. Bull CF, Mayrhofer G, Zeegers D, Mun GL, Hande MP, Fenech MF (2012) Folate deficiency is associated with the formation of complex nuclear anomalies in the cytokinesis-block micronucleus cytome assay. Environ Mol Mutagen 53:311–323

    Article  PubMed  CAS  Google Scholar 

  52. de Vogel S, Bongaerts BW, Wouters KA, Kester AD, Schouten LJ, de Goeij AF, de Bruine AP, Goldbohm RA, van den Brandt PA, van Engeland M, Weijenberg MP (2008) Associations of dietary methyl donor intake with MLH1 promoter hypermethylation and related molecular phenotypes in sporadic colorectal cancer. Carcinogenesis 29:1765–1773

    Article  PubMed  Google Scholar 

  53. Sharif R, Thomas P, Zalewski P, Graham RD, Fenech M (2011) The effect of zinc sulphate and zinc carnosine on genome stability and cytotoxicity in the WIL2-NS human lymphoblastoid cell line. Mutat Res 720:22–33

    Article  PubMed  CAS  Google Scholar 

  54. Wu J, Lyons GH, Graham RD, Fenech MF (2009) The effect of selenium, as selenomethionine, on genome stability and cytotoxicity in human lymphocytes measured using the cytokinesis-block micronucleus cytome assay. Mutagenesis 24:225–232

    Article  PubMed  CAS  Google Scholar 

  55. Chango A, Abdel Nour AM, Niquet C, Tessier FJ (2009) Simultaneous determination of genomic DNA methylation and uracil misincorporation. Med Princ Pract 18:81–84

    Article  PubMed  Google Scholar 

  56. Bistulfi G, Vandette E, Matsui S, Smiraglia DJ (2010) Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells. BMC Biol 8:6

    Article  PubMed  Google Scholar 

  57. Decordier I, Papine A, Plas G, Roesems S, Vande Loock K, Moreno-Palomo J, Cemeli E, Anderson D, Fucic A, Marcos R, Soussaline F, Kirsch-Volders M (2009) Automated image analysis of cytokinesis-blocked micronuclei: an adapted protocol and a validated scoring procedure for biomonitoring. Mutagenesis 24:85–93

    Article  PubMed  CAS  Google Scholar 

  58. Varga D, Johannes T, Jainta S, Schuster S, Schwarz-Boeger U, Kiechle M, Patino Garcia B, Vogel W (2004) An automated scoring procedure for the micronucleus test by image analysis. Mutagenesis 19:391–397

    Article  PubMed  CAS  Google Scholar 

  59. Zhao H, Albino AP, Jorgensen E, Traganos F, Darzynkiewicz Z (2009) DNA damage response induced by tobacco smoke in normal human bronchial epithelial and A549 pulmonary adenocarcinoma cells assessed by laser scanning cytometry. Cytometry A 75:840–847

    PubMed  Google Scholar 

  60. Zhao H, Traganos F, Darzynkiewicz Z (2010) Kinetics of the UV-induced DNA damage response in relation to cell cycle phase correlation with DNA replication. Cytometry A 77:285–293

    PubMed  Google Scholar 

  61. Teo T, Fenech M (2008) The interactive effect of alcohol and folic acid on genome stability in human WIL2-NS cells measured using the cytokinesis-block micronucleus cytome assay. Mutat Res 657:32–38

    Article  PubMed  CAS  Google Scholar 

  62. Ishikawa H, Ishikawa T, Yamamoto H, Fukao A, Yokoyama K (2007) Genotoxic effects of alcohol in human peripheral lymphocytes modulated by ADH1B and ALDH2 gene polymorphisms. Mutat Res 615:134–142

    Article  PubMed  CAS  Google Scholar 

  63. Kim JS, Kim YJ, Kim TY, Song JY, Cho YH, Park YC, Chung HW (2005) Association of ALDH2 polymorphism with sensitivity to acetaldehyde-induced micronuclei and facial flushing after alcohol intake. Toxicology 210:169–174

    Article  PubMed  CAS  Google Scholar 

  64. Beetstra S, Salisbury C, Turner J, Altree M, McKinnon R, Suthers G, Fenech M (2006) Lymphocytes of BRCA1 and BRCA2 germ-line mutation carriers, with or without breast cancer, are not abnormally sensitive to the chromosome damaging effect of moderate folate deficiency. Carcinogenesis 27:517–524

    Article  PubMed  CAS  Google Scholar 

  65. Beetstra S, Suthers G, Dhillon V, Salisbury C, Turner J, Altree M, McKinnon R, Fenech M (2008) Methionine-dependence phenotype in the de novo pathway in BRCA1 and BRCA2 mutation carriers with and without breast cancer. Cancer Epidemiol Biomarkers Prev 17:2565–2571

    Article  PubMed  CAS  Google Scholar 

  66. Fenech M (2006) Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res 600:658–666

    Article  Google Scholar 

  67. Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104

    Article  PubMed  CAS  Google Scholar 

  68. Kelemen LE (2006) The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer 119:243–250

    Article  PubMed  CAS  Google Scholar 

  69. Nijhout HF, Gregory JF, Fitzpatrick C, Cho E, Lamers KY, Ulrich CM, Reed MC (2009) A mathematical model gives insights into the effects of vitamin B-6 deficiency on 1-carbon and glutathione metabolism. J Nutr 139:784–791

    Article  PubMed  CAS  Google Scholar 

  70. Cavuoto P, Fenech MF (2012) A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev 38:726–736

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Fenech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fenech, M.F. (2014). Nutriomes and Personalised Nutrition for DNA Damage Prevention, Telomere Integrity Maintenance and Cancer Growth Control. In: Zappia, V., Panico, S., Russo, G., Budillon, A., Della Ragione, F. (eds) Advances in Nutrition and Cancer. Cancer Treatment and Research, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38007-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38007-5_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38006-8

  • Online ISBN: 978-3-642-38007-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics