Skip to main content

Consequences of Immature and Senescent Immune Responses for Infection with Respiratory Syncytial Virus

  • Chapter
  • First Online:
Challenges and Opportunities for Respiratory Syncytial Virus Vaccines

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 372))

Abstract

Infants in the first 6 months of life and older adults (>65 years of age) are disproportionately burdened with respiratory syncytial virus (RSV)-associated morbidity and mortality. While other factors play a role in the risk these groups assume, shortcomings of the immune response make a substantial contribution to the predisposition to severe disease. Ineffectual antibody production with misdirected cytokine responses and excess inflammation in the airways are common to both groups. However, the mechanisms underlying these immune responses differ between infants and older adults and need to be better understood. Preventative approaches to decreasing the burden of disease are preferable to therapeutic intervention and effective vaccination strategies will need to target the strengths of the immune responses in these populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ademokun A, Wu YC, Dunn-Walters D (2010) The ageing B cell population: composition and function. Biogerontology 11(2):125–137

    Article  PubMed  Google Scholar 

  • Adkins B, Leclerc C, Marshall-Clarke S (2004) Neonatal adaptive immunity comes of age. Nat Rev Immunol 4(7):553–564

    Article  CAS  PubMed  Google Scholar 

  • Agius G et al (1990) An epidemic of respiratory syncytial virus in elderly people: clinical and serological findings. J Med Virol 30(2):117–127

    Article  CAS  PubMed  Google Scholar 

  • Belderbos ME et al (2009) Skewed pattern of toll-like receptor 4-mediated cytokine production in human neonatal blood: low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life. Clin Immunol 133(2):228–237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blackman MA, Woodland DL (2011) The narrowing of the CD8 T cell repertoire in old age. Curr Opin Immunol 23(4):537–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blanco-Quiros A et al (1999) Decreased interleukin-12 levels in umbilical cord blood in children who developed acute bronchiolitis. Pediatr Pulmonol 28(3):175–180

    Article  CAS  PubMed  Google Scholar 

  • Boukhvalova MS et al (2007) Age-related differences in pulmonary cytokine response to respiratory syncytial virus infection: modulation by anti-inflammatory and antiviral treatment. J Infect Dis 195(4):511–518

    Article  CAS  PubMed  Google Scholar 

  • Boyce TG et al (2000) Rates of hospitalization for respiratory syncytial virus infection among children in medicaid. J Pediatr 137(6):865–870

    Article  CAS  PubMed  Google Scholar 

  • Busse PJ, Mathur SK (2010) Age-related changes in immune function: effect on airway inflammation. J Allergy Clin Immunol 126(4):690–699; quiz 700–701

    Google Scholar 

  • Collins PL, Graham BS (2008) Viral and host factors in human respiratory syncytial virus pathogenesis. J Virol 82(5):2040–2055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cormier SA, You D, Honnegowda S (2010) The use of a neonatal mouse model to study respiratory syncytial virus infections. Expert Rev Anti Infect Ther 8(12):1371–1380

    Article  PubMed Central  PubMed  Google Scholar 

  • Culley FJ, Pollott J, Openshaw PJ (2002) Age at first viral infection determines the pattern of T cell-mediated disease during reinfection in adulthood. J Exp Med 196(10):1381–1386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cusi MG et al (2010) Age related changes in T cell mediated immune response and effector memory to respiratory syncytial virus (RSV) in healthy subjects. Immun Ageing 7:14

    Article  PubMed Central  PubMed  Google Scholar 

  • de Bree GJ et al (2005) Respiratory syncytial virus-specific CD8+ memory T cell responses in elderly persons. J Infect Dis 191(10):1710–1718

    Article  PubMed  Google Scholar 

  • de Sierra TM et al (1993) Respiratory syncytial virus-specific immunoglobulins in preterm infants. J Pediatr 122(5 Pt 1):787–791

    Article  PubMed  Google Scholar 

  • Derscheid RJ, Ackermann MR (2012) Perinatal lamb model of respiratory syncytial virus (RSV) infection. Viruses 4(10):2359–2378

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan CB et al (2009) Risk factors for respiratory failure associated with respiratory syncytial virus infection in adults. J Infect Dis 200(8):1242–1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Effros RB (2000) Long-term immunological memory against viruses. Mech Ageing Dev 121(1–3):161–171

    CAS  PubMed  Google Scholar 

  • Ershler WB, Keller ET (2000) Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51:245–270

    Article  CAS  PubMed  Google Scholar 

  • Everard ML et al (1994) Analysis of cells obtained by bronchial lavage of infants with respiratory syncytial virus infection. Arch Dis Child 71(5):428–432

    Article  CAS  PubMed  Google Scholar 

  • Falsey AR, Walsh EE (1998) Relationship of serum antibody to risk of respiratory syncytial virus infection in elderly adults. J Infect Dis 177(2):463–466

    Article  CAS  PubMed  Google Scholar 

  • Falsey AR et al (1999) Comparison of respiratory syncytial virus humoral immunity and response to infection in young and elderly adults. J Med Virol 59(2):221–226

    Article  CAS  PubMed  Google Scholar 

  • Falsey AR et al (2005) Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med 352(17):1749–1759

    Article  CAS  PubMed  Google Scholar 

  • Falsey AR, Singh HK, Walsh EE (2006) Serum antibody decay in adults following natural respiratory syncytial virus infection. J Med Virol 78(11):1493–1497

    Article  CAS  PubMed  Google Scholar 

  • Flores KG et al (1999) Analysis of the human thymic perivascular space during aging. J Clin Invest 104(8):1031–1039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franceschi C et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105

    Article  CAS  PubMed  Google Scholar 

  • Gans HA et al (1999) IL-12, IFN-gamma, and T cell proliferation to measles in immunized infants. J Immunol 162(9):5569–5575

    CAS  PubMed  Google Scholar 

  • Gomez CR et al (2008) Innate immunity and aging. Exp Gerontol 43(8):718–728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham BS (2011) Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol Rev 239(1):149–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halfhide CP et al (2011) Respiratory syncytial virus binds and undergoes transcription in neutrophils from the blood and airways of infants with severe bronchiolitis. J Infect Dis 204(3):451–458

    Article  CAS  PubMed  Google Scholar 

  • Hall CB (2012) The burgeoning burden of respiratory syncytial virus among children. Infect Disord Drug Targets 12(2):92–97

    Article  CAS  PubMed  Google Scholar 

  • Haynes L, Maue AC (2009) Effects of aging on T cell function. Curr Opin Immunol 21(4):414–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heidema J et al (2007) CD8+ T cell responses in bronchoalveolar lavage fluid and peripheral blood mononuclear cells of infants with severe primary respiratory syncytial virus infections. J Immunol 179(12):8410–8417

    CAS  PubMed  Google Scholar 

  • Hemming VG, Prince GA (1992) Respiratory syncytial virus: babies and antibodies. Infect Agents Dis 1(1):24–32

    CAS  PubMed  Google Scholar 

  • Henderson FW et al (1979) Respiratory-syncytial-virus infections, reinfections and immunity. A prospective, longitudinal study in young children. N Engl J Med 300(10):530–534

    Article  CAS  PubMed  Google Scholar 

  • Houben ML et al (2012) High concentrations of amniotic fluid proinflammatory cytokines in healthy neonates are associated with low risk of respiratory syncytial virus bronchiolitis. Pediatr Infect Dis J 31(9):931–934

    Article  PubMed  Google Scholar 

  • Klein J, Remington J (2001) Current concepts of infections of the fetus and newborn infant. In: Remington J, Klein J (ed) Infectious diseases of the newborn and infant, 5th edn. Saunders, Philadelphia

    Google Scholar 

  • Koenig JM, Yoder MC (2004) Neonatal neutrophils: the good, the bad, and the ugly. Clin Perinatol 31(1):39–51

    Article  PubMed  Google Scholar 

  • Krishnan S et al (2003) Differences in participation of innate and adaptive immunity to respiratory syncytial virus in adults and neonates. J Infect Dis 188(3):433–439

    Article  PubMed  Google Scholar 

  • Lages CS et al (2008) Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol 181(3):1835–1848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawn JE, Cousens S, Zupan J (2005) 4 million neonatal deaths: when? Where? Why? Lancet 365(9462):891–900

    Article  PubMed  Google Scholar 

  • Lee MS, Walker RE, Mendelman PM (2005a) Medical burden of respiratory syncytial virus and parainfluenza virus type 3 infection among US children. Implications for design of vaccine trials. Hum Vaccine 1(1):6–11

    Google Scholar 

  • Lee FE et al (2005b) The balance between influenza- and RSV-specific CD4 T cells secreting IL-10 or IFNgamma in young and healthy-elderly subjects. Mech Ageing Dev 126(11):1223–1229

    Article  CAS  PubMed  Google Scholar 

  • Lee FE et al (2010) Circulating antibody-secreting cells during acute respiratory syncytial virus infection in adults. J Infect Dis 202(11):1659–1666

    Article  PubMed  Google Scholar 

  • Levy O (2007) Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 7(5):379–390

    Article  CAS  PubMed  Google Scholar 

  • Levy O et al (2006) The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. J Immunol 177(3):1956–1966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindgren C et al (1996) Respiratory syncytial virus infection enhances the response to laryngeal chemostimulation and inhibits arousal from sleep in young lambs. Acta Paediatr 85(7):789–797

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Kimura Y (2007) Local immune response to respiratory syncytial virus infection is diminished in senescence-accelerated mice. J Gen Virol 88(Pt 9):2552–2558

    Article  CAS  PubMed  Google Scholar 

  • Looney RJ et al (2002) Effect of aging on cytokine production in response to respiratory syncytial virus infection. J Infect Dis 185(5):682–685

    Article  CAS  PubMed  Google Scholar 

  • Luchsinger V et al (2012) Role of neutralizing antibodies in adults with community-acquired pneumonia by respiratory syncytial virus. Clin Infect Dis 54(7):905–912

    Article  CAS  PubMed  Google Scholar 

  • Lukens MV et al (2010) A systemic neutrophil response precedes robust CD8(+) T-cell activation during natural respiratory syncytial virus infection in infants. J Virol 84(5):2374–2383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mariani E, Alonso C, Solana R (2000) Age-related alterations to natural killer cell function. Methods Mol Med 38:311–320

    CAS  PubMed  Google Scholar 

  • Marodi L (2006) Neonatal innate immunity to infectious agents. Infect Immun 74(4):1999–2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maue AC, Haynes L (2009) CD4+ T cells and immunosenescence—a mini-review. Gerontology 55(5):491–495

    Article  PubMed  Google Scholar 

  • McKenna RW et al (2001) Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood 98(8):2498–2507

    Article  CAS  PubMed  Google Scholar 

  • Mella C et al (2013) Innate immune dysfunction is associated with enhanced disease severity in infants with severe respiratory syncytial virus bronchiolitis. J Infect Dis 207(4):564–573

    Article  CAS  PubMed  Google Scholar 

  • Murata Y et al (2010) Humoral response to the central unglycosylated region of the respiratory syncytial virus attachment protein. Vaccine 28(38):6242–6246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ochola R et al (2009) The level and duration of RSV-specific maternal IgG in infants in Kilifi Kenya. PLoS ONE 4(12):e8088

    Article  PubMed Central  PubMed  Google Scholar 

  • Philbin VJ et al (2012) Imidazoquinoline Toll-like receptor 8 agonists activate human newborn monocytes and dendritic cells through adenosine-refractory and caspase-1-dependent pathways. J Allergy Clin Immunol 130(1):195–204 e9

    Google Scholar 

  • Pihlgren M et al (2001) Delayed and deficient establishment of the long-term bone marrow plasma cell pool during early life. Eur J Immunol 31(3):939–946

    Article  CAS  PubMed  Google Scholar 

  • Pihlgren M et al (2003) Unresponsiveness to lymphoid-mediated signals at the neonatal follicular dendritic cell precursor level contributes to delayed germinal center induction and limitations of neonatal antibody responses to T-dependent antigens. J Immunol 170(6):2824–2832

    CAS  PubMed  Google Scholar 

  • Ponnappan S, Ponnappan U (2011) Aging and immune function: molecular mechanisms to interventions. Antioxid Redox Signal 14(8):1551–1585

    Article  CAS  PubMed  Google Scholar 

  • Ridings J et al (1998) Somatic mutation of immunoglobulin V(H)6 genes in human infants. Clin Exp Immunol 114(1):33–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ripple MJ et al (2010) Immunomodulation with IL-4R alpha antisense oligonucleotide prevents respiratory syncytial virus-mediated pulmonary disease. J Immunol 185(8):4804–4811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Risdon G et al (1994) Proliferative and cytotoxic responses of human cord blood T lymphocytes following allogeneic stimulation. Cell Immunol 154(1):14–24

    Article  CAS  PubMed  Google Scholar 

  • Ruckwardt TJ et al (2011) Neonatal CD8 T-cell hierarchy is distinct from adults and is influenced by intrinsic T cell properties in respiratory syncytial virus infected mice. PLoS Pathog 7(12):e1002377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sacco RE et al (2012) Neonatal calf infection with respiratory syncytial virus: drawing parallels to the disease in human infants. Viruses 4(12):3731–3753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sandmand M et al (2002) Is ageing associated with a shift in the balance between Type 1 and Type 2 cytokines in humans? Clin Exp Immunol 127(1):107–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarzotti M, Robbins DS, Hoffman PM (1996) Induction of protective CTL responses in newborn mice by a murine retrovirus. Science 271(5256):1726–1728

    Article  CAS  PubMed  Google Scholar 

  • Siegrist CA (2003) Mechanisms by which maternal antibodies influence infant vaccine responses: review of hypotheses and definition of main determinants. Vaccine 21(24):3406–3412

    Article  CAS  PubMed  Google Scholar 

  • Siegrist CA, Aspinall R (2009) B-cell responses to vaccination at the extremes of age. Nat Rev Immunol 9(3):185–194

    Article  CAS  PubMed  Google Scholar 

  • Solana R, Mariani E (2000) NK and NK/T cells in human senescence. Vaccine 18(16):1613–1620

    Article  CAS  PubMed  Google Scholar 

  • Stensballe LG et al (2009) Seasonal variation of maternally derived respiratory syncytial virus antibodies and association with infant hospitalizations for respiratory syncytial virus. J Pediatr 154(2):296–298

    Article  PubMed  Google Scholar 

  • Thornburg NJ, Shepherd B, Crowe JE Jr (2010) Transforming growth factor beta is a major regulator of human neonatal immune responses following respiratory syncytial virus infection. J Virol 84(24):12895–12902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh EE, Falsey AR (2004a) Humoral and mucosal immunity in protection from natural respiratory syncytial virus infection in adults. J Infect Dis 190(2):373–378

    Article  PubMed  Google Scholar 

  • Walsh EE, Falsey AR (2004b) Age related differences in humoral immune response to respiratory syncytial virus infection in adults. J Med Virol 73(2):295–299

    Article  PubMed  Google Scholar 

  • Walsh EE, Peterson DR, Falsey AR (2004) Risk factors for severe respiratory syncytial virus infection in elderly persons. J Infect Dis 189(2):233–238

    Article  PubMed  Google Scholar 

  • Weinberg AG et al (1985) Neonatal blood cell count in health and disease. II. Values for lymphocytes, monocytes, and eosinophils. J Pediatr 106(3):462–466

    Article  CAS  PubMed  Google Scholar 

  • Williams JV et al (2009) The human neonatal B cell response to respiratory syncytial virus uses a biased antibody variable gene repertoire that lacks somatic mutations. Mol Immunol 47(2–3):407–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wood N, Siegrist CA (2011) Neonatal immunization: where do we stand? Curr Opin Infect Dis 24(3):190–195

    Article  PubMed  Google Scholar 

  • Yost CC et al (2009) Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood 113(25):6419–6427

    Article  CAS  PubMed  Google Scholar 

  • Zhang J et al (2002a) Neonates mount robust and protective adult-like CD8(+)-T-cell responses to DNA vaccines. J Virol 76(23):11911–11919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y et al (2002b) An aged mouse model for RSV infection and diminished CD8(+) CTL responses. Exp Biol Med (Maywood) 227(2):133–140

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Brenda Hartman for Fig. 1 graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann R. Falsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malloy, A.M.W., Falsey, A.R., Ruckwardt, T.J. (2013). Consequences of Immature and Senescent Immune Responses for Infection with Respiratory Syncytial Virus. In: Anderson, L., Graham, B. (eds) Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Current Topics in Microbiology and Immunology, vol 372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38919-1_11

Download citation

Publish with us

Policies and ethics