Skip to main content

Pathophysiology of Vitreo-Macular Interface

  • Chapter
  • First Online:
Diseases of the Vitreo-Macular Interface

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

Persistent vitreo-macular adhesions, vitreoschisis with cortical vitreous remnants on the ILM and epiretinal fibrocellular proliferation are associated with vitreo-macular traction. Whereas age-related posterior vitreous detachment is generally accepted as an important pathogenic factor in the development of vitreo-macular traction, the significance of cellular proliferation and migration is still under debate. In the light of the current literature and in our own experience, epiretinal cell proliferations are an essential part of the pathophysiology of vitreo-macular traction. Both, hyalocyte activation in the vitreous cortex and glial cell activation in retinal layers appear to be initiated by age-related vitreous changes driving cell-mediated traction at the vitreoretinal interface as a prerequisite for the development of vitreo-macular traction disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balazs EA, Toth LZ, Eckl EA et al (1964) Studies on the structure of the vitreous body. XII. Cytologicall and histochemical studies on the cortical tissue layer. Exp Eye Res 3:57–71

    Article  PubMed  CAS  Google Scholar 

  • Bando H, Ikuno Y, Choi JS et al (2005) Ultrastructure of internal limiting membrane in myopic foveoschisis. Am J Ophthalmol 391:197–199

    Article  Google Scholar 

  • Bishop PN, Holmes DF, Kadler KE et al (2004) Age- related changes on the surface of the vitreous collagen fibrils. Invest Ophthalmol Vis Sci 45:1041–1046

    Article  PubMed  Google Scholar 

  • Bringmann A, Wiedemann P (2009) Involvement of Müller glial cells in epiretinal membrane formation. Graefes Arch Clin Exp Ophthalmol 247:865–883

    Article  PubMed  Google Scholar 

  • Bringmann A, Pannicke T, Grosche J et al (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  PubMed  CAS  Google Scholar 

  • Dallon JC, Ehrlich HP (2010) Differences in the mechanism of collagen lattice contraction by myofibroblasts and smooth muscle cells. J Cell Biochem 111:362–369

    Article  PubMed  CAS  Google Scholar 

  • Dingemans KP, Teeling P (1994) Long-spacing collagen and proteoglycans in pathologic tissue. Ultrastruct Pathol 18:539–547

    Article  PubMed  CAS  Google Scholar 

  • Eyden A, Tzaphlidou M (2001) Structural variants of collagen in normal and pathologic tissues: role of electron microscopy. Micron 32:287–300

    Article  PubMed  CAS  Google Scholar 

  • Fekrat S, Wendel RT, de la Cruz Z et al (1995) Clinicopathologic correlation of an epiretinal membrane associated with a recurrent macular hole. Retina 15:53–57

    Article  PubMed  CAS  Google Scholar 

  • Fisher SK, Lewis GP (2003) Müller cell and neuronal remodeling in retinal attachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Res 43:887–897

    Article  PubMed  Google Scholar 

  • Gandorfer A (2007) Diffuse diabetic macular edema: pathology and implications for surgery. Dev Ophthalmol 39:88–95

    PubMed  Google Scholar 

  • Gandorfer A (2009) Objective of pharmacologic vitreolysis. Dev Ophthalmol 44:1–6

    PubMed  CAS  Google Scholar 

  • Gandorfer A, Rohleder M, Kampik A (2002) Epiretinal pathology of vitreomacular traction syndrome. Br J Ophthalmol 86:902–909

    Article  PubMed  CAS  Google Scholar 

  • Gandorfer A, Rohleder M, Grosselfinger S et al (2005) Epiretinal pathology of diffuse diabetic macular edema associated with vitreomacular traction. Am J Ophthalmol 139:638–652

    Article  PubMed  Google Scholar 

  • Gandorfer A, Scheler R, Schumann R et al (2009) Interference microscopy delineates cellular proliferations on flat mounted internal limiting membrane specimens. Br J Ophthalmol 93:120–122

    Article  PubMed  CAS  Google Scholar 

  • Gandorfer A, Schumann R, Scheler R et al (2011) Pores of the inner limiting membrane in flat-mounted surgical specimens. Retina 31:977–981

    Article  PubMed  Google Scholar 

  • Gandorfer A, Haritoglou C, Scheler R et al (2012) Residual cellular proliferation on the internal limting membrane in macular pucker surgery. Retina 32(3):477–485, [Epub ahead of print]. PMID: 22068175

    Article  PubMed  Google Scholar 

  • Gastaud P, Bétis F, Rouhette H et al (2000) Ultrastructural findings of epimacular membrane and detached posterior hyaloid in vitreomacular traction syndrome. J Fr Ophtalmol 23:587–593

    PubMed  CAS  Google Scholar 

  • Green WR (2006) The macular hole: histopathologic studies. Arch Ophthalmol 124:317–321

    Article  PubMed  Google Scholar 

  • Grierson I, Mazure A, Hogg P et al (1996) Non-vascular vitreoretinopathy: the cells and the cellular basis of contraction. Eye 10:671–684

    Article  PubMed  Google Scholar 

  • Gupta P, Yee KM, Garcia P et al (2011) Vitreoschisis in macular diseases. Br J Ophthalmol 95:376–380

    Article  PubMed  Google Scholar 

  • Hannover A (1845) Entdeckung des Baues des Glaskörpers. Müller Arch 467–477

    Google Scholar 

  • Haritoglou C, Schumann RG, Kampik A et al (2007) Glial cell proliferation under the internal limiting membrane in a patient with cellophane maculopathy. Arch Ophthalmol 125:1301–1302

    Article  PubMed  Google Scholar 

  • Heidenkummer HP, Kampik A (1992) Proliferative activity and immunohistochemical cell differentiation in human epiretinal membranes. Ger J Ophthalmol 1:170–175

    PubMed  CAS  Google Scholar 

  • Hirayama K, Hata Y, Noda Y et al (2004) The involvement of the rho-kinase pathway and its regulation in cytokine-induced collagen gel contraction by hyalocytes. Invest Ophthalmol Vis Sci 45:3896–3903

    Article  PubMed  Google Scholar 

  • Hiscott PS, Grierson I, McLeod D (1984a) Retinal pigment epithelial cells in epiretinal membranes: an immunohistochemical study. Br J Ophthalmol 68:708–715

    Article  PubMed  CAS  Google Scholar 

  • Hiscott PS, Grierson I, Trombetta CJ et al (1984b) Retinal and epiretinal glia – an immunochistochemical study. Br J Ophthalmol 68:698–707

    Article  PubMed  CAS  Google Scholar 

  • Ishida S, Yamazaki K, Shinoda K et al (2000) Macular hole retinal detachment in highly myopic eyes. Ultrastructure of surgically removed epiretinal membrane and clinicopathologic correlation. Retina 20:176–183

    Article  PubMed  CAS  Google Scholar 

  • Johnson MW (2002) Improvements in the understanding and treatment of macular hole. Curr Opin Ophthalmol 13:152–160

    Article  PubMed  Google Scholar 

  • Johnson MW (2005a) Perifoveal vitreous detachment and its macular complications. Trans Am Ophthalmol Soc 103:537–567

    PubMed  Google Scholar 

  • Johnson MW (2005b) Tractional cystoid macular edema: a subtle variant of the vitreomacular traction syndrome. Am J Ophthalmol 140:184–192

    Article  PubMed  Google Scholar 

  • Johnson MW (2009) Etiology and treatment of macular edema. Am J Ophthalmol 147:11–21

    Article  PubMed  Google Scholar 

  • Johnson MW (2010) Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol 49:371–382

    Article  Google Scholar 

  • Kampik A, Green WR, Michels RG et al (1980) Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery. Am J Ophthalmol 90:797–809

    PubMed  CAS  Google Scholar 

  • Kampik A, Kenyon KB, Michels RG et al (1981) Epiretinal and vitreous membranes: comparative study of 56 cases. Arch Ophthalmol 99:1445–1454

    Article  PubMed  CAS  Google Scholar 

  • Kenawy N, Wong D, Stappler T et al (2010) Does the presence of an epiretinal membrane alter the retinal cleavage plan during internal limiting membrane peeling? Ophthalmology 117:320–323

    Article  PubMed  Google Scholar 

  • Kodal H, Weick M, Moll V et al (2000) Involvement of calcium-activated potassium channels in the regulation of DNA synthesis in cultured Müller glial cells. Invest Ophthalmol Vis Sci 41:4262–4267

    PubMed  CAS  Google Scholar 

  • Kohno T, Sorgnte N, Ishibashi T et al (1987) Immunofluorescence studies of fibronectin and laminin in the human eye. Invest Ophthalmol Vis Sci 28:500–514

    Google Scholar 

  • Kohno RI, Hata Y, Kawahara S et al (2009) Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction. Br J Ophthalmol 93:1020–1026

    Article  PubMed  Google Scholar 

  • Krebs I, Brannath W, Glittenberg C et al (2007) Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration. Am J Ophthalmol 144:741–746

    Article  PubMed  Google Scholar 

  • Krebs I, Glittenberg C, Zeiler F, Binder S (2011) Spectral domain optical coherence tomography for higher precision in the evaluation of vitreoretinal adhesions in exudative age-related macular degeneration. Br J Ophthalmol 95:1415–1418

    Article  PubMed  Google Scholar 

  • Lazarus HS, Hageman GS (1994) In situ characterization of the human hyalocytes. Arch Ophthalmol 112:1356–1362

    Article  PubMed  CAS  Google Scholar 

  • Lesnik Oberstein SY, Lewis GP, Dutra T et al (2011) Evidence that neurites in human epiretinal membranes express melanopsin, calretinin, rodopsin and neurofilament protein. Br J Ophthalmol 95:266–272

    Article  PubMed  Google Scholar 

  • Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290

    PubMed  CAS  Google Scholar 

  • Lindqvist N, Liu Q, Zajadacz J et al (2010) Retinal glial (Müller) cells: sensing and responding to tissue stretch. Invest Ophthalmol Vis Sci 51:1683–1690

    Article  PubMed  Google Scholar 

  • Messmer EM, Heidenkummer HP, Kampik A (1998) Ultrastructure of epiretinal membranes associated with macular holes. Graefes Arch Clin Exp Ophthalmol 236:248–254

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa T, Takeda M, Lewis GP et al (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48:2760–2768

    Article  PubMed  Google Scholar 

  • Parolini B, Schumann RG, Cereda MM et al (2011) Lamellar macular hole: a clinicopathologic correlation of surgically excised internal limiting membrane specimens. Invest Ophthalmol Vis Sci 52:9074–9083

    Article  PubMed  Google Scholar 

  • Qiao H, Hisatomi T, Sonoda KH et al (2005) The characterisation of hyalocytes: the origin, phenotype, and turnover. Br J Ophthalmol 89:513–517

    Article  PubMed  CAS  Google Scholar 

  • Russel SR, Shepherd JD, Hageman GS (1991) Distribution of glycoconjugates in the human retinal internal limiting membrane. Invest Ophthalmol Vis Sci 32:1986–1995

    Google Scholar 

  • Sakamoto T, Ishibashi T (2011) Hyalocytes: essential cells of the vitreous cavity in vitreoretinal pathophysiology? Retina 31:222–228

    Article  PubMed  CAS  Google Scholar 

  • Schumann RG, Gandorfer A (2010) Vitreoretinal degenerative macular diseases. Klin Monbl Augenheilkd 227:R49–R60

    Article  PubMed  CAS  Google Scholar 

  • Schumann RG, Schaumberger M, Rohleder M et al (2006) Ultrastructure of the vitromacular interface in full-thickness idiopathic macular holes: a consecutive analysis of 100 cases. Am J Ophthalmol 141:1112–1119

    Article  PubMed  Google Scholar 

  • Schumann RG, Schaumberger MM, Rohleder M et al (2007) The primary objective in macular hole surgery. Ultrastructural features of the vitreomacular interface. Ophthalmologe 104:783–789

    Article  PubMed  CAS  Google Scholar 

  • Schumann RG, Rohleder M, Schaumberger MM et al (2008) Idiopathic macular holes: ultrastructural aspects of surgical failure. Retina 28:340–349

    Article  PubMed  Google Scholar 

  • Schumann RG, Eibl KH, Zhao F et al (2011) Immunocytochemical and ultrastructural evidence of glial cells and hyalocytes in internal limiting membrane specimens of idiopathic macular holes. Invest Ophthalmol Vis Sci 3:7822–7834

    Article  Google Scholar 

  • Schwartz SD, Alexander R, Hiscott P et al (1996) Recognition of vitreoschisis in proliferative diabetic retinopathy. A useful landmark in vitrectomy for diabetic traction retinal detachment. Ophthalmology 103:323–328

    Article  Google Scholar 

  • Sebag J (1996) Diabetic vitreopathy. Ophthalmology 103:205–206

    Article  PubMed  CAS  Google Scholar 

  • Sebag J (2004) Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol 242:690–698

    Article  PubMed  CAS  Google Scholar 

  • Sebag J (2008) Vitreochisis. Graefes Arch Clin Exp Ophthalmol 246:329–332

    Article  PubMed  CAS  Google Scholar 

  • Sebag J, Gupta P, Rosen RR et al (2007) Macular holes and macular pucker: the role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy. Trans Am Ophthalmol Soc 105:121–129

    PubMed  Google Scholar 

  • Sebag J, Wang MY, Nguyen D et al (2009) Vitreopapillary adhesion in macular diseases. Trans Am Ophthalmol Soc 107:35–46

    PubMed  CAS  Google Scholar 

  • Shinoda K, Hirakata A, Hida T et al (2000) Ultrastructural and immunohistochemical findings in five patients with vitreomacular traction syndrome. Retina 20:289–293

    Article  PubMed  CAS  Google Scholar 

  • Smiddy WE, Maguire AM, Green WR et al (1989) Idiopathic epiretinal membranes: ultrastructural characteristics and clinicopathologic correlation. Ophthalmology 96:811–820

    Article  PubMed  CAS  Google Scholar 

  • Uchino E, Uemura A, Ohba N (2001) Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol 119:1475–1479

    Article  PubMed  CAS  Google Scholar 

  • Vanderbeek BL, Johnson MW (2012) The diversity of traction mechanisms in myopic traction maculopathy. Am J Ophthalmol 153:93–102

    Article  PubMed  Google Scholar 

  • Vinores SA, Campochiaro PA, Conway BP (1990) Ultrastructural and electron-immunocytochemical characterization of cells in epiretinal membranes. Invest Ophthalmol Vis Sci 31:14–28

    PubMed  CAS  Google Scholar 

  • Yoshida M, Kishi S (2007) Pathogenesis of macular hole recurrence and its prevention by internal limiting membrane peeling. Retina 27:169–173

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are especially grateful to Anselm Kampik, Professor and Chairman of the Department of Ophthalmology at the Ludwig-Maximilians-University Munich, for his enduring support and contribution to our studies. We also would like to thank Christos Haritoglou for his dedication and continuing collaboration. Regarding electron microscopy, we would like to thank Renate Scheler, Helga Wehnes and Axel K. Walch for their outstanding technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricarda Gisela Schumann MD .

Editor information

Editors and Affiliations

Additional information

Compliance with Ethical Requirements

Dr Gandorfer is a consultant for Thrombogenics, Alcon, Santen, Oertli.

Dr Schumann has no conflicts of interest.

No animal or human studies were carried out by the authors for this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schumann, R.G., Gandorfer, A. (2014). Pathophysiology of Vitreo-Macular Interface. In: Girach, A., de Smet, M. (eds) Diseases of the Vitreo-Macular Interface. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40034-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40034-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40033-9

  • Online ISBN: 978-3-642-40034-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics