Skip to main content

Anuran Acoustic Signal Perception in Noisy Environments

  • Chapter
  • First Online:
Animal Communication and Noise

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 2))

Abstract

Choruses of acoustically signaling frogs and toads are among the most impressive acoustic spectacles known from the natural world. They are loud, raucous social environments that form for one purpose and one purpose only: sex. The loud sexual advertisement signals that males produce are often necessary and sufficient to elicit responses from reproductive females, and they also function in communicating with other males during interactions over calling sites and territories. Frogs listening in a chorus must detect, recognize, localize, and discriminate among competing signals amid high levels of biotic, and often abiotic, background noise. In essence, frogs must solve a biological analog of the human cocktail party problem. In this chapter, we describe the frog’s cocktail party problem in functional terms relevant to frog reproduction and communication. We then describe results from experimental studies, mostly of behavior, that elucidate how the frog auditory system goes about solving problems related to auditory masking and auditory scene analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alder TB, Rose GJ (1998) Long-term temporal integration in the anuran auditory system. Nat Neurosci 1:519–523

    CAS  PubMed  Google Scholar 

  • Amézquita A, Castellanos L, Hödl W (2005) Auditory masking of male Epipedobates femoralis (Anura: Dendrobatidae) under field conditions. Anim Behav 70:1377–1386

    Google Scholar 

  • Amézquita A, Hödl W, Lima AP, Castellanos L, Erdtmann L, De Araújo MC (2006) Masking interference and the evolution of the acoustic communication system in the Amazonian dendrobatid frog Allobates femoralis. Evolution 60:1874–1887

    Google Scholar 

  • Amézquita A, Flechas SV, Lima AP, Gasser H, Hödl W (2011) Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. Proc Natl Acad Sci USA 108:17058–17063

    PubMed Central  PubMed  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Arak A (1983) Sexual selection by male–male competition in natterjack toad choruses. Nature 306:261–262

    Google Scholar 

  • Arch VS, Narins PM (2008) ‘Silent’ signals: selective forces acting on ultrasonic communication systems in terrestrial vertebrates. Anim Behav 76:1423–1428

    PubMed Central  PubMed  Google Scholar 

  • Arch VS, Grafe TU, Narins PM (2008) Ultrasonic signalling by a Bornean frog. Biol Lett 4:19–22

    PubMed Central  PubMed  Google Scholar 

  • Arch VS, Grafe TU, Gridi-Papp M, Narins PM (2009) Pure ultrasonic communication in an endemic Bornean frog. PLoS ONE 4:e5413

    PubMed Central  PubMed  Google Scholar 

  • Bacon SP, Opie JM, Montoya DY (1998) The effects of hearing loss and noise masking on the masking release for speech in temporally complex backgrounds. J Speech Lang Hear R 41:549–563

    CAS  Google Scholar 

  • Barber JR, Crooks KR, Fristrup KM (2010) The costs of chronic noise exposure for terrestrial organisms. Trends Ecol Evol 25:180–189

    PubMed  Google Scholar 

  • Barrass AN (1985) The effects of highway traffic noise on the phonotactic and associated reproductive behavior of selected anurans. In: Environmental and water resources engineering. Vanderbilt University, Nashville, p 108

    Google Scholar 

  • Bates ME, Cropp BF, Gonchar M, Knowles J, Simmons JA, Simmons AM (2010) Spatial location influences vocal interactions in bullfrog choruses. J Acoust Soc Am 127:2664–2677

    PubMed Central  PubMed  Google Scholar 

  • Beckers OM, Schul J (2004) Phonotaxis in Hyla versicolor (Anura, Hylidae): the effect of absolute call amplitude. J Comp Physiol A 190:869–876

    Google Scholar 

  • Bee MA (2003) Experience-based plasticity of acoustically evoked aggression in a territorial frog. J Comp Physiol A 189:485–496

    Google Scholar 

  • Bee MA (2007a) Selective phonotaxis by male wood frogs (Rana sylvatica) to the sound of a chorus. Behav Ecol Sociobiol 61:955–966

    Google Scholar 

  • Bee MA (2007b) Sound source segregation in grey treefrogs: spatial release from masking by the sound of a chorus. Anim Behav 74:549–558

    Google Scholar 

  • Bee MA (2008a) Finding a mate at a cocktail party: spatial release from masking improves acoustic mate recognition in grey treefrogs. Anim Behav 75:1781–1791

    PubMed Central  PubMed  Google Scholar 

  • Bee MA (2008b) Parallel female preferences for call duration in a diploid ancestor of an allotetraploid treefrog. Anim Behav 76:845–853

    PubMed Central  PubMed  Google Scholar 

  • Bee MA (2010) Spectral preferences and the role of spatial coherence in simultaneous integration in gray treefrogs (Hyla chrysoscelis). J Comp Psychol 124:412–424

    PubMed Central  PubMed  Google Scholar 

  • Bee MA (2012) Sound source perception in anuran amphibians. Curr Opin Neurobiol 22:301–310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bee MA, Gerhardt HC (2001) Neighbour-stranger discrimination by territorial male bullfrogs (Rana catesbeiana): I. Acoustic basis. Anim Behav 62:1129–1140

    Google Scholar 

  • Bee MA, Gerhardt HC (2002) Individual voice recognition in a territorial frog (Rana catesbeiana). P Roy Soc B Biol Sci 269:1443–1448

    Google Scholar 

  • Bee MA, Swanson EM (2007) Auditory masking of anuran advertisement calls by road traffic noise. Anim Behav 74:1765–1776

    Google Scholar 

  • Bee MA, Micheyl C (2008) The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? J Comp Psychol 122:235–251

    PubMed Central  PubMed  Google Scholar 

  • Bee MA, Riemersma KK (2008) Does common spatial origin promote the auditory grouping of temporally separated signal elements in grey treefrogs? Anim Behav 76:831–843

    PubMed Central  PubMed  Google Scholar 

  • Bee MA, Vélez A (2008) Comodulation masking release in the perception of vocalizations by gray treefrogs. Abstr Assoc Res Otolaryngol 31:#812

    Google Scholar 

  • Bee MA, Schwartz JJ (2009) Behavioral measures of signal recognition thresholds in frogs in the presence and absence of chorus-shaped noise. J Acoust Soc Am 126:2788–2801

    PubMed Central  PubMed  Google Scholar 

  • Bee MA, Vélez A, Forester JD (2012) Sound level discrimination by gray treefrogs in the presence and absence of chorus-shaped noise. J Acoust Soc Am 131:4188–4195

    Google Scholar 

  • Bernal XE, Rand AS, Ryan MJ (2007) Sexual differences in the behavioral response of túngara frogs, Physalaemus pustulosus, to cues associated with increased predation risk. Ethology 113:755–763

    Google Scholar 

  • Bibikov NG (2002) Addition of noise enhances neural synchrony to amplitude-modulated sounds in the frog’s midbrain. Hear Res 173:21–28

    CAS  PubMed  Google Scholar 

  • Bird J, Darwin CJ (1998) Effects of a difference in fundamental frequency in separating two sentences. In: Palmer AR, Rees A, Summerfield AQ, Meddis R (eds) Psychophysical and physiological advances in hearing. Whurr, London, pp 263–269

    Google Scholar 

  • Bodnar DA (1996) The separate and combined effects of harmonic structure, phase, and FM on female preferences in the barking treefrog (Hyla gratiosa). J Comp Physiol A 178:173–182

    CAS  PubMed  Google Scholar 

  • Boeckle M, Preininger D, Hödl W (2009) Communication in noisy environments I: acoustic signals of Staurois latopalmatus Boulenger 1887. Herpetologica 65:154–165

    Google Scholar 

  • Braaten RE, Leary JC (1999) Temporal induction of missing birdsong segments in European starlings. Psychol Sci 10:162–166

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge

    Google Scholar 

  • Brokx JPL, Nooteboom SG (1982) Intonation and the perceptual separation of simultaneous voices. J Phonetics 10:23–36

    Google Scholar 

  • Bronkhorst AW (2000) The cocktail party phenomenon: a review of research on speech intelligibility in multiple-talker conditions. Acustica 86:117–128

    Google Scholar 

  • Brown GJ, Cooke M (1994) Computational auditory scene analysis. Comput Speech Lang 8:297–336

    Google Scholar 

  • Brumm H (2010) Anthropogenic noise: implications for conservation. In: Breed MD, Moore J (eds) Encyclopedia of animal behavior. Academic Press, Oxford

    Google Scholar 

  • Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209

    Google Scholar 

  • Brumm H, Voss K, Kollmer I, Todt D (2004) Acoustic communication in noise: regulation of call characteristics in a New World monkey. J Exp Biol 207:443–448

    PubMed  Google Scholar 

  • Bush SL, Gerhardt HC, Schul J (2002) Pattern recognition and call preferences in treefrogs (Anura: Hylidae): a quantitative analysis using a no-choice paradigm. Anim Behav 63:7–14

    Google Scholar 

  • Buus S (1985) Release from masking caused by envelope fluctuations. J Acoust Soc Am 78:1958–1965

    CAS  PubMed  Google Scholar 

  • Capranica RR (1965) The evoked vocal response of the bullfrog: a study of communication by sound. M.I.T Press, Cambridge

    Google Scholar 

  • Capranica RR (1976) Morphology and physiology of the auditory system. In: Llinas R, Precht W (eds) Frog neurobiology. Springer, New York, pp 551–575

    Google Scholar 

  • Capranica RR, Moffat JM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 701–730

    Google Scholar 

  • Carlyon RP (2004) How the brain separates sounds. Trends Cog Sci 8:465–471

    Google Scholar 

  • Carlyon RP, Gockel H (2008) Effects of harmonicity and regularity on the perception of sound sources. In: Yost WA, Popper AN, Fay RR (eds) Auditory perception of sound sources. Springer, New York, pp 191–213

    Google Scholar 

  • Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975–979

    Google Scholar 

  • Christensen-Dalsgaard J (2005) Directional hearing in nonmammalian tetrapods. In: Popper AN, Fay RR (eds) Sound source localization. Springer, New York, pp 67–123

    Google Scholar 

  • Christensen-Dalsgaard J (2011) Vertebrate pressure-gradient receivers. Hear Res 273:37–45

    PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Carr CE (2008) Evolution of a sensory novelty: tympanic ears and the associated neural processing. Brain Res Bull 75:365–370

    PubMed Central  PubMed  Google Scholar 

  • Christie K, Schul J, Feng AS (2010) Phonotaxis to male’s calls embedded within a chorus by female gray treefrogs, Hyla versicolor. J Comp Physiol A 196:569–579

    Google Scholar 

  • Darwin CJ (1997) Auditory grouping. Trends Cog Sci 1:327–333

    CAS  Google Scholar 

  • Darwin CJ (2008) Spatial hearing and perceiving sources. In: Yost WA, Popper AN, Fay RR (eds) Auditory perception of sound sources. Springer, New York, pp 215–232

    Google Scholar 

  • Darwin CJ, Carlyon RP (1995) Auditory grouping. In: Moore BCJ (ed) Hearing. Academic Press, New York, pp 387–424

    Google Scholar 

  • Edwards CJ, Alder TB, Rose GJ (2002) Auditory midbrain neurons that count. Nat Neurosci 5:934–936

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (1988) Mechanisms of sound localization in anurans. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington T, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 307–336

    Google Scholar 

  • Elepfandt A, Eistetter I, Fleig A, Gunther E, Hainich M, Hepperle S, Traub B (2000) Hearing threshold and frequency discrimination in the purely aquatic frog Xenopus laevis (pipidae): measurement by means of conditioning. J Exp Biol 203:3621–3629

    CAS  PubMed  Google Scholar 

  • Farris HE, Ryan MJ (2011) Relative comparisons of call parameters enable auditory grouping in frogs. Nat Commun 2:410

    PubMed  Google Scholar 

  • Farris HE, Rand AS, Ryan MJ (2002) The effects of spatially separated call components on phonotaxis in túngara frogs: evidence for auditory grouping. Brain Behav Evol 60:181–188

    PubMed  Google Scholar 

  • Farris HE, Rand AS, Ryan MJ (2005) The effects of time, space and spectrum on auditory grouping in túngara frogs. J Comp Physiol A 191:1173–1183

    CAS  Google Scholar 

  • Fay RR (2008) Sound source perception and stream segregation in nonhuman vertebrate animals. In: Yost WA, Popper AN, Fay RR (eds) Auditory perception of sound sources. Springer, New York, pp 307–323

    Google Scholar 

  • Fay RR, Simmons AM (1999) The sense of hearing in fishes and amphibians. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 269–318

    Google Scholar 

  • Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149:1–10

    CAS  PubMed  Google Scholar 

  • Feng AS, Ratnam R (2000) Neural basis of hearing in real-world situations. Annu Rev Psychol 51:699–725

    CAS  PubMed  Google Scholar 

  • Feng AS, Schul J (2007) Sound processing in real-world environments. In: Narins PA, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 323–350

    Google Scholar 

  • Feng AS, Narins PM (2008) Ultrasonic communication in concave-eared torrent frogs (Amolops tormotus). J Comp Physiol A 194:159–167

    Google Scholar 

  • Feng AS, Narins PM, Xu CH (2002) Vocal acrobatics in a Chinese frog, Amolops tormotus. Naturwissenschaften 89:352–356

    CAS  PubMed  Google Scholar 

  • Feng AS, Narins PM, Xu CH, Lin WY, Yu ZL, Qiu Q, Xu ZM, Shen JX (2006) Ultrasonic communication in frogs. Nature 440:333–336

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Wolkowiak W, Ryan MJ, Wilczynski W, Hetherington T (1988) The evolution of the amphibian auditory system. Wiley, New York

    Google Scholar 

  • Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, De Sa RO, Channing A, Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC (2006) The amphibian tree of life. B Am Mus Nat Hist 297:8–370

    Google Scholar 

  • Füllgrabe C, Berthommier F, Lorenzi C (2006) Masking release for consonant features in temporally fluctuating background noise. Hear Res 211:74–84

    PubMed  Google Scholar 

  • Fuzessery ZM, Feng AS (1982) Frequency selectivity in the anuran auditory midbrain: single unit responses to single and multiple tone stimulation. J Comp Physiol 146:471–484

    Google Scholar 

  • Geissler DB, Ehret G (2002) Time-critical integration of formants for perception of communication calls in mice. Proc Natl Acad Sci USA 99:9021–9025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerhardt HC (1975) Sound pressure levels and radiation patterns of vocalizations of some North American frogs and toads. J Comp Physiol 102:1–12

    Google Scholar 

  • Gerhardt HC (1992a) Conducting playback experiments and interpreting their results. In: McGregor PK (ed) Playback and studies of animal communication: problems and prospects. NATO advanced research workshop. Plenum Press, New York, pp 59–77

    Google Scholar 

  • Gerhardt HC (1992b) Multiple messages in acoustic signals. Sem Neurosci 4:391–400

    Google Scholar 

  • Gerhardt HC (1995) Phonotaxis in female frogs and toads: execution and design of experiments. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods in comparative psychoacoustics. Birkhäuser Verlag, Basel, pp 209–220

    Google Scholar 

  • Gerhardt HC (2005) Acoustic spectral preferences in two cryptic species of grey treefrogs: implications for mate choice and sensory mechanisms. Anim Behav 70:39–48

    Google Scholar 

  • Gerhardt HC, Doherty JA (1988) Acoustic communication in the gray treefrog, Hyla versicolor: evolutionary and neurobiological implications. J Comp Physiol A 162:261–278

    Google Scholar 

  • Gerhardt HC, Klump GM (1988a) Phonotactic responses and selectivity of barking treefrogs (Hyla gratiosa) to chorus sounds. J Comp Physiol A 163:795–802

    Google Scholar 

  • Gerhardt HC, Klump GM (1988b) Masking of acoustic signals by the chorus background noise in the green treefrog: a limitation on mate choice. Anim Behav 36:1247–1249

    Google Scholar 

  • Gerhardt HC, Schwartz JJ (2001) Auditory tuning, frequency preferences and mate choice in anurans. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington DC, pp 73–85

    Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. Chicago University Press, Chicago

    Google Scholar 

  • Gerhardt HC, Bee MA (2007) Recognition and localization of acoustic signals. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 113–146

    Google Scholar 

  • Gerhardt HC, Diekamp B, Ptacek M (1989) Inter-male spacing in choruses of the spring peeper, Pseudacris (Hyla) crucifer. Anim Behav 38:1012–1024

    Google Scholar 

  • Gerhardt HC, Allan S, Schwartz JJ (1990) Female green treefrogs (Hyla cinerea) do not selectively respond to signals with a harmonic structure in noise. J Comp Physiol A 166:791–794

    CAS  PubMed  Google Scholar 

  • Gerhardt HC, Dyson ML, Tanner SD (1996) Dynamic properties of the advertisement calls of gray tree frogs: patterns of variability and female choice. Behav Ecol 7:7–18

    Google Scholar 

  • Gerhardt HC, Daniel RE, Perrill SA, Schramm S (1987) Mating behavior and male mating success in the green treefrog. Anim Behav 35:1490–1503

    Google Scholar 

  • Gerhardt HC, Ptacek MB, Barnett L, Torke KG (1994) Hybridization in the diploid-tetraploid treefrogs Hyla chrysoscelis and Hyla versicolor. Copeia 1994:51–59

    Google Scholar 

  • Gerhardt HC, Roberts JD, Bee MA, Schwartz JJ (2000) Call matching in the quacking frog (Crinia georgiana). Behav Ecol Sociobiol 48:243–251

    Google Scholar 

  • Gerhardt HC, Martinez-Rivera CC, Schwartz JJ, Marshall VT, Murphy CG (2007) Preferences based on spectral differences in acoustic signals in four species of treefrogs (Anura : Hylidae). J Exp Biol 210:2990–2998

    PubMed  Google Scholar 

  • Goense JBM, Feng AS (2012) Effects of noise bandwidth and amplitude modulation on masking in frog auditory midbrain neurons. PLoS ONE 7:e31589

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez D, Richardson C, Lengagne T, Plenet S, Joly P, Lena JP, Thery M (2009) The role of nocturnal vision in mate choice: females prefer conspicuous males in the European tree frog (Hyla arborea). P Roy Soc B Biol Sci 276:2351–2358

    Google Scholar 

  • Grafe TU, Dobler S, Linsenmair KE (2002) Frogs flee from the sound of fire. P Roy Soc B Biol Sci 269:999–1003

    Google Scholar 

  • Grant KW, Seitz PF (2000) The use of visible speech cues for improving auditory detection of spoken sentences. J Acoust Soc Am 108:1197–1208

    CAS  PubMed  Google Scholar 

  • Gridi-Papp M, Rand AS, Ryan MJ (2006) Animal communication: complex call production in the túngara frog. Nature 441:38

    CAS  PubMed  Google Scholar 

  • Gridi-Papp M, Arch VS, Narins PM (2010) Ultrasound transmission and behavioral tuning in the middle ears of Asian frogs. Hear Res 263:244–245

    Google Scholar 

  • Griffin DR (1976) The audibility of frog choruses to migrating birds. Anim Behav 24:421–427

    Google Scholar 

  • Griffiths TD, Warren JD (2004) What is an auditory object? Nat Rev Neurosci 5:887–892

    CAS  PubMed  Google Scholar 

  • Gustafsson HA, Arlinger SD (1994) Masking of speech by amplitude-modulated noise. J Acoust Soc Am 95:518–529

    CAS  PubMed  Google Scholar 

  • Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214

    Google Scholar 

  • Heil P, Neubauer H (2003) A unifying basis of auditory thresholds based on temporal summation. Proc Natl Acad Sci USA 100:6151–6156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hödl W, Amézquita A (2001) Visual signaling in anuran amphibians. In: Ryan MJ (ed) Anuran communication. Smitshsonian Institution Press, Washington DC, pp 121–141

    Google Scholar 

  • Hoffman HS, Ruppen F (1996) An apparatus for the assessment of prepulse inhibition in the frog. Behav Res Meth Ins C 28:357–359

    Google Scholar 

  • Hulse SH (2002) Auditory scene analysis in animal communication. Adv Stud Behav 31:163–200

    Google Scholar 

  • Humfeld SC, Marshall VT, Bee MA (2009) Context-dependent plasticity of aggressive signalling in a dynamic social environment. Anim Behav 78:915–924

    Google Scholar 

  • Jones DL, Ratnam R (2009) Blind location and separation of callers in a natural chorus using a microphone array. J Acoust Soc Am 126:895–910

    PubMed Central  PubMed  Google Scholar 

  • King AJ (2007) Auditory neuroscience: filling in the gaps. Curr Biol 17:R799–R801

    CAS  PubMed  Google Scholar 

  • Klump GM (1995) Studying sound localization in frogs with behavioral methods. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods in comparative psychoacoustics. Birkhäuser Verlag, Basel, pp 221–233

    Google Scholar 

  • Klump GM (1996) Bird communication in the noisy world. In: Kroodsma DE, Miller EH (eds) Ecology and evolution of acoustic communication in birds. Cornell University Press, Ithaca, pp 321–338

    Google Scholar 

  • Klump GM, Gerhardt HC (1987) Use of non-arbitrary acoustic criteria in mate choice by female gray tree frogs. Nature 326:286–288

    Google Scholar 

  • Klump GM, Kittel M, Wagner E (2001) Comodulation masking release in the Mongolian gerbil. Abstracts of the Association for Research on Otolaryngology 25:#84

    Google Scholar 

  • Larson KA (2004) Advertisement call complexity in northern leopard frogs, Rana pipiens. Copeia 2004:676–682

    Google Scholar 

  • Lemon RE (1971) Vocal communication by the frog Eleutherodactylus martinicensis. Can J Zool 49:211–217

    CAS  PubMed  Google Scholar 

  • Lewis ER, Narins PM (1985) Do frogs communicate with seismic signals? Science 227:187–189

    CAS  PubMed  Google Scholar 

  • Lewis ER, Narins PM (1999) The acoustic periphery of amphibians: anatomy and physiology. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 101–154

    Google Scholar 

  • Lewis ER, Fay RR (2004) Environmental variables and the fundamental nature of hearing. In: Manley GA, Popper AN, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 27–54

    Google Scholar 

  • Lewis ER, Narins PM, Cortopassi KA, Yamada WM, Poinar EH, Moore SW, Yu XL (2001) Do male white-lipped frogs use seismic signals for intraspecific communication? Am Zool 41:1185–1199

    Google Scholar 

  • Lin WY, Feng AS (2001) Free-field unmasking response characteristics of frog auditory nerve fibers: comparison with the responses of midbrain auditory neurons. J Comp Physiol A 187:699–712

    CAS  PubMed  Google Scholar 

  • Lin WY, Feng AS (2003) GABA is involved in spatial unmasking in the frog auditory midbrain. J Neurosci 23:8143–8151

    CAS  PubMed  Google Scholar 

  • Littlejohn MJ, Fouquette MJ, Johnson C (1960) Call discrimination by female frogs of the Hyla versicolor complex. Copeia 1960:47–49

    Google Scholar 

  • Loftus-Hills JJ, Littlejohn MJ (1971) Mating-call sound intensities of anuran amphibians. J Acoust Soc Am 49:1327–1329

    Google Scholar 

  • Love EK, Bee MA (2010) An experimental test of noise-dependent voice amplitude regulation in Cope’s grey treefrog, Hyla chrysoscelis. Anim Behav 80:509–515

    PubMed Central  PubMed  Google Scholar 

  • Manley GA, Popper AN, Fay RR (2004) Evolution of the vertebrate auditory system, vol 22. Springer, New York

    Google Scholar 

  • Márquez R, Bosch J, Eekhout X (2008) Intensity of female preference quantified through playback setpoints: call frequency versus call rate in midwife toads. Anim Behav 75:159–166

    Google Scholar 

  • Marshall VT, Schwartz JJ, Gerhardt HC (2006) Effects of heterospecific call overlap on the phonotactic behaviour of grey treefrogs. Anim Behav 72:449–459

    Google Scholar 

  • Martof BS (1953) Territoriality in the green frog, Rana clamitans. Ecology 34:165–174

    Google Scholar 

  • Mason MJ (2007) Pathways for sound transmission to the inner ear in amphibians. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 147–183

    Google Scholar 

  • McDermott JH (2009) The cocktail party problem. Curr Biol 19:R1024–R1027

    CAS  PubMed  Google Scholar 

  • Meenderink SWF, Kits M, Narins PM (2010) Frequency matching of vocalizations to inner-ear sensitivity along an altitudinal gradient in the coqui frog. Biol Lett 6:278–281

    PubMed Central  PubMed  Google Scholar 

  • Megela-Simmons A, Moss CF, Daniel KM (1985) Behavioral audiograms of the bullfrog (Rana catesbeiana) and the green tree frog (Hyla cinera). J Acoust Soc Am 78:1236–1244

    CAS  PubMed  Google Scholar 

  • Miller CT, Dibble E, Hauser MD (2001) Amodal completion of acoustic signals by a nonhuman primate. Nat Neurosci 4:783–784

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Gockel H (2002) Factors influencing sequential stream segregation. Acta Acustica United Acustica 88:320–333

    Google Scholar 

  • Morris MR (1991) Female choice of large males in the treefrog Hyla ebraccata. J Zool 223:371–378

    Google Scholar 

  • Moss CF, Simmons AM (1986) Frequency selectivity of hearing in the green treefrog, Hyla cinerea. J Comp Physiol A 159:257–266

    CAS  PubMed  Google Scholar 

  • Murphy CG (2003) The cause of correlations between nightly numbers of male and female barking treefrogs (Hyla gratiosa) attending choruses. Behav Ecol 14:274–281

    Google Scholar 

  • Narins PM (1982) Effects of masking noise on evoked calling in the Puerto Rican coqui (Anura, Leptodactylidae). J Comp Physiol 147:439–446

    Google Scholar 

  • Narins PM (1987) Coding of signals in noise by amphibian auditory nerve fibers. Hear Res 26:145–154

    CAS  PubMed  Google Scholar 

  • Narins PM, Zelick R (1988) The effects of noise on auditory processing and behavior in amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 511–536

    Google Scholar 

  • Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85:1508–1512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narins PM, Hödl W, Grabul DS (2003) Bimodal signal requisite for agonistic behavior in a dart- poison frog, Epipedobates femoralis. Proc Natl Acad Sci USA 100:577–580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narins PM, Feng AS, Fay RR, Popper AN (2007) Hearing and sound communication in amphibians, vol 28. Springer, New York

    Google Scholar 

  • Narins PM, Grabul DS, Soma KK, Gaucher P, Hödl W (2005) Cross-modal integration in a dart-poison frog. Proc Natl Acad Sci USA 102:2425–2429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narins PM, Feng AS, Lin WY, Schnitzler HU, Denzinger A, Suthers RA, Xu CH (2004) Old World frog and bird, vocalizations contain prominent ultrasonic harmonics. J Acoust Soc Amer 115:910–913

    Google Scholar 

  • Nelken I, Rotman Y, Bar Yosef O (1999) Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397:154–157

    CAS  PubMed  Google Scholar 

  • Nelson DA, Marler P (1990) The perception of birdsong and an ecological concept of signal space. In: Berkley MA, Stebbins WC (eds) Comparative perception, vol II. Wiley, New York, pp 443–478

    Google Scholar 

  • Nityananda V, Bee MA (2011) Finding your mate at a cocktail party: frequency separation promotes auditory stream segregation of concurrent voices in multi-species frog choruses. PLoS ONE 6:e21191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nityananda V, Bee MA (2012) Spatial release from masking in a free-field source identification task by gray treefrogs. Hear Res 285:86–97

    PubMed Central  PubMed  Google Scholar 

  • Paez VP, Bock BC, Rand AS (1993) Inhibition of evoked calling of Dendrobates pumilio due to acoustic interference from cicada calling. Biotropica 25:242–245

    Google Scholar 

  • Passmore NI (1981) Sound levels of mating calls of some African frogs. Herpetologica 37:166–171

    Google Scholar 

  • Passmore NI, Telford SR (1981) The effect of chorus organization on mate localization in the painted reed frog (Hyperolius marmoratus). Behav Ecol Sociobiol 9:291–293

    Google Scholar 

  • Passmore NI, Capranica RR, Telford SR, Bishop PJ (1984) Phonotaxis in the painted reed frog (Hyperolius marmoratus): the localization of elevated sound sources. J Comp Physiol 154:189–197

    Google Scholar 

  • Penna M, Solís R (1998) Frog call intensities and sound propagation in the South American temperate forest region. Behav Ecol Sociobiol 42:371–381

    Google Scholar 

  • Penna M, Hamilton-West C (2007) Susceptibility of evoked vocal responses to noise exposure in a frog of the temperate austral forest. Anim Behav 74:45–56

    Google Scholar 

  • Penna M, Pottstock H, Velasquez N (2005) Effect of natural and synthetic noise on evoked vocal responses in a frog of the temperate austral forest. Anim Behav 70:639–651

    Google Scholar 

  • Petkov CI, O’Connor KN, Sutter ML (2003) Illusory sound perception in macaque monkeys. J Neurosci 23:9155–9161

    CAS  PubMed  Google Scholar 

  • Plomp R, Mimpen AM (1979a) Improving the reliability of testing the speech reception threshold for sentences. Audiology 18:43–52

    CAS  PubMed  Google Scholar 

  • Plomp R, Mimpen AM (1979b) Speech reception threshold for sentences as a function of age and noise level. J Acoust Soc Am 66:1333–1342

    CAS  PubMed  Google Scholar 

  • Popper AN, Fay RR (1997) Evolution of the ear and hearing: issues and questions. Brain Behav Evol 50:213–221

    CAS  PubMed  Google Scholar 

  • Pyron RA, Wiens JJ (2011) A large-scale phylogeny of amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 61:543–583

    PubMed  Google Scholar 

  • Ratnam R, Feng AS (1998) Detection of auditory signals by frog inferior collicular neurons in the presence of spatially separated noise. J Neurophysiol 80:2848–2859

    CAS  PubMed  Google Scholar 

  • Recanzone GH, Sutter ML (2008) The biological basis of audition. Annu Rev Psychol 59:119–142

    PubMed  Google Scholar 

  • Rheinlaender J, Klump GM (1988) Behavioral aspects of sound localization. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington T (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 297–305

    Google Scholar 

  • Richards DG, Wiley RH (1980) Reverberations and amplitude fluctuations in the propagation of sound in a forest: implications for animal communication. Am Nat 115:381–399

    Google Scholar 

  • Richardson C, Lengagne T (2010) Multiple signals and male spacing affect female preference at cocktail parties in treefrogs. P Roy Soc B Biol Sci 277:1247–1252

    Google Scholar 

  • Richardson C, Gomez D, Durieux R, Thery M, Joly P, Lena JP, Plenet S, Lengagne T (2010) Hearing is not necessarily believing in nocturnal anurans. Biol Lett 6:633–635

    PubMed Central  PubMed  Google Scholar 

  • Rose GJ, Brenowitz EA (1991) Aggressive thresholds of male Pacific treefrogs for advertisement calls vary with amplitude of neighbors’ calls. Ethology 89:244–252

    Google Scholar 

  • Rosenthal GG, Rand AS, Ryan MJ (2004) The vocal sac as a visual cue in anuran communication: an experimental analysis using video playback. Anim Behav 68:55–58

    Google Scholar 

  • Ryan MJ (1985) The túngara frog: a study in sexual selection and communication. Chicago University Press, Chicago

    Google Scholar 

  • Ryan MJ (1991) Sexual selection and communication in frogs. Trends Ecol Evol 6:351–355

    CAS  PubMed  Google Scholar 

  • Ryan MJ (2001) Anuran communication. Smithsonian Institution Press, Washington DC

    Google Scholar 

  • Ryan MJ, Rand AS (1990) The sensory basis of sexual selection for complex calls in the túngara frog, Physalaemus pustulosus (sexual selection for sensory exploitation). Evolution 44:305–314

    Google Scholar 

  • Ryan MJ, Keddy-Hector A (1992) Directional patterns of female mate choice and the role of sensory biases. Am Nat 139:S4–S35

    Google Scholar 

  • Ryan MJ, Rand AS (1993) Species recognition and sexual selection as a unitary problem in animal communication. Evolution 47:647–657

    Google Scholar 

  • Ryan MJ, Rand AS (2001) Feature weighting in signal recognition and discrimination by túngara frogs. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington DC, pp 86–101

    Google Scholar 

  • Schrode KM, Buerkle NP, Brittan-Powell EF, Bee MA Auditory brainstem responses in Cope's gray treefrog (Hyla chrysoscelis): effects of frequency, level, sex and size. J Comp Physiol A in press

    Google Scholar 

  • Schul J, Bush SL (2002) Non-parallel coevolution of sender and receiver in the acoustic communication system of treefrogs. P Roy Soc Lond B Biol Sci 269:1847–1852

    Google Scholar 

  • Schwartz JJ (1987) The function of call alternation in anuran amphibians: a test of three hypotheses. Evolution 41:461–471

    Google Scholar 

  • Schwartz JJ (1993) Male calling behavior, female discrimination and acoustic interference in the Neotropical treefrog Hyla microcephala under realistic acoustic conditions. Behav Ecol Sociobiol 32:401–414

    Google Scholar 

  • Schwartz JJ, Wells KD (1983) The influence of background noise on the behavior of a neotropical treefrog, Hyla ebraccata. Herpetologica 39:121–129

    Google Scholar 

  • Schwartz JJ, Gerhardt HC (1989) Spatially mediated release from auditory masking in an anuran amphibian. J Comp Physiol A 166:37–41

    Google Scholar 

  • Schwartz JJ, Gerhardt HC (1995) Directionality of the auditory system and call pattern recognition during acoustic interference in the gray treefrog, Hyla versicolor. Aud Neurosci 1:195–206

    Google Scholar 

  • Schwartz JJ, Gerhardt HC (1998) The neuroethology of frequency preferences in the spring peeper. Anim Behav 56:55–69

    PubMed  Google Scholar 

  • Schwartz JJ, Marshall VT (2006) Forms of call overlap and their impact on advertisement call attractiveness to females of the gray treefrog, Hyla versicolor. Bioacoustics 16:39–56

    Google Scholar 

  • Schwartz JJ, Bee MA, Tanner SD (2000) A behavioral and neurobiological study of the responses of gray treefrogs, Hyla versicolor, to the calls of a predator, Rana catesbeiana. Herpetologica 56:27–37

    Google Scholar 

  • Schwartz JJ, Buchanan BW, Gerhardt HC (2001) Female mate choice in the gray treefrog (Hyla versicolor) in three experimental environments. Behav Ecol Sociobiol 49:443–455

    Google Scholar 

  • Schwartz JJ, Buchanan BW, Gerhardt HC (2002) Acoustic interactions among male gray treefrogs, Hyla versicolor, in a chorus setting. Behav Ecol Sociobiol 53:9–19

    Google Scholar 

  • Schwartz JJ, Huth K, Hunce R, Lentine B (2010a) Effect of anomalous pulse timing on call discrimination by females of the gray treefrog (Hyla versicolor): behavioral correlates of neurobiology. J Exp Biol 213:2066–2072

    PubMed  Google Scholar 

  • Schwartz JJ, Crimarco NC, Bregman Y, Umeoji K (2013) Responses of the gray treefrog (Hyla versicolor) to chorus noise and an investigation of their functional significance. J Herp 47:354–360

    Google Scholar 

  • Schwartz JJ, Brown R, Turner S, Dushaj K, Castano M (2008) Interference risk and the function of dynamic shifts in calling in the gray treefrog (Hyla versicolor). J Comp Psychol 122:283–288

    PubMed  Google Scholar 

  • Schwartz JJ, Huth K, Jones SH, Brown R, Marks J (2010b) Tests for call restoration in the gray treefrog, Hyla versicolor. Bioacoustics 20:59–86

    Google Scholar 

  • Schwartz JL, Berthommier F, Savariaux C (2004) Seeing to hear better: evidence for early audio-visual interactions in speech identification. Cognition 93:B69–B78

    PubMed  Google Scholar 

  • Seeba F, Klump GM (2009) Stimulus familiarity affects perceptual restoration in the European starling (Sturnus vulgaris). PLoS ONE 4:e5974

    PubMed Central  PubMed  Google Scholar 

  • Seeba F, Schwartz JJ, Bee MA (2010) Testing an auditory illusion in frogs: perceptual restoration or sensory bias? Anim Behav 79:1317–1328

    PubMed Central  PubMed  Google Scholar 

  • Semlitsch RD (2003) Amphibian conservation. Smithsonian, Washington DC

    Google Scholar 

  • Shamma SA, Micheyl C (2010) Behind the scenes of auditory perception. Curr Opin Neurobiol 20:361–366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen JX, Feng AS, Xu ZM, Yu ZL, Arch VS, Yu XJ, Narins PM (2008) Ultrasonic frogs show hyperacute phonotaxis to female courtship calls. Nature 453:914–916

    CAS  PubMed  Google Scholar 

  • Simmons AM (1988a) Selectivity for harmonic structure in complex sounds by the green treefrog (Hyla cinerea). J Comp Physiol A 162:397–403

    CAS  PubMed  Google Scholar 

  • Simmons AM (1988b) Masking patterns in the bullfrog (Rana catesbeiana). I. Behavioral effects. J Acoust Soc Am 83:1087–1092

    CAS  PubMed  Google Scholar 

  • Simmons AM (2013) "To Ear is Human, to Frogive is Divine": Bob Capranica's legacy to auditory neuroethology. J Comp Physiol A 199:169–182

    Google Scholar 

  • Simmons AM, Moss CF (1995) Reflex modification: a tool for assessing basic auditory function in anuran amphibians. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods in comparative psychoacoustics. Birkhäuser Verlag, Basel, pp 197–208

    Google Scholar 

  • Simmons AM, Bean ME (2000) Perception of mistuned harmonics in complex sounds by the bullfrog (Rana catesbeiana). J Comp Psychol 114:167–173

    CAS  PubMed  Google Scholar 

  • Simmons AM, Buxbaum RC, Mirin MP (1993) Perception of complex sounds by the green treefrog, Hyla cinerea: envelope and fine-structure cues. J Comp Physiol A 173:321–327

    CAS  PubMed  Google Scholar 

  • Simmons DD, Meenderink SWF, Vassilakis PN (2007) Anatomy, physiology, and function of the auditory end-organs in the frog inner ear. In: Narins PA, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 184–220

    Google Scholar 

  • Slabbekoorn H, Bouton N (2008) Soundscape orientation: a new field in need of sound investigation. Anim Behav 76:E5–E8

    Google Scholar 

  • Swanson EM, Tekmen SM, Bee MA (2007) Do female anurans exploit inadvertent social information to locate breeding aggregations? Can J Zool 85:921–932

    Google Scholar 

  • Taylor RC, Klein BA, Stein J, Ryan MJ (2008) Faux frogs: multimodal signalling and the value of robotics in animal behaviour. Anim Behav 76:1089–1097

    Google Scholar 

  • Taylor RC, Ryan MJ (2013) Interactions of multisensory components perceptually rescue túngara frog mating signals. Science 341:273–274

    Google Scholar 

  • Taylor RC, Klein BA, Stein J, Ryan MJ (2011) Multimodal signal variation in space and time: how important is matching a signal with its signaler? J Exp Biol 214:815–820

    PubMed  Google Scholar 

  • Ursprung E, Ringler M, Hödl W (2009) Phonotactic approach pattern in the neotropical frog Allobates femoralis: a spatial and temporal analysis. Behaviour 146:153–170

    Google Scholar 

  • Vélez A, Bee MA (2010) Signal recognition by frogs in the presence of temporally fluctuating chorus-shaped noise. Behav Ecol Sociobiol 64:1695–1709

    PubMed Central  PubMed  Google Scholar 

  • Vélez A, Bee MA (2011) Dip listening and the cocktail party problem in grey treefrogs: signal recognition in temporally fluctuating noise. Anim Behav 82:1319–1327

    PubMed Central  PubMed  Google Scholar 

  • Vélez A, Höbel G, Gordon NM, Bee MA (2012) Dip listening or modulation masking? Call recognition by green treefrogs (Hyla cinerea) in temporally fluctuating noise. J Comp Physiol A 198:891–904

    Google Scholar 

  • Vélez A, Bee MA (2013) Signal recognition by Cope’s gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) in naturally fluctuating noise. J Comp Psychol 127:166–178

    Google Scholar 

  • Vélez A, Gu Y, Sun Y, Bee MA (2013) Pulse-number discrimination by females of Cope’s gray treefrog (Hyla chrysoscelis) in modulated and unmodulated noise. J Acoust Soc Am 134:3079–3089

    Google Scholar 

  • Verhey JL, Pressnitzer D, Winter IM (2003) The psychophysics and physiology of comodulation masking release. Exp Brain Res 153:405–417

    PubMed  Google Scholar 

  • Wagner WE (1989) Graded aggressive signals in Blanchard’s cricket frog: vocal responses to opponent proximity and size. Anim Behav 38:1025–1038

    Google Scholar 

  • Ward JL, Buerkle NP, Bee MA (2013a) Spatial release from masking improves sound pattern discrimination along a biologically relevant pulse-rate continuum in gray treefrogs. Hear Res in press.

    Google Scholar 

  • Ward JL, Love EK, Vélez A, Buerkle NP, O'Bryan LR, Bee MA (2013b) Multitasking males and multiplicative females: dynamic signalling and receiver preferences in Cope’s grey treefrog (Hyla chrysoscelis). Anim Behav 86:231–243

    Google Scholar 

  • Warren RM (1970) Perceptual restoration of missing speech sounds. Science 167:392–393

    CAS  PubMed  Google Scholar 

  • Welch AM, Semlitsch RD, Gerhardt HC (1998) Call duration as an indicator of genetic quality in male gray treefrogs. Science 280:1928–1930

    CAS  PubMed  Google Scholar 

  • Wells KD (2007) The ecology and behavior of amphibians. University of Chicago Press, Chicago

    Google Scholar 

  • Wells KD, Schwartz JJ (1984) Vocal communication in a neotropical treefrog, Hyla ebraccata: advertisement calls. Anim Behav 32:405–420

    Google Scholar 

  • Wells KD, Schwartz JJ (2007) The behavioral ecology of anuran communication. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 44–86

    Google Scholar 

  • Wells KD, Taigen TL (1986) The effect of social interactions on calling energetics in the gray treefrog (Hyla versicolor). Behav Ecol Sociobiol 19:9–18

    Google Scholar 

  • Wilczynski W, Brenowitz EA (1988) Acoustic cues mediate inter-male spacing in a neotropical frog. Anim Behav 36:1054–1063

    Google Scholar 

  • Witte K, Farris HE, Ryan MJ, Wilczynski W (2005) How cricket frog females deal with a noisy world: habitat-related differences in auditory tuning. Behav Ecol 16:571–579

    Google Scholar 

  • Wollerman L (1998) Stabilizing and directional preferences of female Hyla ebraccata for calls differing in static properties. Anim Behav 55:1619–1630

    PubMed  Google Scholar 

  • Wollerman L (1999) Acoustic interference limits call detection in a Neotropical frog Hyla ebraccata. Anim Behav 57:529–536

    Google Scholar 

  • Wollerman L, Wiley RH (2002) Background noise from a natural chorus alters female discrimination of male calls in a Neotropical frog. Anim Behav 63:15–22

    Google Scholar 

  • Yerkes RM (1904) Inhibition and reinforcement of reaction in the frog, Rana clamitans. J Comp Neurol Psychol 13:124–137

    Google Scholar 

  • Yost WA, Popper AN, Fay RR (2008) Auditory perception of sound sources. Springer, New York

    Google Scholar 

  • Zakon HH, Wilczynski W (1988) The physiology of the anuran eighth nerve. In: Fritzsch B, Wolkowiak W, Ryan MJ, Wilczynski W, Hetherington T (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 125–155

    Google Scholar 

Download references

Acknowledgments

We are especially grateful to Peter Narins and Henrik Brumm for comments on the manuscript. Some of the material described in this review was based upon work supported by the National Science Foundation (under Grant No. 0842759), the National Institute on Deafness and Other Communication Disorders (under Grant Nos. R03DC009582 and R01DC009582), and a Grant-in-Aid from the University of Minnesota Graduate School to MAB. Work by JJS was supported by the National Science Foundation (under Grant Nos. 0342183 and 9727623), Pace University Scholarly Research Awards and Smithsonian Institution Short Term Visitor Awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Bee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vélez, A., Schwartz, J.J., Bee, M.A. (2013). Anuran Acoustic Signal Perception in Noisy Environments. In: Brumm, H. (eds) Animal Communication and Noise. Animal Signals and Communication, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41494-7_6

Download citation

Publish with us

Policies and ethics