Skip to main content

Staphylococcal Pore-Forming Toxins

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 257))

Abstract

Together with Pseudomonas aeruginosa and Escherichia coli, Staphylococcus aureus (S. aureus) is the most frequently isolated bacteria in routine hospital testing. Like the two other pathogens, S. aureus may synthesize numerous virulence factors, develop multiple resistances to antibiotics, and be responsible for numerous no-socomial infections. Within the repertoire of toxins secreted by the bacteria, the pore-forming toxins constitute, similar to the superantigens, a large family of compounds with comparable, though distinct, functions, effects and structures. The lytic effect of these pore-forming toxins has been known for about 100 years (van der Velde 1894). Some of these toxins may be produced by almost all the strains, while others are produced only by a few. The latter group can be investigated for clinical association with diseases. Several related toxins may be genetically maintained and secreted by a single strain. Therefore, it is of interest to understand why these related toxins are conserved, what benefit they provide to the bacteria and what is their contribution to pathogenesis. The role and the mode of action of these toxins have been assessed in a variety of experimental models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahnert-Hilger G, Bhakdi S, Gratzl M (1985) Minimal requirements for exocytosis: a study using PC12 cells permeabilized with staphylococcal alphα-toxin. J Biol Chem 260:12730–12734

    PubMed  CAS  Google Scholar 

  • Baba Moussa L, Sanni A, Dagnra AY, Anagonou S, Prince-David M, Edoh V, Befort JJ, Prévost G, Monteil H (1999a) Approche épidémiologique de l’antibioresistance et de la production de leucotoxines par les souches de Staphylococcus aureus isolees en Afrique de l’Ouest. Med Mai Infect 29:689–696

    Article  Google Scholar 

  • Baba Moussa L, Werner S, Colin DA, Mourey L, Pedelacq JD, Samama JP, Sanni A, Monteil H, Prévost G (1999b) Discoupling the Ca2+-activation from the pore-forming function of the bi-component Panton-Valentine leucocidin in human PMNs. FEBS Lett 461:280–286

    Article  Google Scholar 

  • Bashford CL, Alder GM, Fulford LG, Korchev YE, Kovacs E, MacKinnon A, Pederzolli C, Pasternak CA (1996) Pore formation by S. aureus alphα-toxin in liposomes and planar lipid bilayers: effects of nonelectrolytes. J Membrane Biol 150:37–45

    Article  CAS  Google Scholar 

  • Bayley H (1994) Triggers and switches in a self-assembling pore-forming protein. J Cell Biochem 56: 177–182

    Article  PubMed  CAS  Google Scholar 

  • Belmonte G, Cescatti L, Ferrari B, Nicolussi T, Ropele M, Menestrina G (1987) Pore formation by Staphylococcus aureus alphα-toxin in lipid bilayers: dependence upon temperature and toxin concentration. Eur Biophys J 14:349–358

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer AW (1974) Interactions between membranes and cytolytic bacterial toxins. Biochim Biophys Acta 344:27–50

    CAS  Google Scholar 

  • Bezrukov SM, Kasianowicz JJ (1993) Current noise reveals protonation kinetics and number of ionizable sites in an open protein ion channel. Phys Rev Lett 70:2352–2355

    Article  PubMed  CAS  Google Scholar 

  • Bezrukov SM, Vodyanoy I, Brutyan RA, Kasianowicz JJ (1996) Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 29:8517–8522

    Article  CAS  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1991) S. aureus α-toxin. Microbiol Rev 55:733–751

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Fussle R, Tranum-Jensen J (1981) Staphylococcal α-toxin: oligomerisation of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate detergent micelles. Proc Natl Acad Sci USA 78:5475–5479

    Article  PubMed  CAS  Google Scholar 

  • Bhakdi S, Muhly M, Mannhardt U, Hugo F, Klappetek K, Mueller-Eckardt C, Roka C (1988) Staphylococcal alphα-toxin promotes blood coagulation via attack on human platelets. J Exp Med 168:527–542

    Article  PubMed  CAS  Google Scholar 

  • Bhakdi S, Muhly M, Korom S, Hugo F (1989) Release of interleukin-1 p associated with potent cytocidal action of staphylococcal α-toxin on human monocytes. Infect Immun 57:3512–3519

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Weller U, Walev I, Martin E, Jonas D, Palmer M (1993) A guide to the use of pore-forming toxins for controlled permeabilization of cell membranes. Med Microb Immunol 182:167–175

    CAS  Google Scholar 

  • Bhakdi S, Grimmiger F, Suutorp N, Walmrath D, Seeger W (1994) Proteinaceous bacterial toxins and pathogenesis of sepsis syndrome and septic shock: the unknown connection. Med Microbiol Immunol 183:119–144

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, Weller U, Kehoe M, Palmer M (1996) Staphylococcal alphα-toxin, streptolysin-O, and Escherichia coli haemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol 165:73–79

    Article  PubMed  CAS  Google Scholar 

  • Braha O, Walker B, Cheley S, Kasianowicz JJ, Song L, Gouaux JE, Bayley H (1997) Designed protein pores as components for biosensors. Chem Biol 4:497–505

    Article  PubMed  CAS  Google Scholar 

  • Bramley AJ, Patel AH, O’Reilly M, Foster R, Foster TJ (1989) Roles of alphα-toxin and betα-toxin in virulence of Staphylococcus aureus for the mouse mammary gland. Infect Immun 57:2489–2494

    PubMed  CAS  Google Scholar 

  • Bukelew AR, Colacicco G (1971) Lipid monolayers. Interaction with staphylococcal alphα-toxin. Biochim Biophys Acta 233:7–16

    Article  Google Scholar 

  • Cescatti L, Pederzolli C, Menestrina G (1991) Modification of lysine residues of S. aureus α-toxin: effects on its channel forming properties. J Membrane Biol 119:53–64

    Article  CAS  Google Scholar 

  • Chang C-Y, Niblack B, Walker B, Bayley H (1995) A photogenerated pore forming protein. Chem Biol 2:391–400

    Article  PubMed  CAS  Google Scholar 

  • Cheley S, Malghani MS, Song L, Hobaugh M, Gouaux JE, Yang J, Bayley H (1997) Spontaneous oligomerization of a staphylococcal a-haemolysin conformational constrained by removal of residues that form the transmembrane β-barrel. Protein Eng 10:1433–1443

    Article  PubMed  CAS  Google Scholar 

  • Cheley S, Braha O, Lu X, Conlan S, Bayley H (1999) A functional protein pore with a retro transmembrane domain. Protein Sci 8:1257–1267

    Article  PubMed  CAS  Google Scholar 

  • Colin DA, Mazurier I, Sire S, Finck-Barbancon V (1994) Interaction of the two components of leukocidin from Staphylococcus aureus with human polymorphonuclear leukocyte membranes: sequential binding and subsequent activation. Infect Immun 62:3184–3188

    PubMed  CAS  Google Scholar 

  • Colin DA, Meunier O, Staali L, Prévost G, Monteil H (1997) Bi-component leukotoxins from Staphylococcus aureus. In: Maloy, et al. (eds) Microbial Pathogenesis and host response. Procedings of the Cold Spring Harbor Laboratory on Microbial Pathogenesis and host response. Cold Spring Harbor, New York

    Google Scholar 

  • Cooney J, Kienle Z, Foster TJ, O’Toole PW (1993) The gamma-haemolysin locus of Staphylococcus aureus comprises three linked genes, two of which are identical to the genes for the F and S components of leukocidin. Infect Immun 61:768–771

    PubMed  CAS  Google Scholar 

  • Couppié P, Cribier B, Prévost G, Grosshans E, Piémont Y (1994) Leucocidin from Staphylococcus aureus and cutaneous infections: an epidemiological study. Arch Dermatol 130:1208–1209

    Article  PubMed  Google Scholar 

  • Couppié P, Hommel D, Prévost G, Godart MC, Moreau B, Sainte-Marie D, Peneau C, Hulin A, Monteil H, Pradinaud R (1997) Septicemic a Staphylococcus aureus, furoncle et leucocidine de Panton et Valentine: 3 observations. Ann Dermatol Venereol 124:684–686

    PubMed  Google Scholar 

  • Cribier B, Prévost G, Couppié P, Finck-Barbancon V, Grosshans E, Piémont Y (1992) Staphylococcus aureus leukocidin: a new virulence factor in cutaneous infections. Dermatology 185:175–180

    Article  PubMed  CAS  Google Scholar 

  • Czajkowsky DM, Sheng ST, Shao ZF (1998) Staphylococcal alpha-haemolysin can form hexamers in phospholipid bilayers. J Mol Biol 276:325–330

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, McKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Dufourcq J, Castano S, Talbot JC (1999) 5-toxin, related haemolytic toxins and peptidic analogues. In: Alouf JE, Freer JH (eds) Bacterial protein toxins: a comprehensive sourcebook. Academic Press, London, San Diego, Boston, New-York, Sydney, Tokyo, Toronto

    Google Scholar 

  • Ellis MJ, Hebert H, Thelestam M (1997) Staphylococcus aureus alphα-toxin: Characterization of protein/ lipid interactions, 2D crystallization on lipid monolayers, and 3D structure. J Struct Biol 118:178–188

    Article  PubMed  CAS  Google Scholar 

  • Engelman DM (1996) Crossing the hydrophobic barrier: insertion of membrane proteins. Science 274:1850–1851

    Article  PubMed  CAS  Google Scholar 

  • Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, Toner M (2000) Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nature Biotechnol 18:163–167

    Article  CAS  Google Scholar 

  • Esnouf RM (1997) An extensively modified version of Molscript that includes greatly enhanced coloring capabilities. J Mol Graph 15:133–138

    Google Scholar 

  • Fang Y, Cheley S, Bayley H, Yang J (1997) The heptameric prepore of a staphylococcal alphahaemolysin mutant in lipid bilayers imaged by atomic force microscopy. Biochemistry 36:9518–9522

    Article  PubMed  CAS  Google Scholar 

  • Ferreras M, Menestrina G, Foster T, Colin DA, Prévost G, Piémont Y (1996) Permeabilisation of lipid bilayers by Staphylococcus aureus γ-toxins. In: Frandsen PL, et al. (eds) Bacterial protein toxins. Zbl Bakteriol, Supp. 28. Fischer, Stuttgart, pp 105–106

    Google Scholar 

  • Ferreras M, Hoper F, Dalla Serra M, Colin DA, Prévost G, Menestrina G (1998) The interaction of Staphylococcus aureus bi-component gamma haemolysins and leucocidins with cells and model membranes. Biochim Biophys Acta 1414:108–126

    Article  PubMed  CAS  Google Scholar 

  • Finck-Barbancon V, Prévost G, Piémont Y (1991) Improved purification of leucocidin from Staphylococcus aureus and toxin distribution among hospital strains. Res Microbiol 142:75–85

    Article  PubMed  CAS  Google Scholar 

  • Finck-Barbancon V, Duportail G, Meunier O, Colin DA (1993) Pore formation by a two-component leukocidin from Staphylococcus aureus within the membrane of human polymorphonuclear leukocytes. Biochim Biophys Acta 1182:275–282

    PubMed  CAS  Google Scholar 

  • Fink D, Contreras ML, Lelkes PI, Lazarovici P (1989) Staphylococcus α-toxin activates phospholipases and induces a Ca2+ influx in PC12 cells. Cellular signaling 1:387–393

    Article  CAS  Google Scholar 

  • Forti S, Menestrina G (1989) Staphylococcal alphα-toxin increases the permeability of lipid vesicles by a cholesterol and pH dependent assembly of oligomeric channels. Eur J Biochem 181:767–773

    Article  PubMed  CAS  Google Scholar 

  • Freer JH, Arbuthnott JP, Bernheimer AW (1968) Interaction of staphylococcal alphα-toxin with artificial and natural membranes. J Bacteriol 95:1153–1168

    PubMed  CAS  Google Scholar 

  • Fiissle R, Bhakdi S, Sziegoleit A, Tranum-Jensen J, Kranz T, Wellensiek HJ (1981) On the mechanism of membrane damage by Staphylococcus aureus alphα-toxin. J Cell Biol 91:83–94

    Article  Google Scholar 

  • Gladstone GP, Van Heyningen WE (1957) Staphylococcal leucocidin. Brit J Exptl Pathol 38:125–137

    Google Scholar 

  • Gouaux E (1997) Channel-forming toxins: tales of transformation. Curr Op Struct Biol 7:566–573

    Article  CAS  Google Scholar 

  • Gouaux E (1998) α-Haemolysin from Staphylococcus aureus: an archetype of β-barrel, channel-forming toxins. J Struct Biol 121:110–122

    Article  PubMed  CAS  Google Scholar 

  • Gouaux JE, Braha O, Hobaugh MR, Song L, Cheley S, Shustak C, Bayley H (1994) Subunit stoichiometry of staphylococcal a-haemolysin in crystals and on membranes: a heptameric transmembrane pore. Proc Natl Acad Sci USA 91:12828–12831

    Article  PubMed  CAS  Google Scholar 

  • Gouaux JE, Hobaugh M, Song L (1997) a-haemolysin, y-haemolysin and leukocidin from Staphylococcal aureus: distant in sequence but similar in structure. Protein Sci 6:2631–2635

    Article  PubMed  CAS  Google Scholar 

  • Gouet P, Courcelle E, Stuart D, Metoz F (1998) ESPript: multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  Google Scholar 

  • Gravet A, Colin DA, Keller D, Girardot R, Monteil H, Prévost G (1998) Characterization of a novel structural membre, LukE-LukD, of the bi-component leucotoxins family. FEBS Lett 436:202–208

    Article  PubMed  CAS  Google Scholar 

  • Gravet A, Rondeau M, Harf-Monteil C, Grunenberger F, Monteil H, Scheftel JM, Prévost G (1999) Predominant Staphylococcus aureus isolated from antibiotic-associated diarrhea is clinically relevant and produces enterotoxin A and the bicomponent toxin LukE-LukD. J Clin Microbiol 37:4012–4019

    PubMed  CAS  Google Scholar 

  • Gray GS, Kehoe M (1984) Primary sequence of the α-toxin gene from Staphylococcus aureus Wood 46. Infect Immun 46:615–618

    PubMed  CAS  Google Scholar 

  • Greenwald J, Fischer WH, Vale WW, Choe S (1999) Three-finger toxin fold for the extracellular ligandbinding domain of the type II activin receptor serine kinase. Nat Struct Biol 6:18–22

    Article  PubMed  CAS  Google Scholar 

  • Grojec P (1979) Distribution of 131I-labelled staphylococcal leukocidin in mouse organs. Med Dosw Mikrobiol 31:209–216

    PubMed  CAS  Google Scholar 

  • Grojec PL, Jeljaszewicz J (1985) Staphylococcal leukocidin, Panton-Valentine type. J Toxicol Toxin Reviews 4:133–189

    CAS  Google Scholar 

  • Gu LQ, Braha O, Conlan S, Cheley S, Bayley H (1999) Stochastic sensing of organic analytes by a poreforming protein containing a molecular adapter. Nature 398:686–690

    Article  PubMed  CAS  Google Scholar 

  • Hensler T, Köller M, Prévost G, Piémont Y, König W (1994a) GTP-binding proteins are involved in the modulated activity of human neutrophils treated by the Panton-Valentine leucocidin from Staphylococcus aureus. Infect Immun 62:5281–5289

    PubMed  CAS  Google Scholar 

  • Hensler T, König B, Prévost G, Piémont Y, Köller M, König W (1994b) LTB4-and DNA fragmentation induced by leukocidin from Staphylococcus aureus. The protective role of GM-CSF and G-CSF on human neutrophils. Infect Immun 62:2529–2535

    PubMed  CAS  Google Scholar 

  • Hildebrand A, Pohl M, Bhakdi S (1991) Staphylococcus aureus alphα-toxin. Dual mechanism of binding to target cells. J Biol Chem 266:17195–17200

    PubMed  CAS  Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer Associates Publishers, Sunderland Massachussets

    Google Scholar 

  • Jonas D, Walev I, Berger T, Liebetrau M, Palmer M, Bhakdi S (1994) Novel path to apoptosis: small transmembrane pores created by staphylococcal α-toxin in T lymphocytes evoke internucleosomal DNA degradation. Infect Immun 62:1304–1312

    PubMed  CAS  Google Scholar 

  • Jonsson P, Lindberg M, Haraldsson I, Wadstrom T (1985) Virulence of Staphylococcus aureus in a mouse mastitis model: studies of alpha-haemolysin, coagulase, and protein. A possible virulence determinants with protoplast fusion and gene-cloning. Infect Immun 49:765–769

    PubMed  CAS  Google Scholar 

  • Jursch R, Hildebrand A, Hobom G, Tranum-Jensen J, Ward R, Kehoe M, Bhakdi S (1994) Histidine residues near the N-terminus of Staphylococcus alphα-toxin as reporters of regions that are critical for oligomerization of pore-formation. Infect Immun 62:2249–2256

    PubMed  CAS  Google Scholar 

  • Kamio Y, Rahman A, Nariya H, Ozawa T, Izaki K (1993) The two staphyloccocal bi-component toxins, leukocidin and gamma-haemolysin, share one component in common. FEBS Lett 321:15–18

    Article  PubMed  CAS  Google Scholar 

  • Kaneko J, Kimura T, Kawakami Y, Tomita T, Kamio Y (1997a) Panton-Valentine genes in a phage-like particle isolated from mytomycin C-treated Staphylococcus aureus V8 (ATCC 49775). Biosc Biotech Biochem 61:1960–1962

    Article  CAS  Google Scholar 

  • Kaneko J, Muramoto K, Kamio Y (1997b) Gene of LukF-PV-like component of Panton-Valentine leukocidin in Staphylococcus aureus P83 is linked with lukM. Biosc Biotech Biochem 61:541–544

    Article  CAS  Google Scholar 

  • Kasianowicz JJ, Bezrukov SM (1995) Protonation dynamics of the alphα-toxin ion channel from spectral analysis of pH-dependent current fluctuations. Biophys J 69:94–105

    Article  PubMed  CAS  Google Scholar 

  • Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93:13770–13773

    Article  PubMed  CAS  Google Scholar 

  • Katsumi H, Tomita T, Kaneko J, Kamio Y (1999) Vitronectin and its fragments purified as serum inhibitors of Staphylococcus aureus y-haemolysin and leucocidin, and their specific binding to the Hlg2 and the LukS components of the toxins. FEBS Lett 460:451–456

    Article  PubMed  CAS  Google Scholar 

  • Köller M, Hensler T, König B, Prévost G, Alouf J, König W (1993) Induction of heat-shock proteins by bacterial toxins, lipid mediators and cytokines in human leucocytes. Zbl Bakt 278:365–376

    Google Scholar 

  • König B, Köller M, Prévost G, Piémont Y, Alouf JE, Schreiner A, König W (1994) Activation of human effector cells by different bacterial toxins (leukocidin, alveolysin, erythrogenic toxin A): generation of interleukin-8. Infect Immun 62:4831–4837

    PubMed  Google Scholar 

  • König B, Prévost G, Piémont Y, König W (1995) Effects of Staphylococcus aureus leucocidins inflammatory mediator release from human granulocytes. J Infect Dis 171:607–613

    Article  PubMed  Google Scholar 

  • König B, Prévost G, König W (1997) Composition of staphylococcal bi-component toxins determines pathophysiological reactions. J Med Microbiol 46:479–485

    Article  PubMed  Google Scholar 

  • Korchev YE, Alder GM, Bakhramov A, Bashford CL, Joomun BS, Sviderskaya EV, Usherwood PNR, Pasternak CA (1995a) Staphylococcus aureus alphα-toxin-induced pores: channel-like behavior in lipid bilayers and clamped cells. J Membrane Biol 143:143–151

    Article  CAS  Google Scholar 

  • Korchev YE, Bashford CL, Alder GM, Kasianowicz JJ, Pasternak CA (1995b) Low conductance states of a single ion channel are not “closed”. J Membrane Biol 147:233–239

    Article  CAS  Google Scholar 

  • Krasilnikov OV, Ternovskii VI, Sabirov RZ, Zaripova RK, Tashmukhamedov BA (1986) Cationicanionic selectivity of staphylotoxin channels in lipid bilayer. Biophysics 31:658–663

    Google Scholar 

  • Krasilnikov OV, Sabirov RZ, Ternovsky OV, Merzlyak PG, Muratkhodjaev JN (1992) A simple method for the determination of the pore radius of channels in planar lipid bilayer membranes. FEMS Microbiol Immunol 105:93–100

    Article  Google Scholar 

  • Krasilnikov OV, Merzlyak PG, Yuldasheva LN, Nogueira RA, Rodrigues CG (1995) Nonstochastic distribution of single channels in planar lipid bilayers. Biochim Biophys Acta 1233:105–110

    Article  PubMed  Google Scholar 

  • Krishnasastry M, Walker B, Braha O, Bayley H (1994) Surface labelling of key residuesb during assemblybof the transmembrane poreformed by staphylococcal a-haemolysin. FEBS Lett 1994, 356:66–71

    Article  CAS  Google Scholar 

  • Kumar TKS, Jayaraman G, Lee CS, Arunkumar AI, Sivaraman T, Samuel D, Yu C (1997) Snake venom cardiotoxins-structure, dynamics, function and folding. J Biomol Struct Dyn 15:431–463

    PubMed  CAS  Google Scholar 

  • Lala A, Raja SM (1995) Photolabelling of a pore-forming toxin with the hydrophobic probe 2-[3H]diazofluorene. J Biol Chem 270:11348–11357

    Article  PubMed  CAS  Google Scholar 

  • Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter M-O, Vandenesch F, Jerome E (1999) Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and Pneumonia. Clin Infect Dis 29:1128–1132

    Article  PubMed  CAS  Google Scholar 

  • McElroy MC, Harty HR, Hosford GE, Boylan GM, Pittet JF, Foster TJ (1999) Alphα-toxin damages the air-blood barrier of the lung in a rat model of Staphylococcal aureus-mducQd pneumonia. Infect Immun 67:5541–5544

    PubMed  CAS  Google Scholar 

  • Menestrina G (1986) Ionic channels formed by Staphylococcus aureus alphα-toxin: voltage dependent inhibition by di-and trivalent cations. J Membrane Biol 90:177–190

    Article  CAS  Google Scholar 

  • Menestrina G, Vécsey-Semjén B (1999) Biophysical methods and model membranes for the study of bacterial pore-forming toxins. In: Alouf JE, Freer JH (eds) Bacterial protein toxins: a comprehensive sourcebook. Academic Press, London, San Diego, Boston, New-York, Sydney, Tokyo, Toronto

    Google Scholar 

  • Menzies BE, Kernodle DS (1994) Site-directed mutagenesis of the alphα-toxin gene of Staphylococcus aureus: role of histidines in toxin activity in vitro and in a murine model. Infect Immun 62:1843–1847

    PubMed  CAS  Google Scholar 

  • Meunier O, Falkenrodt A, Monteil H, Colin DA (1995) Application of flow cytometry in toxinology: pathophysiology of human polymorphonuclear leucocytes damaged by a pore-forming toxin from Staphylococcus aureus. Cytometry 21:241–247

    Article  PubMed  CAS  Google Scholar 

  • Meunier O, Ferreras M, Supersac G, Hoeper F, Baba Moussa L, Monteil H, Colin DA, Menestrina G, Prévost G (1997) A predicted β-sheet from class S components of staphylococcal y-haemolysin is essential for the secondary interaction of the class F component. Biochim Biophys Acta 1326:275–289

    Article  PubMed  CAS  Google Scholar 

  • Nelson AP, MacQuarrie DA (1975) The effects of discrete charge on the electrical properties of a membrane. Int J Theor Biol 55:13–27

    Article  CAS  Google Scholar 

  • Noda M, Kato I, Matsuda F, Hyrayama T (1980) Fixation and inactivation of staphylococcal leukocidin by phosphatidylcholine and ganglioside GM1 in rabbit polymorphonuclear leucocytes. Infect Immun 29:678–684

    PubMed  CAS  Google Scholar 

  • Noda M, Kato I, Matsuda F, Hirayama T (1981) Mode of action of staphylococcal leucocidin: relationship between binding of 125I-labeled S and F components of leucocidin to rabbit polymorphonuclear leukocytes and leucocidin activity. Infect Immun 34:362–367

    PubMed  CAS  Google Scholar 

  • O’Callaghan RJ, Callegan MC, Moreau JM, Green LC, Foster TJ, Hartford OM, Engel LS, Hill JM (1997) Specific roles of alphα-toxin and betα-toxin during Staphylococcus aureus corneal infection 65:1571–1578

    Google Scholar 

  • Olofsson A, Kaveus U, Thelestam M, Hebert H (1988) The projection structure of α-toxin from Staphylococcus aureus in human platelet membranes as analyzed by electron microscopy and image processing. J Ultrastruct Mol Struct Res 100:194–200

    Article  PubMed  CAS  Google Scholar 

  • Olofsson A, Kaveus U, Hacksell I, Thelestam M, Hebert H (1990) Crystalline layers and three-dimensional structure of Staphylococcus aureus α-toxin. J Mol Biol 214:299–306

    Article  PubMed  CAS  Google Scholar 

  • Olson R, Nariya H, Yokota K, Kamio Y, Gouaux E (1999) Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat Struct Biol 6:134–140

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly M, deAzavedo JCS, Kennedy S, Foster TJ (1986) Inactivation of the alpha-haemolysin gene of Staphylococcus aureus 8325-4 by site-directed mutagenesis and studies of the expression of its haemolysis. Microb Pathogen 1:125–131

    Article  Google Scholar 

  • Ozawa T, Kaneko J, Nariya H, Izaki K, Kamio Y (1994) Inactivation of y-haemolysin Hyll component by addition of monosialoganglioside GM1 to human erythrocyte. Biosc Biotech Biochem 58:602–605

    Article  CAS  Google Scholar 

  • Panchal RG, Cusak E, Cheley S, Bayley H (1996) Tumor protease-activated, pore-forming toxins from a combinatorial library. Nature Biotech 14:852–856

    Article  CAS  Google Scholar 

  • Panton PN, Valentine FCO (1932) Staphylococcal toxin. Lancet 222:506–508

    Article  Google Scholar 

  • Patel A, Nowlan HP, Weavers ED, Foster TJ (1987) Virulence of protein A-deficient and alphα-toxindeficient mutants of Staphylococcus aureus isolated by allele replacement. Infect Immun 55:3103–3110

    PubMed  CAS  Google Scholar 

  • Paula S, Akeson M, Deamer D (1999) Water transport by the bacterial channel a-haemolysin. Biochim Biophys Acta 1418:117–126

    Article  PubMed  CAS  Google Scholar 

  • Pedelacq JD, Maveyraud L, Prévost G, Baba-Moussa L, Gonzalez A, Courcelle E, Shepard W, Monteil H, Samama JP, Mourey L (1999) The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 7:277–287

    Article  PubMed  CAS  Google Scholar 

  • Pederzolli C, Cescatti L, Menestrina G (1991) Chemical modification of Staphylococcus aureus α-toxin by diethylpyrocarbonate: role of histidines in its membrane-damaging properties. J Memb Biol 119: 41–52

    Article  CAS  Google Scholar 

  • Prévost G (1999) The bi-component staphylococcal leucotoxins and y-haemolysins (toxins). In: Alouf JE, Freer JH (eds) Bacterial protein toxins: a comprehensive sourcebook. Academic Press, London, San Diego, Boston, New-York, Sydney, Tokyo, Toronto

    Google Scholar 

  • Prévost G, Bouakham T, Piémont Y, Monteil H (1995a) Characterization of a synergohymenotropic toxin from Staphylococcus intermedius. FEBS Lett 376:135–140

    Article  PubMed  Google Scholar 

  • Prévost G, Couppié P, Prévost P, Gayet S, Petiau P, Cribier B, Monteil H, Piémont Y (1995b) Epidemiological data on Staphylococcus aureus strains producing synergohymenotropic toxins. J Med Microbiol 42:237–245

    Article  PubMed  Google Scholar 

  • Prévost G, Cribier B, Couppié P, Petiau P, Supersac G, Finck-Barbancon V, Monteil H, Piémont Y (1995c) Panton-Valentine leucocidin and gamma-haemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infect Immun 63:4121–4129

    PubMed  Google Scholar 

  • Rees B, Bilwes A (1993) Three-dimensional structures of neurotoxins and cardiotoxins. Chem Res Toxicol 6:385–406

    Article  PubMed  CAS  Google Scholar 

  • Russo MJ, Bayley H, Toner M (1997) Reversible permeabilisation of plasma membranes with an engineered switchable pore. Nature Biotech 15:278–282

    Article  CAS  Google Scholar 

  • Sanner MF, Spehner J-C, Olson AJ (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38:305–320

    Article  PubMed  CAS  Google Scholar 

  • Seeger W, Birkenmeyer RG, Ermert N, Suttorp N, Bhakdi S, Dunker HR (1990) Staphylococcal alphatoxin-induced vascular leakage in isolated perfused rabbit lungs. Lab Investig 63:341–349

    PubMed  CAS  Google Scholar 

  • Siqueira JA, Speeg-Schatz C, Freitas FIS, Sahel J, Monteil H, Prévost G (1997) Channel-forming leucotoxins from Staphylococcus aureus cause severe inflammatory reactions in a rabbit eye model.J Med Microbiol 46:486–494

    Article  PubMed  CAS  Google Scholar 

  • Smith ML, Price SA (1938) Staphylococcus y-haemolysin. J Pathol Bacteriol 47:379–393

    Article  CAS  Google Scholar 

  • Song L, Gouaux E (1998) Crystallization of the alpha-haemolysin heptamer solubilized in decyldimethyland decyldiethylphosphine oxide. Acta Crystallogr D 54:276–278

    Article  PubMed  CAS  Google Scholar 

  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-haemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Staali L, Monteil H, Colin DA (1998) The pore-forming leukotoxins from Staphylococcus aureus open Ca2+ channels in human polymorphonuclear neutrophils. J Membrane Biol 162:209–216

    Article  CAS  Google Scholar 

  • Staali L, Monteil H, Colin DA (2000) Staphylococcal bi-component leukotoxins induce the opening of Ca2+-activated K+ and Cl channels and form pores specific for monovalent cations (K+,Na+). In: Locht et al. (eds) Bacterial Protein toxins. ZentralBlatt für Bakteriologie, 2000, Supp., in press. A Gustav Fischer Verlag, Stuttgart, Iena, New-York

    Google Scholar 

  • Sugawara N, Tomita T, Kamio Y (1997) Assembly of Staphylococcus aureus gamma-haemolysin into a pore-forming ring-shaped complex on the surface of human erythrocytes. FEBS Lett 410:333–337

    Article  PubMed  CAS  Google Scholar 

  • Sugawara N, Tomita T, Sato T, Kamio Y (1999) Assembly of Staphylococcus aureus leukocidin into a pore-forming ring-shaped oligomer on human polymorphonuclear leukocytes and rabbit erythrocytes. Biosci Biotech Biochem 63:884–891

    Article  CAS  Google Scholar 

  • Supersac G, Prévost G, Piémont Y (1993) Sequencing of leucocidin R from Staphylococcus aureus P83 suggests that staphylococcal leucocidins and gamma-haemolysin are members of a single, twocomponent family of toxins. Infect Immun 61:580–587

    PubMed  CAS  Google Scholar 

  • Supersac G, Piémont Y, Kubina M, Prévost G, Foster TJ (1998) Assessment of the role of gammα-toxin in experimental endophthalmitis using a Ahlg deficient mutant of Staphylococcus aureus. Microb Pathogenesis 24:241–251

    Article  CAS  Google Scholar 

  • Szmigielski S, Jeljaszewicz J, Wiszinski J, Korbecki M (1966) Reaction of rabbit leucocytes to staphylococcal (Panton-Valentine) leukocidin in vivo. J Path Bacteriol 84:599–604

    Article  Google Scholar 

  • Szmigielski S, Sobiczewska E, Prévost G, Monteil H, Colin DA, Jeljaszewicz J (1998) Effects of purified staphylococcal leukocidal toxins on isolated blood polymorphonuclear leukocytes and peritoneal macrophages in vitro. Zbl Bakt 288:383–394

    CAS  Google Scholar 

  • Thibodeau A, Yao X, Forte JG (1994) Acid secretion in α-toxin-permeabiliszed gastric glands. Biochem Cell Biol 72:26–35

    Article  PubMed  CAS  Google Scholar 

  • Tobkes N, Wallace BA, Bayley H (1985) Secondary structure and assembly mechanism of an oligomeric channel protein. Biochemistry 24:1915–20

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Watanabe M, Yarita Y (1993) Assembly and channel-forming activity of a naturally-occuring nicked molecule of Staphylococcus aureus α-toxin. Biochim Biophys Acta 1145:51–57

    Article  PubMed  CAS  Google Scholar 

  • Tweten RK, Christianson KK, Iandolo JJ (1983) Transport and processing of staphylococcal alphatoxin. J Bacteriol 156:524–528

    PubMed  CAS  Google Scholar 

  • Valeva A, Weisser A, Walker B, Kehoe M, Bhakdi S, Palmer M (1996) Molecular architecture of toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal α-toxin. EMBO J 15:1857–1864

    PubMed  CAS  Google Scholar 

  • Valeva A, Palmer M, Bhakdi S (1997) Staphylococcal alphα-toxin: Formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages. Biochemistry 36:13298–13304

    Article  PubMed  CAS  Google Scholar 

  • Van der Velde H (1894) Etude sur le mecanisme de la virulence du staphylocoque pyogene. La Cellule 10:401–460

    Google Scholar 

  • Van der Vijver JCM, van Es-Boon M, Michel MF (1972) Lysogenic conversion in Staphylococcus aureus to leucocidin production. J Virology 10:318–319

    PubMed  Google Scholar 

  • Vécsey-Semjén B (1997) Conformational changes in Staphylococcus aureus α-toxin: from water-soluble monomer to a transmembrane channel. PhD Thesis, Karolinska Institute, Stockholm, p 57

    Google Scholar 

  • Vécsey-Semjén B, Lesieur C, Mollby R, van der Goot FG (1997) Conformational changes due to membrane binding and channel formation by staphylococcal α-toxin. J Biol Chem 272:5709–5717

    Article  PubMed  Google Scholar 

  • Vécsey-Semjén B, Knapp S, Mollby R, van der Goot FG (1999) The staphylococcal α-toxin has a flexible conformation. Biochemistry 38:4296–4302

    Article  PubMed  Google Scholar 

  • Walev I, Martin E, Jonas D, Mohamadzadeh M, Muller-Klieser W, Kunz L, Bhakdi S (1993) Staphylococcal alphα-toxin kills human keratinocytes by permeabilizing the plasma membrane for monovalent ions. Infect Immun 61:4972–4979

    PubMed  CAS  Google Scholar 

  • Walev I, Palmer M, Martin M, Jonas D, Weller U, Hohn-Bentz H, Husmann M, Bhakdi S (1994) Recovery of human fibroblasts from attack by the pore-forming α-toxin of Staphylococcus aureus. Microb Pathogenesis 17:187–201

    Article  CAS  Google Scholar 

  • Walker B, Bayley H (1994) A pore-forming protein with a protease-activated trigger. Protein Eng 7:91–97

    Article  PubMed  CAS  Google Scholar 

  • Walker B, Bayley H (1995a) Key residues for membrane binding, oligomerization, and pore forming activity of staphylococcal alpha-haemolysin identified by cysteine scanning mutagenesis and targeted chemical modification. J Biol Chem 270:23065–23071

    Article  PubMed  CAS  Google Scholar 

  • Walker B, Bayley H (1995b) Restoration of pore forming activity in staphylococcal alpha-haemolysin by targeted covalent modification. Protein Eng 8:491–495

    Article  PubMed  CAS  Google Scholar 

  • Walker B, Krishnasastry M, Zorn L, Bayley H (1992) Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-haemolysin examined by truncation mutagenesis. J Biol Chem 267:21782–21786

    PubMed  CAS  Google Scholar 

  • Walker B, Krishnasastry M, Bayley H (1993) Functional complementation of staphylococcal alphahaemolysin fragments. Overlaps, nicks, and gaps in the glycine-rich loop. J Biol Chem 268:5285–5292

    PubMed  CAS  Google Scholar 

  • Walker B, Kasianowicz J, Krishnasastry M, Bayley H (1994) A pore-forming protein with a metalactuated switch. Protein Eng 7:655–662

    Article  PubMed  CAS  Google Scholar 

  • Walker B, Braha O, Cheley S, Bayley H (1995) An intermediate in the assembly of a pore-forming protein trapped with a genetically-engineered switch. Chem Biol 2:99–105

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Noda M, Kato I (1990) Stimulatory effect of staphylococcal leucocidin on phosphoinositide metabolism in rabbit polymorphonuclear leucocytes. Infect Immun 58:2745–2749

    PubMed  CAS  Google Scholar 

  • Ward RJ, Leonard K (1992) Staphylococcus aureus alphα-toxin channel complex and the effect of Ca2+ ions on its interaction with lipid layers. J Struct Biol 109:129–141

    Article  PubMed  CAS  Google Scholar 

  • Ward PD, Adlam C, McCartney AC, Arbuthnott JP, Thorley CM (1979) A histopathological study of the effects of highly purified staphylococcal alpha-and betα-toxins on lactating mammary gland and skin of the rabbit. J Comp Pathol 89:169–177

    Article  PubMed  CAS  Google Scholar 

  • Ward RJ, Palmer M, Leonard K, Bhakdi S (1994) Identification of a putative membrane-inserted segment in the alphα-toxin of Staphylococcus aureus. Biochemistry 33:7477–7484

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Tomita T, Yasuda T (1987) Membrane-damaging action of staphylococcal alphα-toxin on phospholipid cholesterol liposomes. Biochim Biophys Acta 898:257–265

    Article  PubMed  CAS  Google Scholar 

  • Woodin AM (1960) Purification of the two components of leukocidin from Staphylococcus aureus. Biochem J 75:158–165

    PubMed  CAS  Google Scholar 

  • Woodin AM (1972) The staphylococcal leukocidin. In: Cohen JO (ed) The staphylococci. Wiley, New-York, pp 133–189

    Google Scholar 

  • Wright J (1936) Staphylococcal leukocidin (Neisser-Weschberg type) and antileucocidin. Lancet 230:1002–1004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prévost, G., Mourey, L., Colin, D.A., Menestrina, G. (2001). Staphylococcal Pore-Forming Toxins. In: van der Goot, F.G. (eds) Pore-Forming Toxins. Current Topics in Microbiology and Immunology, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56508-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56508-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62545-9

  • Online ISBN: 978-3-642-56508-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics