Skip to main content

The Role of Descending Noradrenergic and Serotoninergic Pathways in the Modulation of Nociception: Focus on Receptor Multiplicity

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 130))

Abstract

Monoamines play a key role in the modulation of nociception at all levels of the neuroaxis; on cutaneous (and other) nocisponsive fibres in interaction with sympathetic terminals; in the dorsal horn (DH) of the spinal cord, the site of primary processing of afferent nociceptive information; in the thalamus and other targets of ascending nociceptive information wherein the integration of nociceptive input is pursued; and in those higher limbic and cortical structures responsible for the conscious (cognitive and emotional) appreciation of pain. Perhaps the most familiar of these roles is the ability of monoamines to modify the flow of nociceptive information to the brain via an action in the DH of the spinal cord. In this respect there is fragmentary evidence that dopamine, possibly by antinociceptive and pronociceptive actions at dopamine D2 and D1 receptors, respectively, may be implicated (Björklund and Skagersberg 1982; Bourgoin et al. 1993; Fleetwood-Walker et al. 1988; Kiritsky-Roy et al. 1994; Scatton et al. 1984). Further, the recent discovery of dopamine D4 receptors in human spinal cord (Matsumoto et al. 1996) suggests that a role of other dopamine receptor types in spinal mechanisms for the modulation of nociception should not be ignored. However, the vast majority of available data concerning the integration of nociceptive information in the DH relates to the role of adrenergic and serotoninergic mechanisms.They thus cpmprise the principal focus of the present article.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aantaa R, Scheinin M (1993) Alpha2-adrenergic agents in anaesthesia. Acta Anasthesiol Scand 37:433–448

    CAS  Google Scholar 

  • Abram SE, Winne RP (1995) Intrathecal acetylcholinesterase inhibitors produce analgesia that is synergistic with morphine and Clonidine in rats. Anesth Analg 81:501–507

    PubMed  CAS  Google Scholar 

  • Advokat C (1988) The role of descending inhibition in morphine-induced analgesia. Trends Pharmacol Sci 9:330–334

    PubMed  CAS  Google Scholar 

  • Advokat C (1993) Intrathecal coadministration of serotonin and morphine differentially modulates the tail-flick reflex of intact and spinal rats. Pharmacol Biochem Behav 45:871–879

    PubMed  CAS  Google Scholar 

  • Aho MS, Erkola OA, Scheinin M, Lehtinen AM, Kortila KT (1991) Effect of intravenously administered dexmedetomidine on pain after laparoscopic tubal ligation. Anesth Analg 73:112–118

    PubMed  CAS  Google Scholar 

  • Aho MS, Scheinin H, Lehtinen AM, Erkola OA, Vuorinen J, Korttila KT (1992) Intramuscularly administered dexmedetomidine attenuates hemodynamic and stress hormone responses to gynecologic laparoscopy. Anesth Analg 75:932–939

    PubMed  CAS  Google Scholar 

  • Aimone LD, Jones SL, Gebhart G (1987) Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Pain 31:123–136

    PubMed  CAS  Google Scholar 

  • Alhaider AA, Wilcox GL (1993) Differential roles of 5-hydroxytryptamine1A and 5-hydroxytryptaminelB receptor subtypes in modulating spinal nociceptive transmission in mice. J Pharmacol Exp Ther 265:378–385

    PubMed  CAS  Google Scholar 

  • Alhaider AA, Lei SZ, Wilcox GL (1991) Spinal 5-HT3 receptor-mediated antinociception: possible release of GABA. J Neurosci 11:1881–1888

    PubMed  CAS  Google Scholar 

  • Ali Z, Wu G, Kozlov A, Barasi S (1994) The actions of 5-HT1 agonists and antagonists on nociceptive processing in the rat spinal cord: results from behavioural and electrophysiological studies. Brain Res 661:83–90

    PubMed  CAS  Google Scholar 

  • Ali Z, Wu G, Kozlov A, Barasi S (1996) The role of 5-HT3 receptors in nociceptive processing in the rat spinal cord: results from behavioural and electrophysiological studies. Neurosci Lett 208:203–207

    PubMed  CAS  Google Scholar 

  • Anghinah R, Oliveira ASB, Gabbai AA (1994) Effect of baclofen on pain in diabetic neuropathy. Muscle Nerve 17:958–959

    PubMed  CAS  Google Scholar 

  • Antal M, Petkó M, Polgár E, Heizmann CW, Storm-Mathisen J (1996) Direct evidence of an extensive gabaergic innervation of the spinal dorsal horn by fibres descending from the rostral ventromedial medulla. Neuroscience 73:509–518

    PubMed  CAS  Google Scholar 

  • Arnér S, Meyerson BA (1988) Opioids in neuropathic pain. Pain Dig 3:15–22

    Google Scholar 

  • Arts KS, Holmes BB, Fujimoto JM (1991) Differential contribution of descending serotonergic and noradrenergic systems to central Tyr-D-Ala-Gly-NMePhe-Gly-ol (DAMGO) and morphine-induced antinociception in mice. J Pharmacol Exp Ther 256:890–896

    PubMed  CAS  Google Scholar 

  • Arvidsson U, Cullheim S, Ulfhake B, Dagerlind A, Luppi P, Kitahama K, Jouvet M, Terenius L, Hokfelt T (1992) Distribution of enkephalin and its relation to serotonin in cat and monkey spinal cord and brain stem. Synapse 11:85–104

    PubMed  CAS  Google Scholar 

  • Arvidsson U, Dado RJ, Riedl M, Lee JH, Law PY, Loh HH, Elde, R, Wessendorf MW (1995) Delta-opioid receptor immunoreactivity. Distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin. J Neurosci 15:1215–1235

    PubMed  CAS  Google Scholar 

  • Ashby CR, Edwards E, Wang RY (1994) Electrophysiological evidence for a functional interaction between 5-HT1A and 5-HT2 receptors in the rat medial prefrontal cortex: an iontophoretic study. Synapse 17:173–181

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Shipley MT, Chouvet G, Ennis M, van Bockstaele E, Pieribone V, Shiekhattar R, Akaola H, Drtolet G, Astier B, Charléty P, Valentino RJ, Williams JT (1991) Afferent regulation of locus coeruleus neurones: anatomy, physiology and pharmacology. Prog Brain Res 88:47–75

    PubMed  CAS  Google Scholar 

  • Auerbach SB, Fornal C, Jacobs BL (1985) Response of serotonin-containing neurones in nucleus raphe magnus to morphine, noxious stimuli and PAG stimulation in freely moving cats. Exp Neurol 88:609–628

    PubMed  CAS  Google Scholar 

  • Ault B, Hildebrand LM (1993) Effects of excitatory amino acid receptor antagonists on a capsaicin-evoked nociceptive reflex: a comparison with morphine, Clonidine and baclofen. Pain 52:341–349

    PubMed  CAS  Google Scholar 

  • Bank WA, Kastin AJ, Trentman TL, Hayes HS, Johnson BG, Galina ZH (1988) Mediation of serotonin-induced analgesia by the 5-HT2 receptor in the pentobarbital anesthetized mouse model. Brain Res Bull 21:887–891

    Google Scholar 

  • Barbaro NM, Hammond DL, Fields HL (1985) Effects of intrathecally administered methysergide and yohimbine on microstimulation-produced antinociception in the rat. Brain Res 343:223–229

    PubMed  CAS  Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    PubMed  CAS  Google Scholar 

  • Basbaum AI, Zahs K, Lord B, Lakos S (1988) The fiber caliber of 5-HT immunoreactive axons in the dorsolateral funiculus of the spinal cord of the rat and cat. Somatosens Res 5:177–185

    PubMed  CAS  Google Scholar 

  • Basbaum AI, Chi SI, Levine JD (1991) Factors that contribute to peripheral nerve injury-evoked persistent expression of the C-fos proto-oncogene in the spinal cord of the rat. In: Besson JM, Guilbaud G (eds) Lesions of the primary afferents fibres as a tool for the study of clinical pain. Elsevier, Amsterdam, pp 205–218

    Google Scholar 

  • Beitz AJ, Mullett MA, Brandt N (1988) The relationship of periaqueductal gray projections to bulbospinal neurons: a combined fluorogold-PHAL analysis. Soc Neurosci Abstr 14:856

    Google Scholar 

  • Belcher G, Ryall RW, Schaffner B (1978) The differential effects of 5-hydroxytryptamine, noradrenaline and raphe stimulation on nociceptive and non-nociceptive dorsal horn interneurones in the cat. Brain Res 151:307–321

    PubMed  CAS  Google Scholar 

  • Benhamou D, Narchi P, Hamza J, Marx M, Peyrol MT, Sembeil F (1994) Addition of oral Clonidine to postoperative patient-controlled analgesia with i.v. morphine. Br J Anaesth 72:537–540

    PubMed  CAS  Google Scholar 

  • Bergles DE, Doze VA, Madison DV, Smith SJ (1996) Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurones. J Neurosci 16:572–585

    PubMed  CAS  Google Scholar 

  • Berkowitz DE, Price DT, Bello EA, Page SO, Schwinn DA (1994) Localization of messenger RNA for three distinct <i>α</i>2-adrenergic receptor subtypes in human tissues. Anesthesiology 81:1235–1244

    PubMed  CAS  Google Scholar 

  • Bernard JM, Kick O, Bonnet F (1995) Comparison of intravenous and epidural Clonidine for postoperative patient-controlled analgesia. Anesth Analg 81:706–712

    PubMed  CAS  Google Scholar 

  • Bernardi PS, Valtschanoff JG, Weinberg RJ, Schmidt HHHW, Rustioni A (1995) Synaptic interactions between primary afferent terminals and GABA and nitric oxide-synthesizing neurons in superficial laminae of the rat spinal cord. J Neurosci 15:1363–1371

    PubMed  CAS  Google Scholar 

  • Bervoets K, Millan MJ (1994) 5-HT1A receptors and the tail-flick response. V. Opposite modulation of 5-HT1A receptor-induced spontaneous tail-flicks by α-1A — as compared to α-2D — adrenoceptors in rat lumbar spinal cord. J Pharmacol Exp Ther 269:110–120

    PubMed  CAS  Google Scholar 

  • Bervoets K, Rivet JM, Millan MJ (1993) 5-HT1A receptors and the tail-flick response. IV: Spinally-localized 5-HT1A receptors postsynaptic to serotoninergic ne-urones mediate spontaneous tail-flicks in the rat. J Pharmacol Exp Ther 264:95–104

    PubMed  CAS  Google Scholar 

  • Besson JM, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiol Rev 67:67–186

    PubMed  CAS  Google Scholar 

  • Björklund A, Skagerberg G (1982) Descending monoaminergic projections to the spinal cord. In: Sjölund B, Björklund A (eds) Brain stem control of spinal mechanisms. Elsevier Biochemical, Amsterdam, pp 55–88

    Google Scholar 

  • Blomqvist A, Hermanson O, Ericson H, Larhammar D (1994) Activation of a bulbospinal opioidergic projection by pain stimuli in the awake rat. Neuroreport 5:461–464

    PubMed  CAS  Google Scholar 

  • Bobker DH (1994) A slow excitatory postsynaptic potential mediated by 5-HT2 receptors in nucleus prepositus hypoglossi. J Neurosci 14:2428–2434

    PubMed  CAS  Google Scholar 

  • Boess FG, Martin IL (1994) Molecular biology of 5-HT receptors. Neuropharmacology 33:275–317

    PubMed  CAS  Google Scholar 

  • Bonnet F, Boico O, Rostaing S, Loriferne JF, Saada M (1990a) Clonidine-induced analgesia in postoperative patients: epidural versus intramuscular administration. Anesthesiology 72:423–427

    PubMed  CAS  Google Scholar 

  • Bonnet F, Buisson VB, Franyois Y, Catoire P, Saada M (1990b) Effects of oral and subarachnoid Clonidine on spinal anesthesia with bupivacaine. Reg Anesth 15:211–214

    PubMed  CAS  Google Scholar 

  • Bouaziz H, Tong C, Yoon Y, Hood DD, Eisenach JC (1996) Intravenous opioids stimulate norepinephrine and acetylcholine release in spinal cord dorsal horn. Systematic studies in sheep and an observation in a human. Anesthesiology 84:143–154

    PubMed  CAS  Google Scholar 

  • Bourgoin S, Pohl M, Mauborgne A, Benoliel JJ, Collin E, Hamon M, Cesselin, F (1993) Monoaminergic control of the release of calcitonin gene-related peptide- and substance P-like materials from rat spinal cord slices. Neuropharmacology 32:633–640

    PubMed  CAS  Google Scholar 

  • Bowker RM, Abbott LC (1990) Quantitative re-evaluation of descending serotonergic and non-serotonergic projections from the medulla of the rodent: evidence for extensive co-existence of serotonin and peptides in the same spinally projecting neurones, but not from the nucleus raphe magnus. Brain Res 512:15–25

    PubMed  CAS  Google Scholar 

  • Bowker RM, Abhold RH (1990) Evoked chages in 5-hydroxytryptamine and norepinephrine release: in vivo dialysis of the rat dorsal horn. Eur J Pharmacol 175:101–106

    PubMed  CAS  Google Scholar 

  • Bras H, Jankowska E, Noga B, Skoog B (1990) Comparison of effects of various types of NA and 5-HT agonists on transmission from group II muscle afferents in the cat. Eur J Neurosci 2:1029–1039

    PubMed  Google Scholar 

  • Bruinvels AT, Landwehrmeyer B, Moskowitz MA, Hoyer D (1992) Evidence for the presence of 5-HT1B receptor messenger RNA in neurones of the rat trigeminal ganglia. Eur J Pharmacol 227:357–359

    PubMed  CAS  Google Scholar 

  • Buccafusco JJ (1990) Participation of different brain regions in the anti-narcotic withdrawal action of Clonidine in the dependent rat. Brain Res 513:8–14

    PubMed  CAS  Google Scholar 

  • Bullitt E (1989) Induction of c-fos-like protein within the lumbar spinal cord and thalamus of the rat following peripheral stimulation. Brain Res 493:391–397

    PubMed  CAS  Google Scholar 

  • Bullitt E, Light AR (1989) Intraspinal course of descending serotoninergic pathways innervating the rodent dorsal horn and lamina X. J Comp Neurol 286:231–242

    PubMed  CAS  Google Scholar 

  • Buritova J, Chapman V, Honoré P, Besson JM (1996) The contribution of GABAB receptor-mediated events to inflammatory pain processing: carrageenan oedema and associated c-Fos expression in the rat. Neuroscience 73:487–496

    PubMed  CAS  Google Scholar 

  • Burnett A Gebhart GF (1991) Characterization of descending modulation of nociception from the A5 cell group. Brain Res 546:271–281

    PubMed  CAS  Google Scholar 

  • Butterworth JF, Strichartz GR (1993) The α -adrenergic agonists Clonidine and guanfacine produce tonic and phasic block of conduction in rat sciatic nerve fibers. Anesth Analg 76:295–301

    PubMed  CAS  Google Scholar 

  • Byas-Smith MG, Max MB, Muir, J, Kingman A (1995) Transdermal Clonidine compared to placebo on painful diabetic neuropathy using a two-stage “enriched-enrollment” design. Pain 60:267–274

    PubMed  CAS  Google Scholar 

  • Cahusac, PMB, Morris R, Hill RG (1995) A pharmacological study of the modulation of neuronal and behavioural nociceptive responses in the rat trigeminal region. Brain Res 700:70–82

    PubMed  CAS  Google Scholar 

  • Calvillo O, Ghignone M (1986) Presynaptic effect of Clonidine on unmyelinated afferent fibers in the spinal cord of the cat. Neurosci Lett 64:335–339

    PubMed  CAS  Google Scholar 

  • Calvillo O, Ghignone M, Madrid J (1988) Effects of α1 adrenoceptor activation on the excitability of primary afferent terminals of the sural nerve in the spinal cord of the cat. Synapse 2:326–328

    PubMed  CAS  Google Scholar 

  • Camarata PJ, Yaksh TL (1985) Characterization of the spinal adrenergic receptors mediating the spinal effects produced by the microinjection of morphine into the periaqueductal gray. Brain Res 336:133–142

    PubMed  CAS  Google Scholar 

  • Campbell JN, Meyer RA, Davis KD (1992) Sympathetically maintained pain: a unifying hypothesis. In: Willis WD (ed) Hyperalgesia. Raven, New York, pp 141–149

    Google Scholar 

  • Capogna G, Celleno D, Zangrillo A, Costantino P, Foresta S (1995) Addition of Clonidine to epidural morphine enhances postoperative analgesia after cesarean delivery. Reg Anesth 20:57–61

    PubMed  CAS  Google Scholar 

  • Carabine UA, Milligan KR, Moore J (1992) Extradural Clonidine and bupivacaine for postoperative analgesia. Br J Anaesth 68:132–135

    PubMed  CAS  Google Scholar 

  • Carroll D, Jahad A, King V, Wiffen P, Glynn C, McQuay H (1993) Single dose randomised double-blind double-dummy crossover comparison of epidural and intravenous Clonidine in chronic pain. Br J Anaesth 71:665–669

    PubMed  CAS  Google Scholar 

  • Carstens E, Klumpp D, Randic M, Zimmerman M (1981) Effects of iontophoretically applied 5-hydroxytryptamine on the excitability of single primary afferent C- and A-fibers in the cat spinal cord. Brain Res 220:151–158

    PubMed  CAS  Google Scholar 

  • Castro-Lopes JM, Tavares I, Coimbra A (1993) GABA decreases in the spinal cord dorsal horn after peripheral neurectomy. Brain Res 620:287–291

    PubMed  CAS  Google Scholar 

  • Celuch, SM, Ramirez AJ, Enero MA (1992) Activation of 5-HT2 receptors inhibits the evoked release of [3H]-noradrenaline in the rat spinal cord. Gen Pharmacol 23:1063–1065

    PubMed  CAS  Google Scholar 

  • Cervo L, Rossi C, Tatarczynska E, Samanin R (1994) Role of 5-HT1A receptors in the antinociceptive action of 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol 263:187–191

    PubMed  CAS  Google Scholar 

  • Cesselin F, Laporte AM, Miquel MC, Bourgoin S, Hamon M (1994) Serotonergic mechanisms of pain control. In: Gebhart GF, Hammond DL, Jensen TS (eds) Proceedings of the 7th World Congress on Pain, vol 2. International Association for the Study of Pain, Seattle, pp 669–695

    Google Scholar 

  • Chiang CY, Xiang XK (1987) Does morphine enhance the release of 5-hydroxytryptamine in the rat spinal cord? An in vivo differential pulse voltammetry study. Brain Res 411:259–266

    PubMed  CAS  Google Scholar 

  • Cho HJ, Lee HS, Bae MA, Joo K (1995) Chronic arthritis increases tyrosine hydroxylase mRNA levels in the pontine noradrenergic cell groups. Brain Res 695:96–99

    PubMed  CAS  Google Scholar 

  • Chojnacka-Wójcik E, Klodzinska A, Deren-Wesolek A (1994) Involvement of 5-HT2C receptors in the m-CPP-induced antinociception in mice. Pol J Pharmacol 46:423–428

    PubMed  Google Scholar 

  • Cigarini I, Kaba A, Brohon E, Brichant JF, Damas F, Hans P, Dutz F, Albert A, Lamy M (1992) Epidural Clonidine in labor analgesia: a comparative study. Anesthesiology 77:A989

    Google Scholar 

  • Clarke PBS, Proudfit HK (1991) The projection of locus coeruleus neurones to the spinal cord in the rat determined by anterograde tracing combined with immuno-cytochemistry. Brain Res 538:231–245

    Google Scholar 

  • Clark FM, Proudfit HK (1993) The projections of noradrenergic neurones in the A5 catecholamine cell group to the spinal cord in rat: anatomical evidence that A5 neurones modulate nociception. Brain Res 616:200–210

    PubMed  CAS  Google Scholar 

  • Clark FM, Yoemans DC, Proudfit HK (1991) The noradrenergic innervation of the spinal cord: differences between two substrains of Sprague-Dawley rats determined using retrograde tracers combined with immunocytochemistry. Neurosci Lett 125:155–158

    PubMed  CAS  Google Scholar 

  • Clatworthy A, Williams JH, Barasi S (1988) Intrathecal 5-hydroxytryptamine and electrical stimulation of the nucleus raphe magnus in rats both reduce the antinociceptive potency of intrathecally administered noradrenaline. Brain Res 455:300–306

    PubMed  CAS  Google Scholar 

  • Coderre TJ (1993) The role of excitatory amino acid receptors and intracellular messengers in persistent nociception after tissue injury in rats. Mol Biol 7:119–146

    Google Scholar 

  • Coderre TJ, Katz J, Vaccarino AL, Melzack R (1993) Contribution of central neuroplasticity to pathological pain: review of clinical experimental evidence. Pain 52:259–285

    PubMed  CAS  Google Scholar 

  • Collin E, Frechilla D, Pohl M, Bourgoin S, Mauborgne A, Hamon, M, Cesselin F (1994) Differential effects of the novel analgesic, S 12813–4, on the spinal release of substance P- and calcitonin gene-related peptide-like materials in the rat. Naunyn Schmiedebergs Arch Pharmacol 349:387–393

    PubMed  CAS  Google Scholar 

  • Connell LA, Majid A, Wallis DJ (1989) Involvement of α1-adrenoceptors in the depolarizing but not the hyperpolarizing responses of motoneurones in the neonate rat to noradrenaline. Neuropharmacology 28:1399–1409

    PubMed  CAS  Google Scholar 

  • Coombs DW, Saunders RL, Lachance D, Savage S, Ragnarsson TS, Jensen LE (1985) Intrathecal morphine tolerance: use of intrathecal Clonidine, DADLE, and intraventricular morphine. Anesthesiology 62:357–363

    Google Scholar 

  • Coote JH (1988) The organisation of cardiovascular neurones in the spinal cord. Rev Physiol Biochem Pharmacol 110:147–285

    PubMed  CAS  Google Scholar 

  • Coyle DE (1996) Efficacy of animal models for neuropathic pain. Pain Dig 6:7–20

    Google Scholar 

  • Crawley JN, Roth RH, Mass JW (1979) Locus coeruleus stimulation increases noradrenergic metabolite levels in rat spinal cord. Brain Res 166:180–184

    PubMed  CAS  Google Scholar 

  • Crisp T, Smith DJ (1989) A local serotonergic component involved in the spinal antinociceptive action of morphine. Neuropharmacology 28:1047–1053

    PubMed  CAS  Google Scholar 

  • Crisp T, Stafinsky, JL, Spanos, LJ, Uram M, Perni VC, Donepudi HB (1991) Analgesic effects of serotonin and receptor-selective serotonin agonists in the rat spinal cord. Gen Pharmacol 22:247–251

    PubMed  CAS  Google Scholar 

  • Curtis DR, Leah JD, Peet MJ (1983) Effects of noradrenaline and 5-hydroxytryptamine on spinal Ia afferent terminations. Brain Res 258:328–332

    PubMed  CAS  Google Scholar 

  • Damaj MI, Glennon RA, Martin BR (1994) Involvement of the serotonergic system in the hypoactive and antinociceptive effects of nicotine in mice. Brain Res Bull 33:199–203

    PubMed  CAS  Google Scholar 

  • Danzebrink RM, Gebhart GF (1990) Antinociceptive effects of intrathecal adrenoceptor agonists in a rat model of visceral nociception. J Pharmacol Exp Ther 253:698–705

    PubMed  CAS  Google Scholar 

  • Danzebrink RM, Gebhart GF (1991a) Evidence that spinal 5-HT1, 5-HT2 and 5-HT3 receptor subtypes modulate responses to noxious colorectal distension in the rat. Brain Res 538:64–75

    PubMed  CAS  Google Scholar 

  • Danzebrink, RM, Gebhart GF (1991b) Intrathecal administration of Clonidine with serotonin receptor agonists produces supra-additive visceral antinociception in the rat. Brain Res 555:35–42

    PubMed  CAS  Google Scholar 

  • Dashwood MR, Gilbey MP, Spyer KM (1985) The localization of adrenoceptors and opiate receptors in regions of the cat central nervous system involved in cardiovascular control. Neuroscience 15:537–551

    PubMed  CAS  Google Scholar 

  • Davies J, Quinlan JE (1985) Selective inhibition of responses of feline dorsal horn neurones to noxious cutaneous stimuli by tizanidine (DS103–282) and noradrenaline: involvement of α2-adrenoceptors. Neuroscience 16:673–682

    PubMed  CAS  Google Scholar 

  • Davies M, Wilkinson LS, Roberts MHT (1988) Evidence for excitatory 5-HT2 receptors on rat brainstem neurones. Br J Pharmacol 94:483–491

    CAS  Google Scholar 

  • De Kock M, Crochet B, Morimont C, Scholtes JL (1993) Intravenous or epidural Clonidine for intra- and postoperative analgesia. Anesthesiology 79:525–531

    PubMed  Google Scholar 

  • De Kock M, Famenne F, Deckers G, Scholtes JL (1995) Epidural Clonidine or sufentanil for intraoperative and postoperative analgesia. Anesth Analg 81:1154–1162

    PubMed  CAS  Google Scholar 

  • Del Mar LP, Cardenas CG, Scroggs RS (1994) Serotonin inhibits high-threshold Ca2+ channel currents in capsaicin-sensitive acutely isolated adult rat DRG neurones. J Neurophysiol 72:2551–2554

    PubMed  Google Scholar 

  • Dellemijn HL, Fields RR, Allen WR, McKay WR, Rowbotham MC (1994) The interpretation of pain relief and sensory changes following sympathetic blockade. Brain 117:1475–1487

    PubMed  Google Scholar 

  • Dickenson AH (1990) A cure for wind up: NMDA receptor antagonists as potential analgesics. Trends Pharmacol Sci 11:307–309

    PubMed  CAS  Google Scholar 

  • Dirksen R, Van Diejen D, Van Luijtelaar EJJM, Booij LHDJ (1994) Site- and test-dependent antinoceptive efficacy of amitriptyline in rats. Pharmacol Biochem Behav 47:21–26

    PubMed  CAS  Google Scholar 

  • Doucet E, Pohl M, Fattaccini CM, Adrien J, El Mestikawy S, Hamon M (1995) In situ hybridiztion evidence for the synthesis of 5-HT1B receptor in serotoninergic neurones of anterior raphe nuclei in the rat brain. Synapse 19:18–28

    PubMed  CAS  Google Scholar 

  • Doyle CA, Maxwell DJ (1991a) Catecholaminergic innervation of the spinal dorsal horn: a correlated light and electron microscopic analysis of tyrosine hydroxylase-immunocytochemical study. Neuroscience 45:161–176

    PubMed  CAS  Google Scholar 

  • Doyle CA, Maxwell DJ (1991b) Ultrastructural analysis of noradrenergic nerve terminals in the cat lumbosacral spinal dorsal horn: a dopamine-beta-hydroxylase-immunocytochemical study. Brain Res 563:329–333

    PubMed  CAS  Google Scholar 

  • Duan J, Sawynok J (1987) Enhancement of clonidine-induced analgesia by lesions induced with spinal and intracerebroventricular administration of 5,7-dihydroxytryptamine. Neuropharmacology 26:323–329

    PubMed  CAS  Google Scholar 

  • Eide PK, Hole K (1991) Different role of 5-HT1A and 5-HT2 receptors in spinal cord in the control of nociceptive responsiveness. Neuropharmacology 30:727–731

    PubMed  CAS  Google Scholar 

  • Eisenach JC (1994) Alpha-2 agonists and analgesia. Exp Opin Invest Drugs 3:1005–1010

    CAS  Google Scholar 

  • Eisenach JC, Detweiler D, Hood D (1993) Hemodynamic and analgesic actions of epidurally administered Clonidine. Anesthesiology 78:277–287

    PubMed  CAS  Google Scholar 

  • Eisenach JC, D’Angelo R, Taylor C, Hood D (1994a) An isobolographic study of epidural Clonidine and fentanyl after cesarean section. Anesth Analg 79:285–290

    PubMed  CAS  Google Scholar 

  • Eisenach JC, DuPen S, Dubois M, Miguel R, Allin D (1995) Epidural Clonidine analgesia for intractable cancer pain. Pain 61:391–399

    PubMed  CAS  Google Scholar 

  • Eisenach JC, Shafer SL, Bucklin BA, Jackson C, Kallio A (1994b) Pharmacokinetics and pharmacodynamics of intraspinal dexmedetomidine in sheep. Anesthesiology 80:1349–1359

    PubMed  CAS  Google Scholar 

  • Eisenbach JC, Gebhart GF (1995) Intrathecal amitriptyline. Antinociceptive interactions with intravenous morphine and intrathecal Clonidine, neostigmine and carbamylcholine in rats. Anesthesiology 83:1036–1045

    Google Scholar 

  • Ekblom A, Hansson P, Thomsson M (1991) L-Tryptophan supplementation does not affect postoperative pain intensity or consumption of analgesics. Pain 44:249–254

    PubMed  CAS  Google Scholar 

  • El-Yassir N, Fleetwood-Walker SM (1990) A 5-HT1-type receptor mediates the antinociceptive effect of nucleus raphe magnus stimulation in the rat. Brain Res 523:92–99

    PubMed  CAS  Google Scholar 

  • El-Yassir N, Fleetwood-Walker SM, Mitchell R (1988) Heterogeneous effects of serotonin in the dorsal horn of the rat: the involvement of 5-HT1 receptor subtypes. Brain Res 456:147–158

    PubMed  CAS  Google Scholar 

  • Enkvist MOK, Hämälïnen H, Jansson CC, Kukkonen JP, Hautala R, Courtney MJ, Åkerman, KEO (1996) Coupling of astroglial α2-adrenoreceptors to second messenger pathways. J Neurochem 66:2394–2401

    PubMed  CAS  Google Scholar 

  • Erkola O, Korttila K, Aho M, Haasio J, Aantaa A, Kallio A (1994) Comparison of intramuscular dexmedetomidine and midazolam premedication for elective abdominal hysterectomy. Anesth Analg 79:646–653

    PubMed  CAS  Google Scholar 

  • Eschalier A, Mestre C, Dubray C, Ardid D (1994) Why are antidepressants effective as pain relief CNS Drugs 2:261–267

    Google Scholar 

  • Evans AR, Jones SL, Blair RW (1994) Effects of vagal afferent nerve stimulation on noxious heat-eoked Fos-like immunoreactivity in the rat lumbar spinal cord. J Comp Neurol 346:490–498

    PubMed  CAS  Google Scholar 

  • Fang F, Proudfit HK (1996) Spinal cholinergic and monoamine receptors mediate the antinociceptive effect of morphine microinjected in the periaqueductal gray on the rat tail, but not the feet. Brain Res 722:95–108

    PubMed  CAS  Google Scholar 

  • Farkas S, Ono H (1995) Participation of NMDA and non-NMDA excitatory amino acid receptors in the mediation of spinal reflex potentials in rats: an in vivo study. Br J Pharmacol 114:1193–1205

    PubMed  CAS  Google Scholar 

  • Fasmer OB, Berge OG, Post C, Hole K (1986) Effects of the putative 5-HT1A agonist, 8-OH-2-(di-n-propylamino) amino tetralin, on nociceptive sensitivity in mice. Pharmacol Biochem Behav 25:883–888

    PubMed  CAS  Google Scholar 

  • Fields, HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245

    PubMed  CAS  Google Scholar 

  • Filos KS, Goudas LC, Patroni O, Polyzou V (1992) Intrathecal Clonidine as a sole analgesic for pain relief after cesarean section. Anesthesiology 77:267–274

    PubMed  CAS  Google Scholar 

  • Filos KS, Goudas LC, Patroni O, Polyzou V (1994) Hemodynamic and analgesic profile after intrathecal Clonidine in humans. A dose-response study. Anesthesiology 81:591–601

    PubMed  CAS  Google Scholar 

  • Flacke JW, Bloor BC, Flake WE (1987) Reduced narcotic requirement by Clonidine with improved hemodynamic and adrenergic stability in patients undergoing coronary bypass surgery. Anesthesiology 67:11–19

    PubMed  CAS  Google Scholar 

  • Fleetwood-Walker SM (1992) The antinociceptive effects of noradrenergic agonists on the activity of the spinal dorsal horn neurones. In: Besson JM, Guilbaud G (eds) Towards the use of noradrenergic agonists for the treatment of pain. Excerpta Medica/Elsevier Science, Amsterdam, pp 181–196

    Google Scholar 

  • Fleetwood-Walker SM, Mitchell R, Hope PJ, Molony V, Iggo A (1985) An od receptor mediates the selective inhibition by noradrenaline of nociceptive responses of identified dorsal horn neurones. Brain Res 334:243–254

    PubMed  CAS  Google Scholar 

  • Fleetwood-Walker SM, Hope PJ, Mitchell R (1988) Antinociceptive actions of descending dopaminergic tracts on cat and rat dorsal horn somatosensory neurones. J Physiol (Lond) 399:335–348

    CAS  Google Scholar 

  • Fogarty DJ, Carabine UA, Milligan KR (1993) Comparison of the analgesic effects of intrathecal Clonidine and intrathecal morphine after spinal anaesthesia in patients undergoing total hip replacement. Br J Anaesth 71:661–664

    PubMed  CAS  Google Scholar 

  • Fone KCF, Robinson AJ, Marsden CA (1991) Characterization of the 5-HT receptor subtypes involved in the motor behaviours produced by intrathecal administration of 5-HT agonists in rats. Br J Pharmacol 103:1547–1555

    PubMed  CAS  Google Scholar 

  • Franco-Cereceda A, Rydh M, Dalsgaard C (1992) Nicotine- and capsaicin-, but not potassium-evoked, CGRP-release from cultured guinea-pig spinal ganglia is inhibited by Ruthenium red. Neurosci Lett 137:72–74

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Grzanna R (1990) Demonstration of two separate descending noradrenergic pathways to the spinal cord: evidence for an intragriseal trajectory of locus coeruleus axons in the superficial layers of the dorsal horn. J Comp Neurol 291:553–582

    PubMed  CAS  Google Scholar 

  • Gaumann DM, Brunet PC, Jirounek P (1990) Clonidine enhances the effects of lidocaine on C-fiber action potential. Anesth Analg 74:719–725

    Google Scholar 

  • Gebhart GF, Randich A (1990) Brainstem modulation of nociception. In: Klemm WR, Vertes RP (eds) Brainstem mechanisms of behavior. Wiley, New York, pp 315–352

    Google Scholar 

  • Gerin C, Becquet D, Privat A (1995) Direct evidence for the link between mono-aminergic descending pathways and motor activity. I. A study with microdialysis probes implanted in the ventral funiculus of the spinal cord. Brain Res 704:191–201

    PubMed  CAS  Google Scholar 

  • Ghelardini C, Galeotti N, Casamenti F, Malmberg-Aiello P, Pepeu G, Gualtieri, F, Bartolini A (1996) Central cholinergic antinociception induced by 5-HT4 agonists: BIMU 1 and BIMU 8. Life Sci 58:2297–2309

    PubMed  CAS  Google Scholar 

  • Ghingone M, Quintin L, Duke PC, Kelher CH, Calvillo O (1986) Effects of Clonidine on narcotic requorements and hemodynamic response during induction of fentanyl anesthesia and endotracheal intubation. Anesthesiology 64:36–42

    Google Scholar 

  • Ginzburg R, Seltzer Z (1990) Subarachnoid spinal cord transplantation of adrenal medulla suppresses chronic neuropathic pain behavior in rats. Brain Res 523:147–150

    PubMed  CAS  Google Scholar 

  • Giordano J (1991) Analgesic profile of centrally administered 2- methylserotonin against acute pain in rats. Eur J Pharmacol 199:233–236

    PubMed  CAS  Google Scholar 

  • Giordano J, LaVerne R (1992) Putative mechanisms of buspirone-induced antinociception in the rat. Pain 50:365–372

    PubMed  CAS  Google Scholar 

  • Girada MN, Brennan JJ, Martindale ME, Foreman RD (1987) Effects of stimulating the subcoeruleus-parabrachial region on the non-noxious and noxious responses of T1-T5 spinathalamic tract neurones in the primate. Brain Res 409:19–30

    Google Scholar 

  • Glaum SR, Proudfit HK, Anderson EG (1990) 5-HT3 receptors modulate spinal nociceptive reflexes. Brain Res 510:12–16

    PubMed  CAS  Google Scholar 

  • Glazer EJ, Basbaum AI (1984) Axons which take up [3H]serotonin are presynaptic to enkephalin immunoreactive neurons in cat dorsal horn. Brain Res 298:386–391

    PubMed  CAS  Google Scholar 

  • Glynn CL (1992) The spinal noradrenergic systems in the transmission of pain in patients. In: Besson JM, Guilbaud G (eds) Towards the use of noradrenergic agonists for the treatment of pain. Excerpta Medica/Elsevier Science, Amsterdam, pp 197–210

    Google Scholar 

  • Glynn C, O’Sullivan K (1996) A double-blind randomised comparison of the effects of epidural Clonidine, lignocaine and the combination of Clonidine and lignocaine in patients with chronic pain. Pain 64:337–343

    PubMed  CAS  Google Scholar 

  • Go VL, Yaksh TL (1987) Release of subtance P from the cat spinal cord. J Physiol (Lond) 391:141–167

    CAS  Google Scholar 

  • Godefroy F, Weil-Fugazza J, Besson JM (1987) Complex temporal changes in 5-hydroxytryptamine synthesis in the central nervous system induced by experimental polyarthritis in the rat. Pain 28:223–238

    PubMed  CAS  Google Scholar 

  • Gogas KR, Cho HJ, Botchkina GI, Levine JD, Basbaum AI (1996) Inhibition of noxious stimulus-evoked pain behaviors and neuronal fos-like immunoreactivity in the spinal cord of the rat by supraspinal morphine. Pain 65:9–15

    PubMed  CAS  Google Scholar 

  • Gordon NC, Heller PH, Levine JD (1992) Enhancement of pentazocine analgesia by Clonidine. Pain 48:167–169

    PubMed  CAS  Google Scholar 

  • Grace D, Bunting H, Milligan KR, Fee JP (1995) Postoperative analgesia after coadministration of Clonidine and morphine by the intrathecal route in patients undergoing hip replacement. Anesth Analg 80:86–91

    PubMed  CAS  Google Scholar 

  • Grant SJ, Benno RH (1992) Both phasic sensory stimulation and tonic pharmacological activation increase fos-like immunoreactivity in the rat locus coeruleus. Synapse 12:112–118

    PubMed  CAS  Google Scholar 

  • Guinan MJ, Rothfeld JM, Pretel S, Culhane ES, Carstens E, Watkins LR (1989) Electrical stimulation of the rat ventral midbrain elicits antinociception via the dorsolateral funiculus. Brain Res 485:333–348

    PubMed  CAS  Google Scholar 

  • Guo TZ, Tinklenberg J, Oliker R, Maze M (1991) Central α1-adrenoceptor stimulation functionally antagonizes the hypnotic response to dexmedetomidine, an α2-adrenoceptor agonist. Anesthesiology 75:252–256

    PubMed  CAS  Google Scholar 

  • Gurtu S, Shukla, S, Mukerjee D (1994) Morphine, Clonidine coadministration in subanalgesic doses-effective control of tonic pain. Neuroreport 5:715–717

    PubMed  CAS  Google Scholar 

  • Gustafson EL, Durkin MM, Bard JA, Zgombick J, Branchek TA (1996) A receptor autoradiographic and in situ hybridization analysis of the distribution of the 5-HT7 receptor in rat brain. Br J Pharmacol 117:657–666

    PubMed  CAS  Google Scholar 

  • Guyenet PG, Stornetta, RL, Riley T, Norton FR, Rosin, DL, Lynch, KR (1994) Alpha2A-adrenergic receptors are present in lower brainstem catacholaminergic and serotoninergic innervating spinal cord. Brain Res 638:285–294

    PubMed  CAS  Google Scholar 

  • Hama AT, Sagen J (1993) Reduced pain-related behavior by adrenal medullary transplants in rats with experimental painful peripheral neuropathy. Pain 52:223–231

    PubMed  CAS  Google Scholar 

  • Hämäläinen MM, Jyväsjärvi E, Pertovaara A (1995) Can the α2-adrenoceptor agonist-mediated suppression of nocifensive reflex responses be due to an action on motoneurones or peripheral nociceptors? Neurosci Lett 196:29–32

    PubMed  Google Scholar 

  • Hammond DL, Yaksh TL (1984) Antagonism of stimulation-produced antinociception by intrathecal administration of methylsergide or phentolamine. Brain Res 298:329–337

    PubMed  CAS  Google Scholar 

  • Hammond DL, Tyce GM, Yaksh TL (1985) Efflux of 5-hydroxytryptamine and noradrenaline into spinal cord superfusates during stimulation of the rat medulla. J Physiol (Lond) 359:151–162

    CAS  Google Scholar 

  • Hao JX, Xu XJ, Aldskogius H, Seiger Å, Wiesenfeld-Hallin Z (1991) The excitatory amino acid receptor antagonist MK-801 prevents the hypersensitivity induced by spinal cord ischemia in the rat. Exp Neurol 113:182–191

    PubMed  CAS  Google Scholar 

  • Hao JX, Xu XJ, Wiesenfeld-Hallin Z (1994) Intrathecal γ aminobutyric acidB (GABAB) receptor antagonist CGP 35348 induces hypersensitivity to mechanical stimuli in the rat. Neurosci Lett 182:299–302

    PubMed  CAS  Google Scholar 

  • Harada Y, Nishioka K, Kitahata LM, Kishikawa K, Collins JG (1995) Visceral antinociceptive effects of spinal Clonidine combined with morphine, (D-Pen2, D-Pen5) enkephalin, or U50,488H. Anesthesiology 83:344–352

    PubMed  CAS  Google Scholar 

  • Hasegawa Y, Ono H (1996) Effect of ±-8-dihydroxy-2-(di-n-propylamino) tetralin hydrobromide on spinal motor systems in anesthetized intact and spinalized rats. Eur J Pharmacol 295:211–214

    PubMed  CAS  Google Scholar 

  • Hayashi, Y, Maze M (1993) Alpha2 adrenoceptor agonists and anaesthesia. Br J Anaesth 71:108–118

    PubMed  CAS  Google Scholar 

  • Hayashi Y, Guo TZ, Maze M (1995) Desensitization to the behavioral effects of alpha2-adrenergic agonists in rats. Anesthesiology 82:954–962

    PubMed  CAS  Google Scholar 

  • Hayes AG, Skingle M, Tyers MB (1986) Antagonism of alpha-adrenoceptor agonist-induced antinociception in the rat. Neuropharmacology 25:397–402

    PubMed  CAS  Google Scholar 

  • Hayes ES, Carlton SM (1992) Primary afferent interactions: analysis of calcitonin gene-related peptide-immunoreactive terminals in contact with unlabeled and GABA-immunoreactive profiles in the monkey dorsal horn. Neuroscience 47:873–896

    PubMed  CAS  Google Scholar 

  • Headley PM, Duggan AW, Griersmith BT (1978) Selective reduction of noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Brain Res 145:185–189

    PubMed  CAS  Google Scholar 

  • Helton LA, Thor KB, Baez M (1994) 5-Hydroxytryptamine2A, 5-hydroxytryptamine2B and 5-hydroxytryptamine2C receptor mRNA expression in the spinal cord of rat, monkey and human. Neuroreport 5:2617–2620

    PubMed  CAS  Google Scholar 

  • Ho BY, Takemori AE (1989) Serotonergic involvement in the antinociceptive action of and the development of tolerance to the kappa-opioid receptor agonist, U-50,488H. J Pharmacol Exp Ther 250:508–514

    PubMed  CAS  Google Scholar 

  • Hodge CJ, Apkarian AV, Stevens, R (1986) Inhibition of dorsal horn cell responses by stimulation of the Kolliker-Fuse nucleus. J Neurosurg 65:825–833

    PubMed  Google Scholar 

  • Holstege JC, Kuypers HGJM (1987) Brainstem projections to spinal motoneurones: an update. Neuroscience 23:809–821

    PubMed  CAS  Google Scholar 

  • Holziv G, Shefner SA, Anderson EG (1985) Serotonin depolarizes type A and C primary afferents: an intracellular study in bullfrog dorsal root ganglion. Brain Res 327:71–79

    CAS  Google Scholar 

  • Honoré P, Chapman V, Buritova J, Besson JM (1996) To what extent do spinal interactions between an alpha-2 adrenoceptor agonist and a μ opioid agonist influence noxiously evoked c-fos expression in the rat? A pharmacological study. J Pharmacol Exp Ther 278:303–403

    Google Scholar 

  • Hori Y, Endo K, Takahashi T (1996) Long-lasting synaptic facilitation induced by serotonin in superficial dorsal horn neurones of the rat spinal cord. J Physiol (Lond) 492 (3):867–876

    CAS  Google Scholar 

  • Horváth G, Szikszay M, Benedek G (1992) Calcium channels are involved in the hypnotic-anesthetic action of dexmedetomidine in rats. Anesth Analg 74:884–888

    PubMed  Google Scholar 

  • Horváth G, Kovács M, Szikszay M, Benedek G (1994) Mydriatic and antinociceptive effects of intrathecal dexmedetomidine in conscious rats. Eur J Pharmacol 253:61–66

    PubMed  Google Scholar 

  • Howe JR, Zieglgänsberger W (1987) Responses of rat dorsal horn neurones to natural stimulation and to iontophoretically applied norepinephrine. J Comp Neurol 255:1–17

    PubMed  CAS  Google Scholar 

  • Howe JR, Wang JY, Yaksh TL (1983) Selective antagonism of the antinociceptive effect of intrathecally applied alpha adrenergic agonists by intrathecal prazosin and intrathecal yohimbine. J Pharmacol Exp Ther 224:552–558

    PubMed  CAS  Google Scholar 

  • Howe JR, Yaksh TL, Go VLW (1987) The effect of unilateral dorsal root ganglionectomies or ventral rhizotomies on α2-adrenoceptor binding to, and the substance P, enkephalin, and neurotensin content of, the cat lumbar spinal cord. Neuroscience 21:385–394

    PubMed  CAS  Google Scholar 

  • Hunter, JC, Woodburn VL, Durieux C, Pettersson EKE, Poat JA, Hughes J (1995) C-fos antisense oligodeoxynucleotide increases formalin-induced nociception and regulates preprodynorphin expression. Neuroscience 65:485–492

    CAS  Google Scholar 

  • Hunter JC, Lewis R, Eglen RM, Fontana DJ (1996) The role of α and β adrenoceptors in a rodent model of neuropathic pain. Br J Pharmacol 117:237P

    Google Scholar 

  • Huntoon M, Eisenach JC, Boese P (1992) Epidural Clonidine after cesarean section: appropriate dose and effect of prior local anesthesic. Anesthesiology 76:187–183

    PubMed  CAS  Google Scholar 

  • Hutson PH, Tricklebank MD, Curzon G (1982) Enhancement of footshock-induced analgesia by spinal 5,7-dihydroxytryptamine lesions. Brain Res 237:367–372

    PubMed  CAS  Google Scholar 

  • Hutson PH, Tricklebank MD, Curzon, G (1983) Analgesia induced by brief footshock: blockade by fenfluramine and 5-methoxy-N,N-dimethyltryptamine and prevention of blockade by 5-HT antagonists. Brain Res 279:105–110

    PubMed  CAS  Google Scholar 

  • Hwang AS, Wilcox GL (1987) Analgesic properties of intrathecally administered heterocyclic antidepressants. Pain 28:343–355

    PubMed  CAS  Google Scholar 

  • Hylden JLK, Thomas DA, Iadarola MJ, Nahin RL, Dubner R (1991) Spinal opioid analgesic effects are enhanced in a model of unilateral inflammation/hyperalgesia: possible involvement of noradrenergic mechanisms. Eur J Pharmacol 194:135–143

    PubMed  CAS  Google Scholar 

  • Idänpään-Heikkilä J, Kalso EA, Seppälä T (1994) Antinociceptive actions of dexmedetomidine and the kappa-opioid agonist U-50,488H against noxious thermal, mechanical and inflammatory stimuli. J Pharmacol Exp Ther 271:1306–1313

    PubMed  Google Scholar 

  • Iijima K, Sato M, Kojima N, Ohtomo K (1992) Immunocytochemical and in situ hybridization evidence for the coexistence of GABA and tyrosine hydroxylase in the rat locus ceruleus. Anat Rec 234:593–604

    PubMed  CAS  Google Scholar 

  • Iliakis B, Anderson NL, Irish PS, Henry MA, Westrum LE (1996) Electron microscopy of immunoreactivity patterns for glutamate and gamma-aminobutyric acid in synaptic glomeruli of the feline spinal trigeminal nucleus (subnucleus caudalis). J Comp Neurol 366:465–477

    PubMed  CAS  Google Scholar 

  • Iwamoto ET, Marion L (1993) Adrenergic, serotonergic and cholinergic components of nicotinic antinociception in rats. J Pharmacol Exp Ther 265:777–789

    PubMed  CAS  Google Scholar 

  • Jaakola ML, Salonen M, Lehtinen R, Scheinin H (1991) The analgesic action of dexmedetomidine, a novel alpha-2-adrenoceptor agonist, in healthy volunteers. Pain 46:281–285

    PubMed  CAS  Google Scholar 

  • Jaakola ML, Melkkila AT, Kanto J, Kallio A, Scheinin H, Scheinin M (1992) Dexmedetomidine reduces intraocular pressure, intubation responses and anaesthetic requirements in patients undergoing ophthalmic surgery. Br J Anaesth 68:570–575

    PubMed  CAS  Google Scholar 

  • Jansson CC, Karp M, Oker-Blom C, Näsman J, Savola JM, Åkerman KEO (1995a) Two human α2-adrenoceptor subtypes α2A-C10 and α2B-C2 expressed in Sf9 cells couple to transduction pathway resulting in opposite effects on cAMP production. Eur J Pharmacol 290:75–83

    PubMed  CAS  Google Scholar 

  • Jansson CC, Marjamäki A, Luomala K, Savola JM, Scheinin M, Åkerman KEO (1995b) Coupling of human 2-adrenoceptor subtypes to regulation of cAMP production in transfected S115 cells. Eur J Pharmacol 266:165–174

    Google Scholar 

  • Javis DA, Duncan SR, Segal IS, Maze M (1992) Ventilatory effects of Clonidine alone and in the presence of alfentanil, in human volunteers. Anesthesiology 76:899–905

    Google Scholar 

  • Jeftinija S, Semba K, Randic M (1981) Norepinephrine reduces excitability of single cutaneous primary afferent C-fibers in the cat spinal cord. Brain Res 219:456–463

    PubMed  CAS  Google Scholar 

  • Jeftinija S, Semba K, Randic M (1983) Norepinephrine reduces excitability of single cutaneous primary afferent C and A fibers in the cat spinal cord. Adv Pain Res Ther 5:271–276

    CAS  Google Scholar 

  • Jensen TS, Yaksh TL (1984) Spinal monoamine and opiate systems partly mediate the antinociceptive effects produced by glutamate at brainstem sites. Brain Res 321:287–298

    PubMed  CAS  Google Scholar 

  • Jensen TS, Yaksh TL (1986) Examination of spinal monoamine receptors through which brainstem opiate-sensitive systems act in the rat. Brain Res 363:114–127

    PubMed  CAS  Google Scholar 

  • Johannessen JN, Watkins LR, Carlton SM, Mayer DJ (1982) Failure of spinal cord serotonin depletion to alter analgesia elicited from the periaqueductal gray. Brain Res 237:373–386

    PubMed  CAS  Google Scholar 

  • Jones BE, Holmes CJ, Rodriguez-Veiga E, Mainville L (1991) GABA-synthesizing neurones in the medulla: their relationship to serotonin-containing and spinally projecting neurones in the rat. J Comp Neurol 313:349–367

    PubMed  CAS  Google Scholar 

  • Jones SL (1991) Descending noradrenergic influences on pain. Prog Brain Res 88:381–394

    PubMed  CAS  Google Scholar 

  • Jones SL (1992) Noradrenergic modulation of noxious heat-evoked fos-like immuno-reactivity in the dorsal horn of the rat sacral spinal cord. J Comp Neurol 325:435–445

    PubMed  CAS  Google Scholar 

  • Jones SL, Gebhart GF (1986) Quantitative characterization of ceruleospinal inhibition of nociceptive transmission in the rat. J Physiol (Lond) 56:1397–1410

    CAS  Google Scholar 

  • Jones SL, Light AR (1992) Serotoninergic medullary raphe-spinal projection to the lumbar spinal cord in the rat: a retrograde immunohistochemical study. J Comp Neurol 322:599–610

    PubMed  CAS  Google Scholar 

  • Jordan LM, Kenshalo DR, Martin RF, Haber LH, Willis WD (1979) Two populations of spinothalamic tract neurones with opposite responses to 5-hydroxytryptamine. Brain Res 164:342–346

    PubMed  CAS  Google Scholar 

  • Kalso EA, Sullivan AF, McQuay HJ, Dickenson AH, Roques BP (1993) Cross-tolerance between mu opioid and alpha-2 adrenergic receptors, but not between mu and delta opioid receptors in the spinal cord of the rat. J Pharmacol Exp Ther 265:551–558

    PubMed  CAS  Google Scholar 

  • Kamisaki Y, Hamada T, Maeda K, Ishimura M, Itoh T (1993) Presynapticα2 adrenoceptors inhibit glutamate release from rat spinal cord synaptosomes. J Neurochem 60:522–526

    PubMed  CAS  Google Scholar 

  • Kaneto H, Inoue M (1990) Active site of adrenergic blockers to suppress the development of tolerance to morphine analgesia. Brain Res 507:35–39

    PubMed  CAS  Google Scholar 

  • Kauppila T, Kemppainen P, Tanila H, Pertovaara A (1991) Effect of systemic dexmedetomidine, an alpha-2-adrenoceptor agonist, on experimental pain in humans. Anesthesiology 74:3–8

    PubMed  CAS  Google Scholar 

  • Kayser V, Guilbaud G, Besson JM (1992) Potent antinociceptive effects of Clonidine systematically administered in an experimental model of clinical pain, the arthritic rat. Brain Res 593:7–13

    PubMed  CAS  Google Scholar 

  • Kayser V, Desmeules J, Guilbaud G (1995) Systemic Clonidine differentially modulates the abnormal reactions to mechanical and thermal stimuli in rats with peripheral mononeuropathy. Pain 60:275–285

    PubMed  CAS  Google Scholar 

  • Kellstein DE, Malseed RT, Goldstein FJ (1988) Opioid monoamine interactions in spinal antinociception: evidence for serotonin but not norepinephrine reciprocity. Pain 34:85–92

    PubMed  CAS  Google Scholar 

  • Khasar SG, Green PG, Chou B, Levine JD (1995) Peripheral nociceptive effects of a2 adrenergic receptor agonists in the rat. Neuroscience 66:427–432

    PubMed  CAS  Google Scholar 

  • Kheck NM, Gannon PJ, Azmitia EC (1995) 5-HT1A receptor localization on the axon hillock of cervical spinal motoneurones in primates. J Comp Neurol 355:211–220

    PubMed  CAS  Google Scholar 

  • Kia HK, Miguel MC, Brisorgueil MJ, Daval G, Riad M, El Mestikawy S, Hamon M, Vergé D (1996) Immunocytochemical localization of serotonin(1A) receptors in the rat central nervous system. J Comp Neurol 365:289–305

    PubMed  CAS  Google Scholar 

  • Kia HK, Miguel MC, McKernan RM, Laporte AM, Lombard MC, Bourgoin S, Hamon M, Vergé D (1995) Localization of 5-HT3 receptors in the rat spinal cord. Immunohistochemistry and in situ hibridization. Neuroreport 6:257–261

    PubMed  CAS  Google Scholar 

  • Kidd EJ, Laporte AM, Langlois X, Fattacini CM, Doyen C, Lombard MC, Gozlan H, Hamon M (1993) 5-HT3 receptors in the rat central nervous system are mainly located on nerve fibre terminals. Brain Res 612:289–298

    PubMed  CAS  Google Scholar 

  • Kiefel JM, Paul D, Bodnar RJ (1989) Reduction in opioid and non-opioid forms of swim analgesia by 5-HT2 receptor antagonists. Brain Res 500:231–240

    PubMed  CAS  Google Scholar 

  • Kiritsky-Roy KA, Shyu BC, Danneman PJ, Morrow TJ, Belczynski C, Casey KL (1994) Spinal antinociception mediated by a cocaine-sensitive dopaminergic supraspinal mechanism. Brain Res 644:109–116

    Google Scholar 

  • Kirno K, Lundin, S, Elam M (1993) Epidural Clonidine depresses sympathetic nerve activity in humans by a supraspinal mechanism. Anesthesiology 78:1021–1027

    PubMed  CAS  Google Scholar 

  • Kishore-Kumar R, Schafer SS, Lawlor BA, Murphy DL, Max MB (1989) Single doses of the serotonin agonists buspirone and m-chlorophenylpiperazine do not relieve neuropathic pain. Pain 37:223–227

    PubMed  CAS  Google Scholar 

  • Kjøsvik A, Størkson R, Tjølson A, Hole K (1990) Activation of spinal 5-HT2 receptors increase nociception in rats. Soc Neurosci Abstr 20:553P

    Google Scholar 

  • Knowles MG, Wang C, Chakrabarti MK, Whitman JG (1994) Comparison of Clonidine with fentanyl on phrenic nerve activity and their interaction in anaesthetized rabbits. Br J Anaesth 73:517–521

    PubMed  CAS  Google Scholar 

  • Kuraishi Y, Harada Y, Aratani S, Satoh M, Takagi H (1983a) Separate involvement of the spinal noradrenergic and serotoninergic systems in morphine analgesia: the differences in mechanical and thermal algesic tests. Brain Res 273:245–252

    PubMed  CAS  Google Scholar 

  • Kuraishi Y, Hirota N, Sugimoto M, Satoh M, Takagi H (1983b) Effects of morphine on noxious stimuli-induced release of substance P from rabbit dorsal horn in vivo. Life Sci 33:693–696

    PubMed  CAS  Google Scholar 

  • Kuraishi Y, Hirota N, Sato Y, Kaneko S, Satoh M, Takagi H (1985) Noradrenergic inhibition of the release of substance P from the primary afferents in the rabbit spinal dorsal horn. Brain Res 359:177–182

    PubMed  CAS  Google Scholar 

  • Kuraishi Y, Minami M, Satoh M (1991) Serotonin, but neither noradrenaline nor GABA, inhibits capsaicin-evoked release of immunoreactive somatostatin slices of rat spinal cord. Neurosci Res 9:238–245

    PubMed  CAS  Google Scholar 

  • Kwiat GC, Basbaum AI (1990) Organization of tyrosine hydroxylase- and serotonin-immunoreactive brainstem neurons with axons collaterals to the periaqueductal gray and the spinal cord in the rat. Brain Res 528:83–94

    PubMed  CAS  Google Scholar 

  • Kwiat GC, Basbaum AI (1992) The origin of brainstem noradrenergic and serotonergic projections to the spinal cord dorsal horn of the rat. Somatosens Mot Res 9:157–173

    PubMed  CAS  Google Scholar 

  • LaMotte CC (1986) Organization of dorsal horn neurotransmitter systems. In: Yaksh TL (ed) Spinal afferent processing. Plenum, New York, pp 97–116

    Google Scholar 

  • LaMotte CC (1988) Lamina X of primate spinal cord: distribution of five neuropeptides and serotonin. Neuroscience 25:639–658

    Google Scholar 

  • Lang CW, Hope PJ, Grubb BD, Duggan AW (1994) Lack of effect of microinjection of noradrenaline or medetomidine on stimulus-evoked release of substance P in the spinal cord of the cat: a study with antibody microprobes. Br J Pharmacol 103:951–957

    Google Scholar 

  • Lanier SM, Lafontan M, Limbird LE, Paris H (1996) Summary of the ASPET-sponsored colloquium: alpha-2 adrenergic receptors: structure, function, and therapeutic implications, 25–27 Oct 1995. J Pharmacol Exp Ther 277:10–16

    PubMed  CAS  Google Scholar 

  • Laporte AM, Koscielniak T, Ponchant M, Vergé D, Hamon M, Gozlan H (1992) Quantitative autoradiographic mapping of 5-HT3 receptors in the rat CNS using [125I]iodo-zacopride and [3H]zacopride as radioligands. Synapse 10:271–281

    PubMed  CAS  Google Scholar 

  • Laporte AM, Fattaccini CM, Lombard MC, Chauveau J, Hamon M (1995) Effects of dorsal rhizotomy and selective lesion of serotonergic and noradrenergic systems on 5-HT1A, 5-HT1B and 5-HT3 receptors in the rat spinal cord. J Neural Transm 100:207–223

    CAS  Google Scholar 

  • Laporte AM, Doyen C, Nevo IT, Chauveau J, Hauw JJ, Hamon M (1996) Autoradiographic mapping of serotonin 5-HT1A, 5-HT1D, 5-HT2A and 5-HT3 receptors in the aged human spinal cord. J Chem Neuroanat 11:67–75

    PubMed  CAS  Google Scholar 

  • Lawhead RG, Blaxall HS, Bylund DB (1992) α2A is the predominant α2 adrenergic receptor subtype in human spinal cord. Anesthesiology 77:983–991

    PubMed  CAS  Google Scholar 

  • Le Bars D (1988) Serotonin and pain. In: Osborne NN, Hamon M (eds) Neuronal serotonin. Wiley, London, pp 171–230

    Google Scholar 

  • Lee YW, Yaksh TL (1995) Analysis of drug interaction between intrathecal Clonidine and MK-801 in peripheral neuropathic pain rat model. Anesthesiology 82:741–748

    PubMed  CAS  Google Scholar 

  • Leiphart JW, Dills CV, Zikel OM, Kim DL, Levy RM (1995) A comparison of intrathecally adminstered narcotic and nonnarcotic analgesics for experimental chronic neuropathic pain. J Neurosurg 82:595–599

    PubMed  CAS  Google Scholar 

  • Lichtman AH, Martin BR (1991) Cannabinoid-induced antinociception is mediated by a spinal <i>α</i>2-noradrenergic mechanism. Brain Res 559:309–314

    PubMed  CAS  Google Scholar 

  • Lichtman AH, Smith FL, Martin BR (1993) Evidence that the antinociceptive tail-flick response is produced independently from changes in either tail-skin temperature or core temperature. Pain 55:283–295

    PubMed  CAS  Google Scholar 

  • Light AR, Kavookjian AM, Petrusz P (1983) The ultrastructure and synptic connections of serotonin-immunoreactive terminals in spinal laminae I and II. Somat Res 1:33–50

    CAS  Google Scholar 

  • Light AR, Casale EJ, Menetrey DM (1986) The effects of focal stimulation in nucleus raphe magnus and periaqueductal gray on intracellularly recorded neurones in spinal laminae I and II. J Neurophysiol 56:555–571

    PubMed  CAS  Google Scholar 

  • Light AR, Kavookjian AM (1988) Morphology and ultrastructure of physiologically identified subsantia gelatinosa (lamina II) neurons with axons that terminate in deeper dorsal horn laminae (III-V). J Comp Neurol 267:172–189

    PubMed  CAS  Google Scholar 

  • Lin JC, Tsao WL, Lee HK, Wang Y (1993) Dissociation of hypertension and enhanced clonidine-induced antinociception in spontaneously hypertensive rats. Pain 53:53–58

    PubMed  CAS  Google Scholar 

  • Lin Q, Willis WD (1993) Application of methylsergide by microdialysis attenuates the inhibition of primate nociceptive spinothalamic tract neurons produced by stimulation in periaqueductal gray. Soc Neurosci Abstr 19:523

    Google Scholar 

  • Lin Q, Peng, YB, Willis WD (1994) Glycine and GABAA antagonists reduce the inhibition of primate spinothalamic tract neurons produced by stimulation in periaqueductal gray. Brain Res 654:286–302

    PubMed  CAS  Google Scholar 

  • Lin Q, Peng, YB, Willis WD (1996) Antinociception and inhibition from the periaqueductal gray are mediated in part by spinal 5-hydroxytryptamine1A receptors. J Pharmacol Exp Ther 276:958–967

    PubMed  CAS  Google Scholar 

  • Lipscombe D, Kongsamut S, Tsien RW (1989) α-Adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature 340:639–642

    PubMed  CAS  Google Scholar 

  • Loewy AD (1990) Central autonomic pathways. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic function. Oxford University Press, New York, pp 88–103

    Google Scholar 

  • Loomis CW, Milne B, Cervenko FW (1987) Determination of cross-tolerance in rat spinal cord using intrathecal infusion via sequential mini-osmotic pumps. Pharmacol Biochem Behav 26:131–139

    PubMed  CAS  Google Scholar 

  • Loomis CW, Milne B, Cervenko FW (1988) A study of the interaction between Clonidine and morphine on analgesia and blood pressure during continuous intrathecal infusion in the rat. Neuropharmacology 27:191–199

    PubMed  CAS  Google Scholar 

  • Lucas JJ, Mellström B, Colado MI, Naranjo JR (1993) Molecular mechanisms of pain: serotonin 1A receptor agonists trigger transactivation by c-fos of the prodynorphin gene in spinal cord neurones. Neuron 10:599–611

    PubMed  CAS  Google Scholar 

  • Lund C, Qvitzau S, Greulich A, Hjorts Ø, Kehlet H (1989) Comparison of the effects of extradural Clonidine with those of morphine on postoperative pain, stress responses, cardiopulmonary function and motor and sensory block. Br J Anaesth 63:516–519

    PubMed  CAS  Google Scholar 

  • Luo L, Wiesenfeld-Hallin Z (1993) Low-dose intrathecal Clonidine releases tachykinins in rat spinal cord. Eur J Pharmacol 235:157–159

    PubMed  CAS  Google Scholar 

  • Luo L, Puke MJC, Wiesenfeld-Hallin Z (1994) The effects of intrathecal morphine and Clonidine on the prevention and reversal of spinal cord hyperexcitability following sciatic nerve section in the rat. Pain 58:245–252

    PubMed  CAS  Google Scholar 

  • Luo L, Ji RR, Zhang Q, Iadarola MJ, Hökfelt T, Wiesenfeld-Hallin Z (1995) Effect of administration of high dose intrathecal Clonidine or morphine prior to sciatic nerve section on c-fos expression in rat lumbar spinal cord. Neuroscience 68:1219–1227

    PubMed  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1993) Pharmacology of the spinal action of ketorolac, morphine, ST-91, U50488H and L-PIA on the formalin test and an isobolographic analysis of the NSAID interaction. Anesthesiology 79:270–281

    PubMed  CAS  Google Scholar 

  • Mansikka H, Pertovaara A (1995) Influence of selective α2-adrenergic agents on mustard oil-induced central hyperalgesia in rats. Eur J Pharmacol 281:43–48

    PubMed  CAS  Google Scholar 

  • Mansikka H, Idänpään-Heikkilä JJ, Pertovaara A (1996) Different roles of α2-adrenoceptors of the medulla versus the spinal cord in modulation of mustard oil-induced central hyperalgesia in rats. Eur J Pharmacol 297:19–26

    PubMed  CAS  Google Scholar 

  • Marchand JE, Zhang X, Wurm WH, Kream RM (1993) Differential expression of alpha-2 adrenergic receptor subtypes by sensory and sympathetic neurones. Anesthesiology 79:A894

    Google Scholar 

  • Margalit D, Segal M (1979) A pharmacologic study of analgesia produced by stimulation of the nucleus locus coeruleus. Psychopharmacology 62:169–173

    PubMed  CAS  Google Scholar 

  • Marks SA, Stein RD, Dashwood MR, Gilbey MP (1990) [3H]Prazosin binding in the intermediolateral cell column and the effects of iontophoresed methoxamine on sympathethic preganglionic neuronal activity in the anaesthesized cat and rat. Brain Res 530:321–324

    PubMed  CAS  Google Scholar 

  • Marlier L, Sandillon F, Poulat P, Rajaofetra N, Geffard M, Privat A (1991a) Serotonergic innervation of the dorsal horn of rat spinal cord: light and electron microscope immunocytochemical study. J Neurocytol 20:310–322

    PubMed  CAS  Google Scholar 

  • Marlier L, Teilhac JR, Cerruti C, Privat A (1991b) Autoradiographic mapping of 5-HT1, 5-HT1A, 5-HT1B and 5-HT2 receptors in the rat spinal cord. Brain Res 550:15–23

    PubMed  CAS  Google Scholar 

  • Marlier L, Poulat P, Rajaofetra N, Sandillon F, Privat A (1992) Plasticity of serotonergic innervation of the dorsal horn of the rat spinal cord following neonatal capsaicin treatment. J Neurosci Res 31:346–358

    PubMed  CAS  Google Scholar 

  • Marwaha J, Kehne JH, Commissaris RL, Lakoski J, Shaw W, Davis M (1983) Spinal Clonidine inhibits neural firing in locus coeruleus. Brain Res 276:379–382

    PubMed  CAS  Google Scholar 

  • Matos FF, Rollema H, Brown JL, Basbaum AI (1992) Do opioids evoke the release of serotonin in the spinal cord? An in vivo microdialysis study of the regulation of extracellular serotonin in the rat. Pain 48:439–447

    PubMed  CAS  Google Scholar 

  • Matsumoto M, Hidaka K, Tada S, Tasaki Y, Yamaguchi T (1996) Low levels of mRNA for dopamine D4 receptor in human cerebral cortex and striatum. J Neurochem 66:915–919

    PubMed  CAS  Google Scholar 

  • Max MB, Kishore-Kumar R, Schafer SC, Meister B, Gracely RH, Smoller B, Dubner R (1991) Efficacy of desipramine in painful diabetic neuropathy: a placebo-controlled trial. Pain 45:3–9

    PubMed  CAS  Google Scholar 

  • Maxwell DJ, Jankowska E (1996) Synaptic relationships between serotonin-immu-noreactive axons and dorsal horn spinocerebellar tract cells in the cat spinal cord. Neuroscience 70:247–253

    PubMed  CAS  Google Scholar 

  • Maxwell DJ, Leranth CS, Verhofstad AAJ (1983) Fine structure of serotonin-containing axons in the marginal zone of the rat spinal cord. Brain Res 266:253–259

    PubMed  CAS  Google Scholar 

  • Maze M, Poree L, Rabin BC (1995) Anesthetic and analgesic actions of α2-adrenoceptor agonists. Pharmacol Comm 6:175–182

    CAS  Google Scholar 

  • McCall RB, Clement ME (1994) Role of serotoninl A and serotonin2 receptors in the central regulation of the cardiovascular system. Pharmacol Rev 46:231–243

    PubMed  CAS  Google Scholar 

  • McCarson KE, Krause JE (1995) The formalin-induced expression of tachykinin peptide and neurokinin receptor messenger RNAs in rat sensory ganglia and spinal cord is modulated by opate preadministration. Neuroscience 64:729–739

    PubMed  CAS  Google Scholar 

  • McFadzean I, Docherty RJ (1989) Noradrenaline- and enkephalin-induced inhibition of voltage-sensitive calcium currents in NG108–15 hybrid cells. Eur J Neurosci 1:141_147

    PubMed  Google Scholar 

  • McKearney JW (1989) Apparent antinociceptive properties of piperazine-type serotinin agonists: trifluoromethylphenylpiperazine, chlorophenylpiperazine and MK-212. Pharmacol Biochem Behav 32:657–660

    PubMed  CAS  Google Scholar 

  • McMahon SB, Wall PD (1988) Descending excitation and inhibition of spinal cord lamina I projection neurones. J Neurophysiol 59:1204–1219

    PubMed  CAS  Google Scholar 

  • McQuay HJ (1992) Is there a place for alpha2 adrenergic agonists in the control of pain. In: Besson JM, Guilbaud G (eds) Towards the use of noradrenergic agonists for the treatment of pain. Excerpta Medica/ElsevierScience, Amsterdam, pp 219–232

    Google Scholar 

  • Meller ST, Dykstra CL, Gebhart GF (1993) Acute mechanical hyperalgesia is produced by coactivation of AMPA and metabotropic glutamate receptors. Neuroreport 4:879–888

    PubMed  CAS  Google Scholar 

  • Men DS, Matsui Y (1994a) Activation of descending noradrenergic system by peripheral nerve stimulation. Brain Res Bull 34:177–182

    PubMed  CAS  Google Scholar 

  • Men DS, Matsui Y (1994b) Peripheral nerve stimulation increases serotonin and dopamine metabolites in rat spinal cord. Brain Res Bull 33:625–632

    PubMed  CAS  Google Scholar 

  • Mendez R, Eisenbach JC, Kashtan K (1990) Epidural Clonidine analgesia after cesarean section. Analgesia 73:848–852

    CAS  Google Scholar 

  • Miletic V, Hoffert MJ, Ruda MA, Dubner E, Shigenaga Y (1984) Serotonergic axonal contacts on identified spinal dorsal neurones and their correlation with nucleus raphe magnus stimulation. J Comp Neurol 228:129–141

    PubMed  CAS  Google Scholar 

  • Millan MJ (1993) Multiple opioid systems and chronic pain. In: Herz A, Akil H, Simon E (eds) The opioids. Springer, Berlin Heidelberg New York, pp 127–162 (Handbook of experimental pharmacology, vol 104)

    Google Scholar 

  • Millan MJ (1994) Serotonin and pain: evidence that activation of 5-HT1A receptors does not elicit antinociception against noxious thermal, mechanical and chemical stimuli in mice. Pain 58:45–61

    PubMed  CAS  Google Scholar 

  • Millan MJ (1995) Serotonin and pain: a reappraisal of its role in the light of receptor multiplicity. Semin Neurosci 7:409–419

    CAS  Google Scholar 

  • Millan MJ, Colpaert FC (1991a) 5-Hydroxytryptamine (5-HT)1A receptors and the tail-flick response. III. Structurally diverse 5-HT1A partial agonists attenuate mu-but not kappa-opioid antinociception in mice and rats. J Pharmacol Exp Ther 256:993–1001

    PubMed  CAS  Google Scholar 

  • Millan MJ, Colpaert FC (1991b) 5-Hydroxytryptamine (5-HT)1A receptors and the tail-flick response. II. High efficacy 5-HT1A agonists attenuate morphine-induced antinociception in mice in a competitive-like manner. J Pharmacol Exp Ther 256:983–992

    PubMed  CAS  Google Scholar 

  • Millan MJ, Bervoets K, Colpaert FC (1991) 5-HT1A receptors and the tail-flick response. I. 8-OH-DPAT-induced spontaneous tail-flicks in the rat as an in vivo model of 5-HT1A receptor-mediated activity. J Pharmacol Exp Ther 256:973–982

    PubMed  CAS  Google Scholar 

  • Millan MJ, Canton H, Lavielle G (1992) Targeting multiple serotonin receptors: mixed 5-HT1A agonists — 5-HT1C/2 antagonists as therapeutic agents. Drug News Perspect 5:397–406

    Google Scholar 

  • Millan MJ, Bervoets K, Rivet JM, Widdowson P, Renouard A, Le Marouille-Girardon S, Gobert A (1994) Multiple alpha2-adrenergic receptor subtypes. II. Evidence for a role of rat Rα2A-ARs in the control of nociception, motor behaviour and hippocampal synthesis of noradrenaline. J Pharmacol Exp Ther 270:958–972

    PubMed  CAS  Google Scholar 

  • Millan MJ, Bervoets K, Girardon S, Gobert A, Newman-Tancredi A, Audinot V, Rivet JM, Lacoste A, Cordi A (1995) S 18616: a potent, high efficacy and selective spiroimidazoline agonist at α2-adrenergic receptors (ARs). Am Soc Neurosci Abstr 21:1416

    Google Scholar 

  • Millan MJ, Seguin L, Honoré P, Girardon S, Bervoets K (1996) Pro- and antinociceptive actions of serotonin (5-HT)1 A agonists and antagonists in rodents: relationship to algesiometric paradigm. Behav Brain Res 73:69–77

    PubMed  CAS  Google Scholar 

  • Millar J, Williams GV (1989) Effects of iontophoresis of noradrenaline and stimulation of the periaqueductal gray on single-unit activity in the rat superficial dorsal horn. J Comp Neurol 287:119–133

    PubMed  CAS  Google Scholar 

  • Miller JF, Proudfit HK (1990) Antagonism of stimulation-produced antinociception from ventrolateral pontine sites by intrathecal administration of α-adrenergic antagonists and naloxone. Brain Res 530:20–34

    PubMed  CAS  Google Scholar 

  • Mills A, Martin GR (1995) Autoradiographic mapping of [3H]sumatriptan binding in cat brain stem and spinal cord. Eur J Pharmacol 280:175–178

    PubMed  CAS  Google Scholar 

  • Milne RJ, Gamble GD (1990) Behavioural modification of bulbospinal serotonergic inhibition and morphine analgesia. Brain Res 521:167–174

    PubMed  CAS  Google Scholar 

  • Mjellem N, Lund A, Hole K (1993) Different functions of spinal 5-HT1A and 5-HT2A receptor subtypes in modulating behaviour induced by excitatory amino acid receptor agonists in mice. Brain Res 626:78–82

    PubMed  CAS  Google Scholar 

  • Mogensen T, Eliasen K, Ejlersen E, Vegger P, Nielsen, IK, Kehlet, H (1992) Epidural Clonidine enhances postoperative analgesia from a combined low-dose epidural bupivacaine and morphine regimen. Anesth Analg 75:607–610

    PubMed  CAS  Google Scholar 

  • Mokha SS, Iggo A (1987) Mechanisms mediating the brain stem control of somatosensory transmission in the dorsal horn of the cat’s spinal cord: an intracellular analysis. Exp Brain Res 69:93–106

    PubMed  CAS  Google Scholar 

  • Mokha SS, McMillan, JA, Iggo A (1983) Descending influences on spinal nociceptive neurons from locus coeruleus actions pathway neuro transmitter and mechanisms. Adv Pain Res Ther 5:387–392

    Google Scholar 

  • Molineaux SM, Jessell TM, Axel R, Julius D (1989) 5-HT1C receptor is a prominent serotonin receptor subtype in the central nervous system. Proc Natl Acad Sci USA 86:6793–6797

    PubMed  CAS  Google Scholar 

  • Monaski MS, Zinsmeister AR, Stevens CW, Yaksh TL (1990) Interaction of intrathecal morphine and ST-91 on antinociception in the rat: dose-response analysis, antagonism and clearance. J Pharmacol Exp Ther 254:383–392

    Google Scholar 

  • Monroe PJ, Kradel BK, Smith DL, Smith DJ (1995) Opioid effects on spinal [3H]5-hydroxytryptamine release are not related to their antinociceptive action. Eur J Pharmacol 272:51–56

    PubMed  CAS  Google Scholar 

  • Moskowitz M (1992) Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine. Trends Pharmacol 13:307–311

    CAS  Google Scholar 

  • Motsch J, Gräber E, Ludwig K (1990) Addition of Clonidine enhances postoperative analgesia from epidural morphine: a double-blind study. Anesthesiology 73:1067–1073

    PubMed  CAS  Google Scholar 

  • Murase K, Randic M, Shirasaki T, Nagakawa T, Akaike N (1990) Serotonin suppresses N-methyl-D-aspartate responses in acutely isolated spinal dorsal horn neurones of the rat. Brain Res 525:84–93

    PubMed  CAS  Google Scholar 

  • Murata K, Nakagawa I, Kumeta, LM, Collins, JG (1989) Intrathecal Clonidine suppresses noxiously evoked activity of spinal wide dynamic range neurones in cats. Anesth Analg 69:185–191

    PubMed  CAS  Google Scholar 

  • Murphy AZ, Murphy RM, Zemlan FP (1992) Role of spinal serotoninl receptor subtypes in thermally and mechanically elicited nociceptive reflexes. Psychopharmacology 108:123–130

    PubMed  CAS  Google Scholar 

  • Murphy RM, Zemlan FP (1990) Selective serotoninl A/1B agonists differentially affect spinal nociceptive reflexes. Neuropharmacology 29:463–468

    PubMed  CAS  Google Scholar 

  • Nachemson AK, Bennett GJ (1993) Does pain damage spinal cord neurons? Transsynaptic degeneration in rat following a surgical incision. Neurosci Lett 162:78–80

    PubMed  CAS  Google Scholar 

  • Nacif-Coelho C, Correa-Sales C, Chang LL, Maze M (1994) Perturbation of ion channel conductance alters the hypnotic response to the alpha2-adrenergic agonist dexmedetomidine in the locus coeruleus. Anesthesiology 81:1527–1534

    PubMed  CAS  Google Scholar 

  • Nakamura M, Ferreira SH (1988) Peripheral analgesic action of Clonidine: mediation by release of endogenous enkephalin-like substances. Eur J Pharmacol 146:223–228

    PubMed  CAS  Google Scholar 

  • Naranjo JR, Arned A, Molinero MT, Del Rio J (1989) Involvement of spinal monaminergic pathways in antinociception produced by substance P and neurotensin in rodents. Neuropharmacology 28:291–298

    PubMed  CAS  Google Scholar 

  • Nicholas AP, Pieribone VA, Arvidsson U, Hökfelt T (1992) Serotonin-, substance P-and glutamate/aspartate immunoreactivities in medullo-spinal pathways in rat and primate. Neuroscience 48:545–559

    PubMed  CAS  Google Scholar 

  • Nicholas AP, Pieribone VA, Hökfelt T (1993a) Cellular localization of messenger RNA for beta-1 and beta2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience 56:1023–1039

    PubMed  CAS  Google Scholar 

  • Nicholas AP, Pieribone VA, Hökfelt T (1993b) Distributions of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 328:575–594

    PubMed  CAS  Google Scholar 

  • Nishikawa T, Dohi S (1990) Clinical evaluation of Clonidine added to lidocaine solution for epidural anesthesia. Anesthesiology 73:853–859

    PubMed  CAS  Google Scholar 

  • North RA (1989) Drug receptors and the inhibition of nerve cells. Br J Pharmacol 98:13–28

    PubMed  CAS  Google Scholar 

  • North RA, Yoshimura MJ (1984) The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J Physiol (Lond) 349:43–55

    CAS  Google Scholar 

  • O’Meara ME, Gin T (1993) Comparison of 0.125% bupivacaine with 0.125% bupivacaine and Clonidine as extradural analgesia in the first stage of labour. Br J Anaesth 71:651–656

    PubMed  Google Scholar 

  • Omote K, Kitahata L, Collins JG, Nakatani K, Nakagawa I (1991) Interaction between opiate subtype and alpha2 adrenergic agonists in suppression of noxiously evoked activity of WDR neurones in the spinal dorsal horn. Anesthesiology 74:737–743

    PubMed  CAS  Google Scholar 

  • Onghena P, Van Houdenhove B (1992) Antidepressant-induced analgesia in chronic-malignant pain: a meta-analysis of 39 placebo-controlled studies. Pain 49:205–219

    PubMed  CAS  Google Scholar 

  • Ono H, Mishima A, Fuduka H, Vasko MR (1991) Inhibitory effects of Clonidine and tizanidine on release of substance P from slices of rat spinal cord and antagonism by α-adrenergic receptor antagonists. Neuropharmacology 30:585–589

    PubMed  CAS  Google Scholar 

  • Ossipov MH, Harris S, Lloyd P, Messineo E (1990a) An isobolographic analysic of the antinociceptive effect of systematically and intrathecally administered combinations of Clonidine and opiates. J Pharmacol Exp Ther 255:1107–1116

    PubMed  CAS  Google Scholar 

  • Ossipov MH, Lozito R, Messineo E, Green J, Harris J, Lloyd P (1990b) Spinal antinociceptive synergy between Clonidine and morphine, U69593 and DPDPE: isobolographic analysis. Life Sci 46:171–176

    Google Scholar 

  • Ossipov MH, Kovelowski CJ, Wheeker-Aceto H, Cowan A, Hunter JC, Lai J, Malan TP, Porreca F (1996a) Opioid antagonists and antisera to endogenous opioids increase the nociceptive response to formalin: demonstration of an opioid kappa and delta inhibitory tone. J Pharmacol Exp Ther 277:784–788

    PubMed  CAS  Google Scholar 

  • Ossipov MH, Lopez Y, Bian D, Nichols ML, Porreca F (1996b) Synergistic antinociceptive interactions of morphine and Clonidine in rats with nerve-ligation injury. Anesthesiology (in press)

    Google Scholar 

  • Ouseph AK, Levine JD (1995) α1-Adrenoceptor-mediated sympathetically dependent mechanical hyperalgesia in the rat. Eur J Pharmacol 273:107–112

    PubMed  CAS  Google Scholar 

  • Palmed A, Wiesendanger M (1990) Concomitant depression of locus coeruleus neurones and of flexor reflexes by an alpha-2-adrenergic agonist in rats: a possible mechanism for an alpha-2-mediated muscle relaxation. Neuroscience 34:177–187

    Google Scholar 

  • Pang IH, Vasko MR (1986) Morphine and norepinephrine but not 5-hydroxytryptamine and gamma-butyric acid inhibit potassium-stimulated release of substance P from rat spinal cord slices. Brain Res 376:268–279

    PubMed  CAS  Google Scholar 

  • Patterson SI, Hanley MR (1987) Autoradiographic evidence for β-adrenergic receptors on capsaicin-sensitive primary afferent terminals in rat spinal cord. Neurosci Lett 78:17–21

    PubMed  CAS  Google Scholar 

  • Paul D, Hornby PJ (1995) Potentiation of intrathecal DAMGO antinociception, but not gastrointestinal transit inhibition, by 5-hydroxytryptamine and norepinephrine uptake blockade. Life Sci 56:PL83–87

    Google Scholar 

  • Paul D, Phillips AG (1986) Selective effects of pirenpirone on anagesia produced by morphine or electrical stimulation at sites in the nucleus raphe magnus and periaqueductal grey. Psychopharmacology 88:172–176

    PubMed  CAS  Google Scholar 

  • Paul D, Mana MJ, Pfaus JG, Pinel JPJ (1989) Attenuation of morphine analgesia by the S2 antagonists, pirenperone and ketanserin. Pharmacol Biochem Behav 31:641–647

    Google Scholar 

  • Pelissier T, Alloui A, Paeile C, Eschalier A (1995) Evidence of a central antinociceptive effect of paracetamol involving spinal 5-HT3 receptors. Neuroreport 6:1546–1548

    PubMed  CAS  Google Scholar 

  • Peng, YB, Lin Q, Willis WD (1995a) The role of 5-HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurones in rats. J Pharmacol Exp Ther 276:116–124

    Google Scholar 

  • Peng YB, Lin Q, Willis WD (1995b) Involvement of alpha-2 adrenoceptors in the periaqueductal gray-induced inhibition of dorsal horn cell activity in rats. Soc Neurosci Abstr 21:1172

    Google Scholar 

  • Persson J, Axelsson G, Hallin RG, Gustafsson LL (1995) Beneficial effects of ketamine in a chronic pain state with allodynia, possibly due to central sensitization. Pain 60:217–222

    PubMed  CAS  Google Scholar 

  • Pertovaara A (1993) Antinociception induced by alpha-2-adrenoceptor agonists, with special emphasis on medetomidine studies. Prog Neurobiol 40:691–709

    PubMed  CAS  Google Scholar 

  • Pertovaara A, Hämäläinen MM (1994) Spinal potentiation and supraspinal additivity in the antinociceptive interaction between systematically administered α2-adrenoceptor agonist and cocaine in the rat. Anesth Analg 79:261–266

    PubMed  CAS  Google Scholar 

  • Pertovaara A, Bravo R, Herdegen T (1993) Induction and suppression of immediate-early genes in the rat brain by a selective alpha-2-adrenoceptor agonist and antagonist following noxious peripheral stimulation. Neuroscience 54:117–126

    PubMed  CAS  Google Scholar 

  • Philippi M, Vyklicky L, Kuffler DP, Orkand RK (1995) Serotonin- and proton-induced and modified ionic currents in frog sensory neurones. J Neurosci Res 40:387–395

    PubMed  CAS  Google Scholar 

  • Pierce PA, Xie GX, Levine JD, Peroutka SJ (1996) 5-hydroxytryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: a polymerase chain reaction study. Neuroscience 70:553–559

    PubMed  CAS  Google Scholar 

  • Pieribone VA, Nicholas AP, Dagerlind Å, Hökfelt T (1994) Distribution of α1-adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes. J Neurosci 14:4252–4268

    PubMed  CAS  Google Scholar 

  • Plummer JL, Cmielewski PL, Gourlay GK, Owen H, Cousins MJ (1992) Antinociceptive and motor effects of intrathecal morphine combined with intrathecal Clonidine, noradrenaline, carbachol or midazolam in rats. Pain 49:145–152

    PubMed  CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 12:440–453

    PubMed  CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Mol Brain Res 23:163–178

    PubMed  CAS  Google Scholar 

  • Post C, Archer T (1990) Interactions between 5-HT and noradrenaline in analgesia. In: Besson JM (ed) Serotonin and pain. Excerpta Medica, Amsterdam, pp 153–174

    Google Scholar 

  • Post C, Archer T, Minor BG (1988) Evidence for cross-tolerance to the analgesic effects between morphine and selective α2-adrenoceptor agonists. J Neural Transm 72:1–9

    PubMed  CAS  Google Scholar 

  • Potrebic SB, Fields HL, Mason P (1994) Serotonin immunoreactivity is contained in one physiological cell class in the rat rostral ventromedial medulla. J Neurosci 14:1655–1665

    PubMed  CAS  Google Scholar 

  • Powell KR, Dykstra LA (1995) The role of serotonin in the effects of opioids in squirrel monkeys responding under a titration procedure. I. Kappa opioids. J Pharmacol Exp Ther 274:1305–1316

    PubMed  CAS  Google Scholar 

  • Pranzatelli MR, Murthy JN, Pluchino RS (1992) Identification of spinal 5-HT1C binding sites in the rat: characterization of [3H]mesulergine binding. J Pharmacol Exp Ther 261:161–165

    PubMed  CAS  Google Scholar 

  • Proudfit HK (1992) The behavioural pharmacology of the noradrenergic descending system. In: Besson JM, Guilbaud G (eds) Towards the use of noradrenergic agonists for the treatment of pain. Excerpta Medica/Elsevier Science, Amsterdam, pp 119–137

    Google Scholar 

  • Puke MJC, Wiesenfeld-Hallin Z (1993) The differential effects of morphine and the α2-adrenoceptor agonists Clonidine and dexmedetomidine on the prevention and treatment of experimental neuropathic pain. Anesth Analg 77:104–109

    PubMed  CAS  Google Scholar 

  • Puke MJC, Luo L, Wiesenfeld-Hallin Z (1994) The spinal analgesic role of α2-adrenergic receptor subtypes in rats after peripheral nerve section. Eur J Pharmacol 260:227–232

    PubMed  CAS  Google Scholar 

  • Randich A, Maixner W (1984) Interactions between cardiovascular and pain regulatory systems. Neurosci Biobehav Rev 8:343–367

    PubMed  CAS  Google Scholar 

  • Rauck RL, Eisenbach JC, Jackson KE, Young LD, Southern BSN (1993) Epidural Clonidine treatment for refractory reflex sympathetic dystrophy. Anesthesiology 79:1163–1169

    PubMed  CAS  Google Scholar 

  • Rebeck GW, Maynard KI, Hyman BT, Moskowitz MA (1994) Selective 5-HT1D serotonin receptor gene expression in trigeminal ganglia: implications for antimigraine drug development. Proc Natl Acad Sci USA 91:3666–3669

    PubMed  CAS  Google Scholar 

  • Reid K, Hayashi Y, Guo TZ, Correa-Sales C, Nacif-Coelho C, Maze M (1994) Chronic administration of an α2 adrenergic agonist desensitizes rats to anesthetic effects of dexmedetomidine. Pharmacol Biochem Behav 47:171–175

    PubMed  CAS  Google Scholar 

  • Reimann W, Schneider F (1989) Presynaptic α2-adrenoceptors modulate the release of [3H]noradrenaline from rat spinal cord dorsal horn neurones. Eur J Pharmacol 167:161–166

    PubMed  CAS  Google Scholar 

  • Ren K, Randich A, Gebhart GF (1988) Vagal afferent modulation of a nociceptive reflex in rats: involvement of spinal opioid and monoamine receptors. Brain Res 446:285–294

    PubMed  CAS  Google Scholar 

  • Ren K, Randich A, Gebhart GF (1991) Spinal serotonergic and kappa opioid receptors mediate facilitation of the tail flick reflex produced by vagal afferent stimulation. Pain 45:321–329

    PubMed  CAS  Google Scholar 

  • Renouard A, Widdowson PS, Millan MJ (1994) Multiple alpha2-adrenergic receptor subtypes. I. Comparison of [3H]RX821002-labelled rat Rα2A-adrenergic receptors in cerebral cortex to human Hα2A-adrenergic receptors and other populations of 2-adrenergic subtypes. J Pharmacol Exp Ther 270:946–957

    PubMed  CAS  Google Scholar 

  • Riad M, El Mestikawy S, Vergé D, Gozlan H, Hamon M (1991) Visualisation and quantification of central 5-HT1A receptors with specific antibodies. Neurochem Int 19:413–423

    CAS  Google Scholar 

  • Ridet JL, Rajaofetra N, Teilhac JR, Geffard M, Privat A (1993) Evidence for non-synaptic serotonergic and noradrenergic innervation of the rat dorsal horn and possible involvement of neuron-glia interactions. Neuroscience 52:143–157

    PubMed  CAS  Google Scholar 

  • Ridet JL, Tamir H, Privat A (1994) Direct immunocytochemical localization of 5-hydroxytryptamine receptors in the adult rat spinal cord: a light and electron microscopic study using an anti-idiotypic antiserum. J Neurosci 38:109–121

    CAS  Google Scholar 

  • Riley RC, Zhao ZQ, Duggan AW (1996) Spinal release of immunoreactive dynorphin A(l-8) with the development of peripheral inflammation in the rat. Brain Res 710:131–142

    PubMed  CAS  Google Scholar 

  • Robertson B, Bevan S (1991) Properties of 5-hydroxytryptamine3 receptor-gated currents in adult rat dorsal root ganglion neurones. Br J Pharmacol 102:272–276

    PubMed  CAS  Google Scholar 

  • Robles LI, Barrios M, Del Pozo E, Dordal A, Baeyens JM (1996) Effects of K+ channel blockers and openers on antinociception induced by agonists of 5-HT1A receptors. Eur J Pharmacol 295:181–188

    PubMed  CAS  Google Scholar 

  • Rochford J, Dubé B, Dawes P (1992) Spinal cord alpha-2 noradrenergic receptors mediate conditioned analgesia. Psychopharmacology 106:235–238

    PubMed  CAS  Google Scholar 

  • Rodgers RJ, Shepherd JK, Donát P (1991) Differential effects of novel ligands for 5-HT receptor subtypes on nonopioid defensive analgesia in male mice. Neurosci Behav Rev 15:489–495

    CAS  Google Scholar 

  • Roerig SC, Lei S, Kitto K, Hylden JKL, Wilox GL (1992) Spinal interactions between opioid and noradrenergic agonists in mice: multiplicativity involves delta and alpha-2 receptors. J Pharmacol Exp Ther 262:365–374

    PubMed  CAS  Google Scholar 

  • Rosin DL, Zeng D, Stornetta RL, Norton FR, Riley T, Okusa MO, Guyenet PG, Lynch KR (1993) Immunohistochemical localization of α2A-adrenergic receptors in catecholaminergic and other brainstem neurons in the rat. Neuroscience 56:139–155

    PubMed  CAS  Google Scholar 

  • Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang JM, Schwartz JC (1994) Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci USA 90:8547–8551

    Google Scholar 

  • Ruda MA (1990) Serotonin and spinal dorsal horn neuronal circuitry. In: Besson JM (ed) Serotonin and pain. Excerpta Medica/Elsevier Science, Amsterdam, pp 73–84

    Google Scholar 

  • Ruda MA, Bennett GJ, Dubner R (1986) Neurochemistry and neural circuitry in the dorsal horn. Prog Brain Res 66:219–268

    PubMed  CAS  Google Scholar 

  • Saeki S, Yaksh TL (1991) Suppression by spinal alpha-2 agonists of motor and autonomic responses evoked by low- and high-intensity thermal stimuli. J Pharmacol Exp Ther 260:795–802

    Google Scholar 

  • Sagen J, Winker MA, Proudfit HK (1983) Hypoalgesia induced by the local injection of phentolamine in the nucleus raphe magnus blockade by depletion of spinal cord monoamines. Pain 16:253–264

    PubMed  CAS  Google Scholar 

  • Sakatani K, Chesler M, Hassan AZ, Lee M, Young W (1993) Non-synaptic modulation of dorsal column conduction by endogenous GABA in neonatal rat spinal cord. Brain Res 622:43–50

    PubMed  CAS  Google Scholar 

  • Sánchez A, Niedbala B, Feria M (1995) Modulation of neuropathic pain in rats by intrathecally injected serotonergic agonists. Neuroreport 6:2585–2588

    PubMed  Google Scholar 

  • Sandrini G, Alfonsi E, de Rysky C, Marini S, Facchinetti F, Nappi G (1986) Evidence for Serotonin-S2 receptor involvement in analgesia in humans. Eur J Pharmacol 130:311–314

    PubMed  CAS  Google Scholar 

  • Saria A, Javorsky F, Humpel C, Gamse R (1990) 5-HT3 receptor antagonists inhibit sensory neuropeptide release from the rat spinal cord. Neuroreport 1:104–106

    PubMed  CAS  Google Scholar 

  • Satoh M, Kawajiri SI, Ukai Y, Yamamoto M (1979) Selective and non-selective inhibition by enkephalins and noradrenaline of nociceptive response of lamina V type neurons in the spinal dorsal horn of the rabbit. Brain Res 177:384–387

    PubMed  CAS  Google Scholar 

  • Satoh M, Kashiba A, Kimura H, Maeda T (1982) Noradrenergic axon terminals in the substantia gelatinosa of the rat spinal cord. Cell Tissue Res 222:359–378

    PubMed  CAS  Google Scholar 

  • Sawynok J (1989) The role of ascending and descending noradrenergic and serotoninergic pathways in opioid and non-opioid antinociception as revealed by lesion studies. Can J Physiol Pharmacol 67:975–988

    PubMed  CAS  Google Scholar 

  • Sawynok J, Reid A (1994) Spinal supersensitivity to 5-HT1, 5-HT2- and 5-HT3 receptor agonists following 5,7-dihydroxytryptamine. Eur J Pharmacol 264:249–257

    PubMed  CAS  Google Scholar 

  • Sawynok J, Reid A (1996) Neurotoxin-induced lesions to central serotonergic, noradrenergic and dopaminergic systems modify caffeine-induced antinociception in the formalin test and locomotor stimulation in rats. J Pharmacol Exp Ther 277:646–653

    PubMed  CAS  Google Scholar 

  • Scatton B, Dubois A, Cudennec A (1984) Autoradiographic localization of dopamine receptors in the spinal cord of the rat using H-N-propylnorapomorphine. J Neural Transm 59:251–256

    PubMed  CAS  Google Scholar 

  • Scheinin M, Lomasney JW, Hayden-Hixson DM, Schambra UB, Caron MG, Lefkowitz RJ, Fremeau RT (1994) Distribution of α2-adrenergic receptor subtype gene expression in rat brain. Mol Brain Res 21:133–149

    PubMed  CAS  Google Scholar 

  • Schlicker E, Werner U, Hamon M, Gozlan H, Nickel B, Szelenyi, I, Göthert M (1992) Anpirtoline, a novel, highly potent 5-HT1B receptor agonist with antinociceptive/antidepressant-like actions in rodents. Br J Pharmacol 105:732–738

    PubMed  CAS  Google Scholar 

  • Schott GD (1995) An unsympathetic view of pain. Lancet 345:634–365

    PubMed  CAS  Google Scholar 

  • Schwinn DA, Correa-Sales C, Page SO, Maze M (1991) Functional effects of activation of alpha-1 adrenoceptors by dexmedetomidine: in vivo and in vitro studies. J Pharmacol Exp Ther 259:1147–1152

    PubMed  CAS  Google Scholar 

  • Segal IS, Javis DJ, Duncan SR, White PF, Maze M (1991) Clinical efficacy of oral-transdermal Clonidine combinations during the perioperative period. Anesthesiology 74:220–225

    PubMed  CAS  Google Scholar 

  • Seguin L, Le Marouille-Girardon S, Millan MJ (1995) Antinociceptive profiles of non-peptidergic neurokinin 1 and neurokinin 2 receptor antagonists: a comparison to other classes of antinociceptive agent. Pain 61:325–343

    PubMed  CAS  Google Scholar 

  • Seybold VS (1986) Neurotransmitter receptor sites in the spinal cord. In: Yaksh TL (ed) Spinal afferent processing. Plenum, New York, pp 117–139

    Google Scholar 

  • Sherman S, Lommis C, Milne B, Cervenko F (1987) Prolonged spinal analgesia in the rat with the α-adrenoceptor agonist oxymetazoline. Eur J Pharmacol 140:25–32

    PubMed  CAS  Google Scholar 

  • Simmons RMA, Jones DJ (1988) Binding of [3H]prazosin and [3H]p-aminoclondine to α-adrenoceptors in rat spinal cord. Brain Res 445:338–349

    PubMed  CAS  Google Scholar 

  • Singelyn FJ, Dangoisse M, Bartholomee S, Gouverneur JM (1992) Adding Clonidine to mepivacaine prolongs the duration of anesthesia and analgesia after axillary brachial plexus block. Reg Anesth 17:148–150

    PubMed  CAS  Google Scholar 

  • Smith BD, Baudendistel LJ, Gibbons JJ, Schweiss JF (1992) A comparison of two epidural α2-agonists, guanfacine and Clonidine, in regard to duration of antinociception, and ventilatory and hemodynamic effects in goats. Anesth Analg 74:712–718

    PubMed  CAS  Google Scholar 

  • Smith GD, Harrison SM, Wiseman J, Elliott PJ, Birch PJ (1993) Pre-emptive administration of Clonidine prevents development of hyperalgesia to mechanical stimuli in a model of mononeuropathy in the rat. Brain Res 632:16–20

    PubMed  CAS  Google Scholar 

  • Smith GD, Wiseman J, Harrison SM, Elliott PJ, Birch PJ (1994) Pre-treatment with MK-801, a non-competitive NMDA antagonist, prevents development of mechanical hyperalgesia in a rat model of chronic neuropathy, but not in a model of chronic inflammation. Neurosci Lett 165 79–83

    PubMed  CAS  Google Scholar 

  • Solomon RE, Gebhart GF (1988a) Intrathecal morphine and Clonidine: antinociceptive tolerance and cross-tolerance and effects on blood pressure. J Pharmacol Exp Ther 245:444–454

    PubMed  CAS  Google Scholar 

  • Solomon RE, Gebhart GF (1988b) Mechanisms of effects of intrathecal serotonin on nociception and blood pressure in rats. J Pharmacol Exp Ther 245:905–912

    PubMed  CAS  Google Scholar 

  • Solomon RE, Brody MJ, Gebhart GF (1989) Pharmacological characterization of alpha-adrenoceptors involved in the antinociceptive and cardiovascular effects of intrathecally administered Clonidine. J Pharmacol Exp Ther 251:27–38

    PubMed  CAS  Google Scholar 

  • Sorkin LS, McAdoo DJ, Willis WD (1993) Raphe magnus stimulation-induced antinociception in the cat is associated with release of amino acids as well as serotonin in the lumbar dorsal horn. Brain Res 618:95–108

    PubMed  CAS  Google Scholar 

  • Spanos LJ, Stafinsky JL, Crisp T (1989) A comparative analysis of monoaminergic involvement in the spinal antinociceptive action of DAMPGO and DPDPE. Pain 39:329–335

    PubMed  CAS  Google Scholar 

  • Stafford-Smith M, Schambra UB, Wilson KH, Page SO, Hulette C, Light AR, Schwinn DA (1995)α2-Adrenergic receptors in human spinal cord: specific localized expression of mRNA encoding α2-adrenergic receptor subtypes at four distinct levels. Mol Brain Res 34:109–117

    Google Scholar 

  • Stamford JA (1995) Descending control of pain. Br J Anaesth 75:217–227

    PubMed  CAS  Google Scholar 

  • Stanfa LC, Dickenson AH (1994) Enhanced alpha-2 adrenergic controls and spinal morphine potency in inflammation. Neuroreport 5:469–472

    PubMed  CAS  Google Scholar 

  • Stevens CW, Yaksh TL (1989) Time course characteristics of tolerance development to continuously infused antinociceptive agents in rat spinal cord. J Pharmacol Exp Ther 251:216–223

    PubMed  CAS  Google Scholar 

  • Stevens C, Yaksh TL (1992) Studies of morphine and D-Ala2-D-Leu5-enkephalin (DADLE) cross-tolerance after continuous intrathecal infusion in the rat. Anesthesiology 76:596–603

    PubMed  CAS  Google Scholar 

  • Stevens CW, Monasky MS, Yaksh TL (1988) Spinal infusion of opiate and alpha-2 agonists in rats: tolerance and cross-tolerance studies. J Pharmacol Exp Ther 244:63–70

    PubMed  CAS  Google Scholar 

  • Stiller RU, Grubb BD, Schaible HG (1993) Neurophysiological evidence for increased kappa opioidergic control of spinal cord neurons in rats with unilateral inflammation at the ankle. Eur J Neurosci 5:1520–1527

    PubMed  CAS  Google Scholar 

  • Sugimoto T, Bennet GJ, Kajander KC (1990) Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transsection, and strychnine. Pain 42:205–213

    PubMed  CAS  Google Scholar 

  • Sugiyama BH, Huang LYM (1995) Activation of 5-HT2 receptors potentiates the spontaneous inhibitory postsynaptic currents on (sIPSCs) intrigeminal neurones. Am Soc Neurosci Abstr 21:1415

    Google Scholar 

  • Sullivan AF, Dashwood MR, Dickenson AH (1987) α2-Adrenoceptor modulation of nociception in rat spinal cord: localisation, effects and interaction with morphine. Eur J Pharmacol 138:169–177

    PubMed  CAS  Google Scholar 

  • Sullivan AF, Kalso EA, McQuay HJ, Dickenson AH (1992a) Evidence for the involvement of the μ but not δ opioid receptor subtype in the synergistic interaction between opioid and α2 adrenergic antinociception in the rat spinal cord. Neurosci Lett 139:65–68

    PubMed  CAS  Google Scholar 

  • Sullivan AF, Kalso EA, McQuay HJ, Dickenson AH (1992b) The antinociceptive actions of dexmedetomidine on dorsal horn neuronal responses in the anaesthetized rat. Eur J Pharmacol 215:127–133

    PubMed  CAS  Google Scholar 

  • Taguchi K, Suzuki Y (1992) The response of the 5-hydroxyindole oxidation current to noxious stimuli in the spinal cord of anesthesized rats: modification by morphine. Brain Res 583:150–154

    PubMed  CAS  Google Scholar 

  • Takagi H, Shiomi H, Kuraishi Y, Fukui K, Ueda H (1979) Pain and the bulbospinal noradrenergic system, pain-induced increase in normetanephrine content in the spinal cord and its modification by morphine. Eur J Pharmacol 54:94–107

    Google Scholar 

  • Takano Y, Yaksh TL (1992a) The effect of intrathecally administered imiloxan and WB4101: possible role of α2-adrenoceptor subtypes in the spinal cord. Eur J Pharmacol 219:465–468

    PubMed  CAS  Google Scholar 

  • Takano Y, Yaksh TL (1992b) Characterization of the pharmacology of intrathecally administered alpha-2 agonists and antagonists in rats. J Pharmacol Exp Ther 261:764–772

    PubMed  CAS  Google Scholar 

  • Takano Y, Yaksh TL (1993) Chronic spinal infusion of dexmedetomidine, ST 91 and Clonidine: spinal alpha2 adrenoceptor subtypes and intrinsic activity. J Pharmacol Exp Ther 264:327–335

    PubMed  CAS  Google Scholar 

  • Takano Y, Yaksh TL (1992c) In vitro release of calcitonin gene related peptide (CGRP), substance P (SP) and vasoactive intestinal polypeptide (VIP): modulation by alpha-2 agonists. In: Inoki R, Shigenaga Y, Tohyama M (eds) Processing and inhibition of nociceptive information. Elsevier Science, Amsterdam, pp 249–252

    Google Scholar 

  • Takeshita N, Okhubo Y, Yamaguchi I (1995) Tiapride attenuates pain transmission through an direct activation of central serotoninergic mechanism. J Pharmacol Exp Ther 275:23–30

    PubMed  CAS  Google Scholar 

  • Takeshita N, Yamaguchi I (1995) Meta-chlorophenylpiperazine attenuates formalin-induced nociceptive responses through 5-HT1/2 receptors in both normal and diabetic mice. Br J Pharmacol 116:3133–3138

    PubMed  CAS  Google Scholar 

  • Tasker RAR, Connell BJ, Yole MJ (1992) Systemic injections of alpha-1 adrenergic agonists produce antinociception in the formalin test. Pain 49:383–391

    PubMed  CAS  Google Scholar 

  • Tecott LH, Maricq AV, Julius D (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci USA 90:1430–1434

    PubMed  CAS  Google Scholar 

  • Teoh H, Malcangio M, Bowery NG (1996) GABA, glutamate and substance P-like immunoreactivity release: effects of novel GABAB antagonists. Br J Pharmacol 118:1153–1160

    PubMed  CAS  Google Scholar 

  • Thor KB, Nickolaus S, Heike CJ (1993) Autoradiographic localization of 5-hydroxytryptamine1A, 5-hydroxytryptamine1B and 5-hydroxytryptamine1C/2 binding sites in the rat spinal cord. Neuroscience 55:235–252

    PubMed  CAS  Google Scholar 

  • Thurston CL, Helton ES (1996) Effects of intravenous phenylephrine on blood pressure, nociception, and neural activity in the rostral ventral medulla in rats. Brain Res 717:81–90

    PubMed  CAS  Google Scholar 

  • Tjølsen A, Berge OG, Hole K (1991) Lesions of bulbo-spinal serotonergic or noradrenergic pathways reduce nociception as measured by the formalin test. Acta Physiol Scand 142:229–236

    PubMed  Google Scholar 

  • Todd KA, Millar J (1983) Respective fields and responses to iontophoretically applied noradrenaline and 5-hydroxytryptamine of units recorded in laminae I-III of cat dorsal horn. Brain Res 288:159–167

    PubMed  CAS  Google Scholar 

  • Todd AJ, Watt C, Spike RC, Sieghart W (1996) Colocalization of GABA, glycine and their receptors at synapses in the rat spinal cord. J Neurosci 16:974–982

    PubMed  CAS  Google Scholar 

  • Tseng LLF, Tang R (1989) Differential actions of the blockade of spinal opioid, adrenergic and serotonergic receptors on the tail-flick inhibition induced by morphine microinjected into dorsal raphe and central gray in rats. Neuroscience 33:93–100

    PubMed  CAS  Google Scholar 

  • Uhlén S, Wikberg JES (1991) Rat-spinal cord α2A-adrenoceptors are of the α2A-subtype: comparison with α2A- and α2B-adrenoceptors in rat spleen, cerebral cortex and kidney using [3H]RX82102 ligand binding. Pharmacol Toxicol 69:341–350

    PubMed  Google Scholar 

  • Ueda M, Oyama T, Kuraishi Y, Akaike A, Satoh M (1995) Alpha2-adrenoceptor-mediated inhibition of capsaicin-evoked release of glutamate from rat spinal dorsal horn slices. Neurosci Lett 188:137–139

    PubMed  CAS  Google Scholar 

  • Uhlén S, Persson I, Alari C, Post C, Axelsson KL, Wikberg JES (1990) Antinociceptive actions ofα2-adrenoceptor agonists in the rat spinal cord: evidence for antinociceptive α2-adrenoceptor subtype and dissociation of antinociceptive α2-adrenoceptors from cyclic AMP. J Neurochem 55:1905–1914

    PubMed  Google Scholar 

  • Uhlén S, Xia Y, Chhajlani V, Felder CC, Wikberg JES (1992) [3H]-MK912 binding delineates two α2-adrenoceptor subtypes in rat CNS one of which is identical with the cloned A2d α2-adrenoceptor. Br J Pharmacol 106:986–995

    PubMed  Google Scholar 

  • Ulhén S, Porter AC, Neubig RR (1994) The novel alpha-2 adrenergic radioligand [3H]-MK912 is alpha-2C selective among human alpha-2A, alpha-2B and alpha-2C adrenoceptors. J Pharmacol Exp Ther 271:1558–1565

    Google Scholar 

  • Urban L, Thompson SWN, Dray A (1994) Modulation of spinal excitability: cooperation between neurokinin and excitatory amino acid neurotransmitters. Trends Neurosci 17:432–438

    PubMed  CAS  Google Scholar 

  • Vasko MR, Pang IH, Vogt M (1984) Involvement of 5-hydroxytryptamine-containing neurones in antinociception produced by injection of morphine into nucleus raphe magnus or onto spinal cord. Brain Res 306:341–348

    PubMed  CAS  Google Scholar 

  • Vayssettes-Courchay C, Bouysset F, Cordi A, Laubie M, Verbeuren TJ (1996) A comparative study of the reversal by different α2-adrenoceptor antagonists of the central sympatho-inhibitory effect of Clonidine. Br J Pharmacol 117:587–593

    PubMed  CAS  Google Scholar 

  • Verdugo RJ, Ochoa JL (1994) Sympathetically maintained pain. Neurology 44:1003–1010

    PubMed  CAS  Google Scholar 

  • Von Knorring L (1990) Serotonin metabolites in the CSF of chronic pain patients. In: Besson JM (ed) Serotonin and pain. Excerpta Medica/Elsevier Science, Amsterdam, pp 285–304

    Google Scholar 

  • Vonhof S, Sirén AL (1991) Reversal of μ-opioid-mediated respiratory depression by α2-adrenoceptor antagonism. Life Sci 49:111–119

    PubMed  CAS  Google Scholar 

  • VonVoigtlander PF, Lewis RA, Neff GL (1984) Kappa opioid analgesia is dependent on serotonergic mechanisms. J Pharmacol Exp Ther 231:270–274

    Google Scholar 

  • Waeber C, Hoyer D, Palacios JM (1989) 5-Hydroxytryptamine3 receptors in the human brain: autoradiographic visualisation using [3H]ICS 205–930. Neuroscience 31:393–400

    PubMed  CAS  Google Scholar 

  • Wallis DI (1994) 5-HT receptors involved in initiation or modulation of motor patterns: opportunities for drug development. Trends Pharmacol Sci 15:288–292

    PubMed  CAS  Google Scholar 

  • Wang C, Knowles MG, Chakrabarti MK, Whitwam JG (1994) Clonidine has comparable effects on spontaneous sympathetic activity and afferent A delta and C-fiber-mediated somatosympathetic reflexes in dogs. Anesthesiology 81:710–717

    PubMed  CAS  Google Scholar 

  • Wang SD, Goldenberg ME, Murray M (1991) Plasticity of spinal systems after unilateral lumbosacral dorsal rhizotomy in the adult rat. J Comp Neurol 304:555–568

    PubMed  CAS  Google Scholar 

  • Ward RP, Hamblin MW, Lachowicz JE, Hoffman BJ, Sibley DR, Dorsa DM (1995) Localization of serotonin subtype 6 receptor messenger RNA in the rat brain by in situ hybridization histochemistry. Neuroscience 64:1105–1111

    PubMed  CAS  Google Scholar 

  • Watkins LR, Thurston CL, Fleshner M (1990) Phenylephrine-induced antinociception: investigations of potential neural and endocrine bases. Brain Res 528:273–284

    PubMed  CAS  Google Scholar 

  • Weil-Fugazza J (1990) Central metabolism and release of serotonin in pain and analgesia. In: Besson JM (ed) Serotonin and pain. Excerpta Medica, Amsterdam, p 339

    Google Scholar 

  • Weil-Fugazza J, Godefroy F, Manceau V, Besson JM (1986) Increased norepinephrine and uric acid levels in the spinal cord of arthritic rats. Brain Res 374:190–194

    PubMed  CAS  Google Scholar 

  • Westlund KN (1992) Anatomy of noradrenergic pathways modulating pain. In: Besson JM, Guilbaud G (eds) Towards the use of noradrenergic agonists for the treatment of pain. Excerpta Medica/ElsevierScience, Amsterdam, pp 91–118

    Google Scholar 

  • Wikberg JES, Hajos M (1987) Spinal cord α2-adrenoceptors may be located postsynaptically with respect to primary sensory neurones: destruction of primary C-afferents with neonatal capsaicin does not affect the number of [3H]clonidine binding sites in mice. Neurosci Lett 76:63–68

    PubMed  CAS  Google Scholar 

  • Wild KE, Press JB, Raffa RB (1994) Alpha2-adrenoceptors: can subtypes mediate selective analgesia? Analgesia 1:15–25

    CAS  Google Scholar 

  • Willcockson WS, Chung, JM, Hori Y, Lee KH, Willis WD (1984) Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells. J Neurosci 4:732–740

    PubMed  CAS  Google Scholar 

  • Williams F, Birnbaum A, Wilcox G, Beitz A (1991) Hybridization histochemical analysis of spinal neurones that express the α2-adrenergic receptor in a rat model of peripheral mononeuropathy. Soc Neurosci Abstr 17:1370

    Google Scholar 

  • Willis WD (1988) Anatomy and physiology of descending control of nociceptive responses of dorsal horn neurons: a comprehensive review. Prog Brain Res 77:1–29

    PubMed  Google Scholar 

  • Willis WD (1992) Descending control systems: Physiological aspects. In: Besson JM, Guilbaud G (eds) Towards the use of noradrenergic agonists for the treatment of pain. Excerpta Medica/Elsevier Science, Amsterdam, pp 47–64

    Google Scholar 

  • Willis WD (1994) Central plastic responses to pain. In: Gebhart GF, Hammond DL, Jensen TS (eds) Proceeding of the 7th World Congress on Pain, vol 2. International Association for the Study of Pain, Seattle, pp 301–324

    Google Scholar 

  • Wilson P, Kitchener PD (1996) Plasticity of cutaneous primary afferent projections to the spinal dorsal horn. Prog Neurobiol 48:105–129

    PubMed  CAS  Google Scholar 

  • Woolf CJ, Chong MS (1993) Preemptive analgesia-treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg 77:362–379

    PubMed  CAS  Google Scholar 

  • Woolf CJ, Doubell TP (1994) The pathophysiology of chronic pain — increased sensitivity to low threshold Aβ-fibre inputs. Curr Opin Biol 4:525–534

    CAS  Google Scholar 

  • Wu J, Wessendorf MW (1992) Organization of the serotonergic innervation of spinal neurones in rats. I. Neuropeptide coexistence in varicosities innervating some spinothalamic tract neurones but not in those innervating postsynaptic dorsal column neurones. Neuroscience 50:885–898

    PubMed  CAS  Google Scholar 

  • Wu J, Wessendorf MW (1993) Organization of the serotonergic innervation of spinal neurones in rats. III. Differential serotonergic innervation of somatic and parasympathetic preganglionic motoneurones as determined by patterns of co-existing peptides. Neuroscience 55:223–233

    PubMed  CAS  Google Scholar 

  • Xu XJ, Hao JX, Seiger A, Wiesenfeld-Hallin Z (1993) Systemic excitatory amino acid receptor antagonists of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and of the N-methyl-D-aspartate (NMDA) receptor relieve mechanical hypersensitivity after transient spinal cord ischemia in rats. J Pharmacol Exp Ther 267:140–144

    PubMed  CAS  Google Scholar 

  • Xu W, Qui XC, Han JS (1994a) Spinal serotonin 1A and 1C/2 receptors mediate supraspinal β opioid-induced analgesia. Neuroreport 5:2665–2668

    PubMed  CAS  Google Scholar 

  • Xu W, Qui XC, Han JS (1994b) Serotonin receptor subtypes in spinal antinociception in the rat. J Pharmacol Exp Ther 269:1182–1189

    PubMed  CAS  Google Scholar 

  • Xu XJ, Puke MJC, Wiesenfeld-Hallin Z (1992) The depression effect of intrathecal Clonidine on the spinal flexor reflex is enhanced after sciatic nerve section in rats. Pain 51:145–53

    PubMed  CAS  Google Scholar 

  • Xu XJ, Zhang X, Hökfelt T, Wiesenfeld-Hallin Z (1995) Plasticity in spinal nociception after peripheral nerve section: reduced effectiveness of the NMDA receptor antagonist MK-801 in blocking wind-up and central sensitization of the flexor reflex. Brain Res 670:342–346

    PubMed  CAS  Google Scholar 

  • Yaksh TL (1985) Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav 22:845–858

    PubMed  CAS  Google Scholar 

  • Yaksh TL, Pogrel JW, Lee YW, Chaplan SR (1995) Reversal of nerve ligation-induced allodynia by spinal alpha2 adrenoceptor agonists. J Pharmacol Exp Ther 272:207–214

    PubMed  CAS  Google Scholar 

  • Yamaguchi H, Watanabe S, Dohi S, Naito H (1994) Effect of additional Clonidine on dose-responses of morphine on antinociception and PaCO2 in rats. Anesth Analg 78:S493

    Google Scholar 

  • Yamamoto T, Yaksh TL (1991) Spinal pharmacology of thermal hyperesthesia induced by incomplete ligation of sciatic nerve. Anesthesiology 75:817–826

    PubMed  CAS  Google Scholar 

  • Yang L, Heike CJ (1995) Effects of coexisting neurochemicals on the release of serotonin from the intermediate area of rat thoracic spinal cord. Synapse 21:319–323

    CAS  Google Scholar 

  • Yeomans DC, Proudfit HK (1992) Antinociception induced by microinjection of substance P into the A7 catecholamine cell group in the rat. Neuroscience 49:681–691

    PubMed  CAS  Google Scholar 

  • Yeomans DC, Clark FM, Paice JA, Proudfit HK (1992) Antinociception induced by electrical stimulation of spinally projecting noradrenergic neurones in the A7 catecholamine cell group of the rat. Pain 48:449–461

    PubMed  CAS  Google Scholar 

  • Yezierski RP, Wilcox TK, Willis WD (1982) The effects of serotonin antagonists on the inhibition of primate spinothalamic tract cells produced by stimulation in nucleus raphe magnus or periaqueductal gray. J Pharmacol Exp Ther 220:266–277

    PubMed  CAS  Google Scholar 

  • Yonehara N, Shibutani T, Imai Y, Sawada T, Inoki R (1991) Serotonin inhibits release of substance P evoked by tooth pulp stimulation in trigeminal nucleus caudalis in rabbits. Neuropharmacology 30:5–13

    PubMed  CAS  Google Scholar 

  • Yoshimura M, Nishi S (1995) Primary afferent-evoked glycine- and GABA-mediated IPSPs in substantia gelatinosa neurones in the rat spinal cord in vitro. J Physiol (Lond) 482 (1):29–38

    CAS  Google Scholar 

  • Zemlan FP, Schwab EF (1991) Characterization of a novel serotonin receptor subtype (5-HT1S) in rat CNS: interaction with a GTP binding protein. J Neurochem 57:2092–2099

    PubMed  CAS  Google Scholar 

  • Zemlan FP, Kow L, Pfaff DW (1983) Spinal serotonin (5-HT) receptor subtypes and nociception. J Pharmacol Exp Ther 226:477–485

    PubMed  CAS  Google Scholar 

  • Zemlan FP, Schwab EF, Murphy RM, Behbehani MM (1990) Identification of a novel 5-HT1S binding site in rat spinal cord. Neurochem Int 16:503–513

    Google Scholar 

  • Zemlan FP, Murphy RM, Behbehani MM (1994) 5-HT1A receptors mediate the effect of bulbospinal serotonin system on spinal dorsal horn nociceptive neurons. Pharmacology 48:1–10

    PubMed  CAS  Google Scholar 

  • Zeng D, Lynch KR (1991) Distribution of α2-adrenergic receptor mRNAs in the rat CNS. Mol Brain Res 10:219–225

    PubMed  CAS  Google Scholar 

  • Zhao ZQ, Duggan AW (1987) Clonidine and the hyper-responsiveness of dorsal horn neurones following morphine withdrawal in the spinal cat. Neuropharmacology 26:1499–1502

    PubMed  CAS  Google Scholar 

  • Zhao ZQ, Duggan AW (1988) Idazoxan blocks the action of noradrenaline but not spinal inhibition from electrical stimulation of the locus coeruleus and nucleus kolliker-fuse of the cat. Neuroscience 25:997–1005

    PubMed  CAS  Google Scholar 

  • Zhuo M, Gebhart GF (1990) Spinal cholinergic and monoaminergic receptors mediat descending inhibition from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat. Brain Res 535:67–78

    PubMed  CAS  Google Scholar 

  • Zhuo M, Gebhart GF (1991) Spinal serotonin receptors mediate descending facilitation of a nociceptive reflex from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat. Brain Res 550:35–48

    PubMed  CAS  Google Scholar 

  • Zochodne DW, Ho LT (1994) Sumatriptan blocks neurogenic inflammation in the peripheral nerve trunk. Neurology 44:161–163

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Millan, M.J. (1997). The Role of Descending Noradrenergic and Serotoninergic Pathways in the Modulation of Nociception: Focus on Receptor Multiplicity. In: Dickenson, A., Besson, JM. (eds) The Pharmacology of Pain. Handbook of Experimental Pharmacology, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60777-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60777-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64550-1

  • Online ISBN: 978-3-642-60777-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics