Skip to main content

The Structure of the Human Skin Barrier

  • Chapter

Abstract

Dermal exposure becomes a risk, eventually causing injury and damage, when the stratum corneum is insufficient to protect the viable epidermis, the dermis and the body from noxious agents. Although we may be prone to regard the integument as a barrier against a hostile environment, it must be remembered that the most important task for human skin is to create a watertight enclosure of the body to prevent water loss. Body-water homeostasis is a strict requirement for normal physiological function, as uncontrolled loss of water will result in a drastic increase in salt concentrations, with consequent harmful effects on the physiology of cells and tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts B, Bray D, Lewis J, Raff M, Roberto K, Watson JD (1989) The molecular biology of the cell, 2nd edn. Garland Publications Inc. New York

    Google Scholar 

  • Boddé H, van den Brink I, Koerten HK, de Haan FHN (1990) Visualisation of in vitro penetration of mercuric chloride; transport through intercellular space versus cellular uptake through desmosomes. J Controlled Release 15:227–236

    Article  Google Scholar 

  • Bowstra JA, de Vries MA, Gooris GS, Bras W, Brusse J, Ponec M (1991) Thermodynamic and structural aspects of the skin barrier. J Controlled Release 15:209–220

    Article  Google Scholar 

  • Bowstra JA, Gooris GS, Salmons de Vries MA, van der Spek JA, Bras W (1992) Structure of human stratum corneum as a function of temperature and hydration: a wide angle X-ray diffraction study. Int J Pharmacol 84:205–216

    Article  Google Scholar 

  • Bowstra JA, Gooris GS, Bras W, Downing DT (1995) Lipid organisation in pig stratum corneum. J Lipid Res 36:685–695

    Google Scholar 

  • Cheng A, Hummel B, Mencke A, Caffrey M (1994) Kinetics and mechanism of the barotropic lamellar gel/lamellar liquid crystal phase transition in fully hydrated dihexadecyl-phosphatidyl-ethanolamine: a time-resolved X-ray diffraction study using pressure jump. Science 67:293–303

    CAS  Google Scholar 

  • Cornwell PA, Barry BW, Bouwstra JA, Gooris GS (1996) Modes of action of terpene penetration enhancers in human skin; differential scanning calorimetry, small angle X-ray diffraction and enhancer uptake studies. Int J Pharmacol 127:9–26

    Article  CAS  Google Scholar 

  • Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80:44S-49S

    Article  CAS  Google Scholar 

  • Engblom J (1996) On the phase behaviour of lipids with respect to skin barrier function (thesis). Lund University, Sweden

    Google Scholar 

  • Engström S, Engblom J, Forslind B (1995) Lipid polymorphism — a key to the understanding of skin penetration. In: Brain KR, James VJ, Walters KA (eds) Proceedings of prediction of percutaneous penetration, (vol 4b). STS Publishing Ltd., Cardiff, pp 163–166

    Google Scholar 

  • Fartasch M (1997) Epidermal barrier in disorders of the skin. Microsc Res Tech 38:361–372

    Article  PubMed  CAS  Google Scholar 

  • Fartasch M, Bassuskas ID, Diepgen TL (1993) Structural relationship between epidermal lipid lamellae, lamellar bodies and desmosomes in humans epidermis: an ultrastructural study. Br J Dermatol 128:1–9

    Article  PubMed  CAS  Google Scholar 

  • Fenske DB, Thewald JL, Bloom M, Kitson N (1994) Models of stratum corneum intercellular membranes: 2H NMR of macroscopically oriented multilayers. Biophys J 67:1562–1573

    Article  PubMed  CAS  Google Scholar 

  • Forslind B (1994) A domain mosaic model of the skin barrier. Acta Derm Venereol 74:1–6

    PubMed  CAS  Google Scholar 

  • Forslind B (1995) The skin: upholder of physiological homeostasis. A physiological and biophysical study program. Thromb Res 80:1–22

    Article  PubMed  CAS  Google Scholar 

  • Forslind B, Engström S, Engblom J, Norlén L (1997) A novel approach to the understanding of human skin barrier function. J Dermatol Sci 14:115–125

    Article  PubMed  CAS  Google Scholar 

  • Gray GM, White RJ (1978) Glycosphingolipids and ceramides in human and pig epidermis. J Invest Dermatol 70:336–341

    Article  PubMed  CAS  Google Scholar 

  • Gray GM, Yardley HJ (1975) Lipid compositions of cells isolated from pig, human, and rat epidermis. J Lipid Res 16:434–440

    PubMed  CAS  Google Scholar 

  • Guy CL, Guy RH, Golden GM, Mak VHW, Francoeur ML (1994) Characterisation of low-temperature (i.e. <65 °C) lipid transitions in human stratum corneum. J Invest Dermatol 103:233–239

    Article  PubMed  Google Scholar 

  • Hotchkiss S (1994) How thin is your skin. New Scientist 1910: 24–27

    Google Scholar 

  • Iraelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organisation. Q Rev Biophys 13:121–200

    Article  Google Scholar 

  • Larsson K (1994) Lipids — molecular organization, physical function and technical application. Oily Press, Dundee, U.K. (Oily Press Lipid Library, vol 5)

    Google Scholar 

  • Lundström A, Egelrud T (1990) Cell shedding from human plantar skin in vitro: evidence that two different types of protein structures are degraded by a chymotrypsin-like enzyme. Arch Dermatol Res 282:234–237

    Article  PubMed  Google Scholar 

  • Mantsch HH, McElhaney RN (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids 57:213–226

    Article  PubMed  CAS  Google Scholar 

  • Menon G, Ghadially R (1997) Morphology of lipid alterations in epidermis. A review. Microsc Res Tech 37:180–192

    Article  CAS  Google Scholar 

  • Michaels AS, Chandrasekaran SK, Shaw JE (1975) Drug penetration through human skin: theory and in vitro experimental measurements. AIChE J 21:985–996

    Article  CAS  Google Scholar 

  • Moore DJ, Rerek ME, Mendelsohn R (1997) Lipid domains and orthorhombic phases in model stratum corneum: evidence from Fourier transform infrared spectroscopy studies. Biochem Biophys Res Commun 231:797–801

    Article  PubMed  CAS  Google Scholar 

  • Nilsson GE (1977) On the measurement of evaporative water loss. Methods and clinical applications. Linköping University Medical Dissertations No. 48, Linköping

    Google Scholar 

  • Norlén L, Emilson A, Forslind B (1997) Stratum corneum swelling. Biophysical and computer assisted quantitative assessments. Arch Exp Derm 289:506–513

    Google Scholar 

  • Norlén L, Nicander I, Lund-Rozell B, Ollmar S, Forslind B (1999) Inter- and intra-individual differences in human stratum corneum liped content related to physical parameters of skin barrier function in vivo. J Invest Dermatol 112:72–77

    Article  PubMed  Google Scholar 

  • Ongpipanattanakul B, Francoeur ML, Potts RO (1994) Polymorphism in stratum corneum lipids. Biochem Biophys Acta 1190:115–122

    Article  Google Scholar 

  • Scheuplein RJ, Blank IH (1971) Permeability of the skin. Physiol Rev 51:702–747

    PubMed  CAS  Google Scholar 

  • Singer SJ, Nicholson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  PubMed  CAS  Google Scholar 

  • Swartzendruber DC, Wertz PW, Kitko DJ, Madison KC, Downing DT (1989) Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. J Invest Dermatol 92: 251–257

    Article  PubMed  CAS  Google Scholar 

  • Thewalt J, Kitson N, Araujo C, MacKay A, Bloom M (1992) Models of stratum corneum intercellular membranes: the sphingolipid headgroup is a determinant of phase behaviour in mixed lipid dispersions. Biochem Biophys Res Commun 188:1247–1252

    Article  PubMed  CAS  Google Scholar 

  • Vicanova J, Boelsma E, Mommaas AM, Kempenaar J, Forslind B, Pallon J, Egelrud T, Koerten HK, Ponec M (1998) Normalization of epidermal calcium distribution profile in reconstituted human epidermis is related to improvement of terminal differentiation and stratum corneum barrier formation. J Invest Dermatol 111:97–106

    Article  PubMed  CAS  Google Scholar 

  • Wertz PW, Downing DT (1991) Epidermal lipids. In: Goldsmith LA (ed) Physiology, biochemistry, and molecular biology of the skin, 2nd edn. Oxford University, Oxford, U.K., pp 205–236

    Google Scholar 

  • Wertz PW, Schwartzendruber DC, Madison KC, Downing DT (1987) Composition and morphology of epidermal cyst lipids. J Invest Dermatol 89:419–425

    Article  PubMed  CAS  Google Scholar 

  • Williams ML, Elias PM (1987) The extracellular matrix of stratum corneum: role of lipids in normal and pathological function. Crit Rev Ther Drug Carrier Syst 3:95–122

    PubMed  CAS  Google Scholar 

  • Yardley HJ, Summerly R (1981) Lipid composition and metabolism in normal and diseased epidermis. Pharmacol Ther 13:357–383

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Forslind, B. (2000). The Structure of the Human Skin Barrier. In: Kanerva, L., Wahlberg, J.E., Elsner, P., Maibach, H.I. (eds) Handbook of Occupational Dermatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07677-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07677-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07679-8

  • Online ISBN: 978-3-662-07677-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics