Skip to main content

Zusammenfassung

Die akute lymphoblastische Leukämie (ALL) ist die häufigste Krebserkrankung bei Kindern und Jugendlichen. Die Entwicklung der intensiven Polychemotherapie und die konsequente Mitbehandlung der Extrakompartimente haben zur entscheidenden Verbesserung der Heilungsraten geführt. Die akute myeloische Leukämie ist deutlich seltener und macht nur ca. 15% der akuten Leukämien aus. Ebenso wie die ALL ist sie eine genetisch heterogene Erkrankung. Die chronische myeloische Leukämie ist im Kindes- und Jugendalter selten, ihre Inzidenz steigt altersabhängig. Die orale Therapie mit Imatinib ist Mittel der ersten Wahl. Das autoimmun-lymphoproliferative Syndrom ist eine meist autosomal-dominant vererbte Störung der Immunregulation aufgrund einer Störung der Lymphozytenapoptose. Non-Hodgkin-Lymphome des Kindes- und Jugendalters werden nach der WHO-Klassifikation anhand des Immunphänotyps und des Entwicklungsstadiums der Zelle in verschiedene Subgruppen unterteilt. Mit optimierter stratifizierter Polychemotherapie werden derzeit Überlebensraten von über 80 % erreicht. Das Hodgkin-Lymphom gehört zu den Krebserkrankungen mit den höchsten Heilungsraten. Bei einem Langzeitüberleben von über 90 % ist die Verringerung der Spätfolgen Ziel kooperativer internationaler Studien.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Zu 22.1

  • Bader P, Kreyenberg H, Henze GH, et al. (2009) Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol 27: 377–384

    Google Scholar 

  • Balduzzi A, Valsecchi MG, Uderzo C, et al. (2005) Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet 366: 635–642

    Google Scholar 

  • Balduzzi A, Galimberti S, Valsecchi MG, et al. (2011) Autologous purified peripheral blood stem cell transplantation compare to chemotherapy in childhood acute lymphoblastic leukemia after low-risk relapse. Pediatr Blood Cancer 57: 654–659

    Google Scholar 

  • Bartram CR, Schrauder A, Kohler R, Schrappe M (2012) Acute lymphoblastic leukemia in children: treatment planning via minimal residual disease assessment. Dtsch Arztebl Int 109: 652–658

    Google Scholar 

  • Basso G, Veltroni M, Valsecchi MG, et al. (2009) Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 27: 5168–5174

    Google Scholar 

  • Bene MC, Castoldi G, Knapp W, et al. (1995) Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 9: 1783–1786

    Google Scholar 

  • Bene MC, Bernier M, Casasnovas RO, et al. (1998) The reliability and specificity of c-kit for the diagnosis of acute myeloid leukemias and undifferentiated leukemias. The European Group for the Immunological Classification of Leukemias (EGIL). Blood 92: 596–599

    Google Scholar 

  • Berg SL, Blaney SM, Devidas M, et al. (2005) Phase II study of nelarabine (compound 506U78) in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J Clin Oncol 23: 3376–3382

    Google Scholar 

  • Biondi A, Schrappe M, De Lorenzo P, et al. (2012) Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol 13: 936–945

    Google Scholar 

  • Boissel N, Auclerc MF, Lheritier V, et al. (2003) Should adolescents with acute lymphoblastic leukemia be treated as old children or young adults? Comparison of the French FRALLE-93 and LALA-94 trials. J Clin Oncol 21: 774–780

    Google Scholar 

  • Buitenkamp TD, Izraeli S, Zimmermann M, et al. (2014) Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood 123: 70–77

    Google Scholar 

  • Bürger B, Zimmermann M, Mann G, et al. (2003) Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol 21: 184–188

    Google Scholar 

  • Cario G, Stanulla M, Fine BM, et al. (2005) Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood 105: 821–826

    Google Scholar 

  • Cario G, Zimmermann M, Romey R, et al. (2010) Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 115: 5393–5397

    Google Scholar 

  • Chen IM, Harvey RC, Mullighan CG, et al. (2012) Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood 119: 3512–3522

    Google Scholar 

  • Cheok MH, Evans WE (2006) Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat Rev Cancer 6: 117–129

    Google Scholar 

  • Coebergh JWW, Reedijk AMJ, de Vries E, et al. (2006) Leukaemia incidence and survival in children and adolescents in Europe during 1978–1997. Report from the Automated Childhood Cancer Information System project. Eur J Cancer 42: 2019–2036

    Google Scholar 

  • Conter V, Valsecchi MG, Silvestri D, et al. (2007) Pulses of vincristine and dexamethasone in addition to intensive chemotherapy for children with intermediate-risk acute lymphoblastic leukaemia: a multicentre randomised trial. Lancet 369: 123–131

    Google Scholar 

  • Conter V, Arico M, Basso G, et al. (2010a) Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) Studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia 24: 255–264

    Google Scholar 

  • Conter V, Bartram CR, Valsecchi MG, et al. (2010b) Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 115: 3206–3214

    Google Scholar 

  • Dördelmann M, Reiter A, Borkhardt A, et al. (1999) Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 94: 1209–1217

    Google Scholar 

  • Dörge P, Meissner B, Zimmermann M, et al. (2013) IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica 98: 428–432

    Google Scholar 

  • Eckert C, von Stackelberg A, Seeger K, et al. (2013a) Minimal residual disease after induction is the strongest predictor of prognosis in intermediate risk relapsed acute lymphoblastic leukaemia-long-term results of trial ALL-REZ BFM P95/96. Eur J Cancer 49: 1346–1355

    Google Scholar 

  • Eckert C, Henze G, Seeger K, et al. (2013b) Use of Allogeneic Hematopoietic Stem-Cell Transplantation Based on Minimal Residual Disease Response Improves Outcomes for Children With Relapsed Acute Lymphoblastic Leukemia in the Intermediate-Risk Group. J Clin Oncol 31: 2736–2742

    Google Scholar 

  • Escherich G, Horstmann MA, Zimmermann M, Janka-Schaub GE (2010) Cooperative study group for childhood acute lymphoblastic leukaemia (COALL): long-term results of trials 82,85,89,92 and 97. Leukemia 24: 298–308

    Google Scholar 

  • Gaynon PS, Angiolillo AL, Carroll WL, et al. (2010) Long-term results of the children’s cancer group studies for childhood acute lymphoblastic leukemia 1983–2002: a Children’s Oncology Group Report. Leukemia 24: 285–297

    Google Scholar 

  • Greaves M (2006) Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 6: 193–203

    Google Scholar 

  • Grupp SA, Kalos M, Barrett D, et al. (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368: 1509–1518

    Google Scholar 

  • Harms DO, Gobel U, Spaar HJ, et al. (2003) Thioguanine offers no advantage over mercaptopurine in maintenance treatment of childhood ALL: results of the randomized trial COALL-92. Blood 102: 2736–2740

    Google Scholar 

  • Harrison CJ, Haas O, Harbott J, et al. (2010) Detection of prognostically relevant genetic abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: recommendations from the Biology and Diagnosis Committee of the International Berlin-Frankfurt-Munster study group. Br J Haematol 151: 132–142

    Google Scholar 

  • Henze G, Langermann HJ, Bramswig J, et al. (1981) The BFM 76/79 acute lymphoblastic leukemia therapy study (author’s transl). Klin Padiatr 193: 145–154

    Google Scholar 

  • Hijiya N, Gaynon P, Barry E, et al. (2009) A multi-center phase I study of clofarabine, etoposide and cyclophosphamide in combination in pediatric patients with refractory or relapsed acute leukemia. Leukemia 23: 2259–2264

    Google Scholar 

  • Hof J, Krentz S, van Schewick C, et al. (2011) Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol 29: 3185–3193

    Google Scholar 

  • Inaba H, Greaves M, Mullighan CG (2013) Acute lymphoblastic leukaemia. Lancet 381: 1943–1955

    Google Scholar 

  • Jeha S, Gaynon PS, Razzouk BI, et al. (2006) Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol. 24: 1917–1923

    Google Scholar 

  • Kantarjian H, Thomas D, Jorgensen J, et al. (2012) Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol 13: 403–411

    Google Scholar 

  • Karrman K, Forestier E, Heyman M, et al. (2009) Clinical and cytogenetic features of a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias: rare T-cell receptor gene rearrangements are associated with poor outcome. Genes Chromosomes Cancer 48: 795–805

    Google Scholar 

  • Ko RH, Ji L, Barnette P, et al. (2010) Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol 28: 648–654

    Google Scholar 

  • Kreitman RJ, Pastan I (2011) Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res 17: 6398–6405

    Google Scholar 

  • Lauten M, Moricke A, Beier R, et al. (2012) Prediction of outcome by early bone marrow response in childhood acute lymphoblastic leukemia treated in the ALL-BFM 95 trial: differential effects in precursor B-cell and T-cell leukemia. Haematologica 97: 1048–1056

    Google Scholar 

  • Locatelli F, Testi AM, Bernardo ME, et al. (2009) Clofarabine, cyclophosphamide and etoposide as single-course re-induction therapy for children with refractory/multiple relapsed acute lymphoblastic leukaemia. Br J Haematol 147: 371–378

    Google Scholar 

  • Locatelli F, Zecca M, Rondelli R, et al. (2000) Graft versus host disease prophylaxis with low-dose cyclosporine-A reduces the risk of relapse in children with acute leukemia given HLA- identical sibling bone marrow transplantation: results of a randomized trial. Blood 95: 1572–1579

    Google Scholar 

  • Locatelli F, Schrappe M, Bernardo ME, Rutella S (2012) How I treat relapsed childhood acute lymphoblastic leukemia. Blood 120: 2807–2816

    Google Scholar 

  • Loh ML, Zhang J, Harvey RC, et al. (2013) Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children’s Oncology Group TARGET Project. Blood 121: 485–488

    Google Scholar 

  • Loning L, Zimmermann M, Reiter A, et al. (2000) Secondary neoplasms subsequent to Berlin-Frankfurt-Munster therapy of acute lymphoblastic leukemia in childhood: significantly lower risk without cranial radiotherapy. Blood 95: 2770–2775

    Google Scholar 

  • Mann G, Attarbaschi A, Schrappe M, et al. (2010) Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of infants with mixed-lineage-leukemia (MLL)-rearranged acute lymphoblastic leukemia: results from the Interfant-99 Study. Blood 116: 2644–2650

    Google Scholar 

  • Mattano LA Jr., Devidas M, Nachman JB, et al. (2012) Effect of alternate-week versus continuous dexamethasone scheduling on the risk of osteonecrosis in paediatric patients with acute lymphoblastic leukaemia: results from the CCG-1961 randomised cohort trial. Lancet Oncology 13: 906–915

    Google Scholar 

  • Messinger YH, Gaynon PS, Sposto R, et al. (2012) Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood 120: 285–290

    Google Scholar 

  • Meyer C, Hofmann J, Burmeister T, et al. (2013) The MLL recombinome of acute leukemias in 2013. Leukemia 27: 2165–2176

    Google Scholar 

  • Mori H, Colman SM, Xiao Z, et al. (2002) Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 99: 8242–8247

    Google Scholar 

  • Möricke A, Reiter A, Zimmermann M, et al. (2008) Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 111: 4477–4489

    Google Scholar 

  • Möricke A, Zimmermann M, Reiter A, et al. (2010) Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 24: 265–284

    Google Scholar 

  • Möricke A, Zimmermann M, Valsecchi MG, et al. (2016) Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000. Blood 127: 2101–2112

    Google Scholar 

  • Moorman AV, Ensor HM, Richards SM, et al. (2010) Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol 11: 429–438

    Google Scholar 

  • Mullighan CG, Zhang J, Kasper LH, et al. (2010) CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 471: 235–239

    Google Scholar 

  • Olsen M, Hjalgrim H, Melbye M, et al. (2012) RT-PCR screening for ETV6-RUNX1-positive clones in cord blood from newborns in the Danish National Birth Cohort. J Pediatr Hematol Oncol 34: 301–303

    Google Scholar 

  • Peters C, Schrappe M, von Stackelberg A, et al. (2015) Stem-cell transplantation in children with acute lymphoblastic leukemia: a prospective International multicenter trial comparing sibling donors with matched unrelated donors – the ALL-SCT-BFM-2003 trial. J Clin Oncol 33: 1265–1274

    Google Scholar 

  • Pichler H, Reismüller B, Steiner M, et al.; Austrian ALL-BFM (Berlin-Frankfurt-Münster) Study Group (2013) The inferior prognosis of adolescents with acute lymphoblastic leukaemia (ALL) is caused by a higher rate of treatment-related mortality and not an increased relapse rate--a population-based analysis of 25 years of the Austrian ALL-BFM (Berlin-Frankfurt-Münster) Study Group. Br J Haematol 161: 556–565

    Google Scholar 

  • Pieters R, Schrappe M, De Lorenzo P, et al. (2007) A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 370: 240–250

    Google Scholar 

  • Pui CH, Campana D, Pei D, et al. (2009) Treating childhood acute lymphoblastic leukemia without cranial irradiation. New Engl J Med 360: 2730–2741

    Google Scholar 

  • Pui CH, Pei D, Sandlund JT, et al. (2010) Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 24: 371–382

    Google Scholar 

  • Raetz EA, Cairo MS, Borowitz MJ, et al. (2015) Re-induction chemoimmunotherapy with epratuzumab in relapsed acute lymphoblastic leukemia (ALL): Phase II results from Children’s Oncology Group (COG) study ADVL04P2. Pediatr Blood Cancer 2015 62: 1171–1175

    Google Scholar 

  • Ratei R, Schabath R, Karawajew L, et al. (2013) Lineage classification of childhood acute lymphoblastic leukemia according to the EGIL recommendations: results of the ALL-BFM 2000 trial. Klin Padiatr 225 (Suppl 1): S34–39

    Google Scholar 

  • Reiter A, Schrappe M, Ludwig WD, et al. (1994) Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood 84: 3122–3133

    Google Scholar 

  • Reiter A, Schrappe M, Ludwig WD, et al. (2000) Intensive ALL-type therapy without local radiotherapy provides a 90 % event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood 95: 416–421

    Google Scholar 

  • Riehm H, Reiter A, Schrappe M, et al. (1987) Die Corticosteroid-abhängige Dezimierung der Leukämiezellzahl im Blut als Prognosefaktor bei der akuten lymphoblastischen Leukämie im Kindesalter (Therapiestudie ALL-BFM 83). Klin Pädiatr 199: 151–160

    Google Scholar 

  • Roberts KG, Li Y, Payne-Turner D,, et al. (2014) Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371: 1005–1015

    Google Scholar 

  • Rössig C, Juergens H, Schrappe M, et al. (2013) Effective childhood cancer treatment: the impact of large scale clinical trials in Germany and Austria. Pediatr Blood Cancer 60: 1574–1581

    Google Scholar 

  • Sallan SE, Schrappe M, Silverman LB (2009) Treating childhood leukemia without cranial irradiation. New Engl J Med 361: 1310; author reply 1311–1312

    Google Scholar 

  • Schmiegelow K, Forestier E, Hellebostad M, et al. (2010) Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia. Leukemia 24: 345–354

    Google Scholar 

  • Schmiegelow K, Levinsen MF, Attarbaschi A, et al. (2013) Second malignant neoplasms after treatment of childhood acute lymphoblastic leukemia. J Clin Oncol 31: 2469–2476

    Google Scholar 

  • Schrappe M, Beck J, Brandeis WE, et al. (1987) Die Behandlung der akuten lymphoblastischen Leukämie im Kindes- und Jugendalter: Ergebnisse der multizentrischen Therapiestudie ALL-BFM 81. Klin Padiatr 199: 133–150

    Google Scholar 

  • Schrappe M, Reiter A, Henze G, et al. (1998) Prevention of CNS recurrence in childhood ALL: results with reduced radiotherapy combined with CNS-directed chemotherapy in four consecutive ALL-BFM trials. Klin Padiatr 210: 192–199

    Google Scholar 

  • Schrappe M, Reiter A, Ludwig WD, et al. (2000) Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood 95: 3310–3322

    Google Scholar 

  • Schrappe M, Valsecchi MG, Bartram CR, et al. (2011) Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood 118: 2077–2084

    Google Scholar 

  • Schrappe M, Hunger SP, Pui CH, et al. (2012) Outcomes after induction failure in childhood acute lymphoblastic leukemia. N Engl J Med 366: 1371–1381

    Google Scholar 

  • Schrappe M, Moricke A, Reiter A, et al. (2013) Key treatment questions in childhood acute lymphoblastic leukemia: results in 5 consecutive trials performed by the ALL-BFM study group from 1981 to 2000. Klin Padiatr 225 (Suppl 1): S62–72

    Google Scholar 

  • Schrauder A, Reiter A, Gadner H, et al. (2006) Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol 24: 5742–5749

    Google Scholar 

  • Schultz KR, Bowman WP, Aledo A, et al. (2009) Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol 27: 5175–5181

    Google Scholar 

  • Smith M, Arthur D, Camitta B, et al. (1996) Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol 14: 18–24

    Google Scholar 

  • Spix C, Eletr D, Blettner M, Kaatsch P (2008) Temporal trends in the incidence rate of childhood cancer in Germany 1987-2004. Int J Cancer 122: 1859–1867

    Google Scholar 

  • Stackelberg A von (2011) Monoclonal Antibodies in Paediatric Acute Lymphoblastic Leukemia. In: Saha V, Kearns P (eds) New Agents for the Treatment of Acute Lymphoblastic Leukaemia. Springer, New York, pp 221–271

    Google Scholar 

  • Stackelberg A von, Hartmann R, Buhrer C, et al. (2008) High-dose compared with intermediate-dose methotrexate in children with a first relapse of acute lymphoblastic leukemia. Blood 111: 2573–2580

    Google Scholar 

  • Stackelberg A von, Volzke E, Kuhl JS, et al. (2011) Outcome of children and adolescents with relapsed acute lymphoblastic leukaemia and non-response to salvage protocol therapy: a retrospective analysis of the ALL-REZ BFM Study Group. Eur J Cancer 47: 90–97

    Google Scholar 

  • Stanulla M, Schrappe M (2009) Treatment of childhood acute lymphoblastic leukemia. Seminars in hematology 46: 52–63

    Google Scholar 

  • Stary J, Zimmermann M, Campbell M, et al. (2014) Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol 32: 174–184

    Google Scholar 

  • Stork LC, Matloub Y, Broxson E, et al. (2010) Oral 6-mercaptopurine versus oral 6-thioguanine and veno-occlusive disease in children with standard-risk acute lymphoblastic leukemia: report of the Children’s Oncology Group CCG-1952 clinical trial. Blood 115: 2740–2748

    Google Scholar 

  • Tallen G, Ratei R, Mann G, et al. (2010) Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of trial ALL-REZ BFM 90. J Clin Oncol 28: 2339–2347

    Google Scholar 

  • te Winkel ML, Pieters R, Hop WC, et al. (2011) Prospective study on incidence, risk factors, and long-term outcome of osteonecrosis in pediatric acute lymphoblastic leukemia. J Clin Oncol 29: 4143–4150

    Google Scholar 

  • Topp MS, Kufer P, Gokbuget N, et al. (2011) Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 29: 2493–2498

    Google Scholar 

  • Topp MS, Gokbuget N, Stein AS, et al. (2015) Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. . Lancet Oncol 16: 57–66

    Google Scholar 

  • Toyoda Y, Manabe A, Tsuchida M, et al. (2000) Six months of maintenance chemotherapy after intensified treatment for acute lymphoblastic leukemia of childhood. J Clin Oncol 18: 1508–1516

    Google Scholar 

  • Tzoneva G, Perez-Garcia A, Carpenter Z, et al. (2013) Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med 19: 368–371

    Google Scholar 

  • van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al. (1998) Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 352: 1731–1738

    Google Scholar 

  • von Stackelberg A, Locatelli F, Zugmaier G, et al. (2016) Phase I/Phase II Study of Blinatumomab in Pediatric Patients With Relapsed/Refractory Acute Lymphoblastic Leukemia. J Clin Oncol 34: 4381–4389

    Google Scholar 

  • Vora A, Mitchell CD, Lennard L, et al. (2006) Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. Lancet 368: 1339–1348

    Google Scholar 

  • Vora A, Goulden N, Wade R, et al. (2013) Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. The Lancet Oncology 14: 199–209

    Google Scholar 

  • Vrooman LM, Stevenson KE, Supko JG, et al. (2013) Postinduction dexamethasone and individualized dosing of Escherichia Coli L-asparaginase each improve outcome of children and adolescents with newly diagnosed acute lymphoblastic leukemia: results from a randomized study–Dana-Farber Cancer Institute ALL Consortium Protocol 00-01. J Clin Oncol 31: 1202–1210

    Google Scholar 

  • Zwaan CM, Rizzari C, Mechinaud F, et al. (2013) Dasatinib in children and adolescents with relapsed or refractory leukemia: results of the CA180-018 phase I dose-escalation study of the Innovative Therapies for Children with Cancer Consortium. J Clin Oncol 31: 2460–2468

    Google Scholar 

Zu 22.2

  • Abrahamsson J, Forestier E, Heldrup J, et al. (2011) Response-guided induction therapy in pediatric acute myeloid leukemia with excellent remission rate. J Clin Oncol 29: 310–315

    Google Scholar 

  • Arber DA, Orazi A, Hasserjian R, Thiele J, et al. (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127: 2391–2405

    Google Scholar 

  • Balgobind BV, Hollink IH, Arentsen-Peters ST, et al. (2011) Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia. Haematologica 96: 1478–1487

    Google Scholar 

  • Bene MC, Castoldi G, Knapp W, et al. (1995) Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 9: 1783–1786

    Google Scholar 

  • Bennett JM, Catovsky D, Daniel MT, et al. (1985) Proposed revised criteria for the classification of acute myeloid leukemia. Ann Intern Med 103: 626–629

    Google Scholar 

  • Burnett AK, Hills RK, Milligan DW, et al. (2010) Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J Clin Oncol 28: 586–595

    Google Scholar 

  • Burnett AK, Hills RK, Milligan D, et al. (2011) Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol 29: 369–377

    Google Scholar 

  • Cheson BD, Cassileth PA, Head DR (1990) Report of the National Cancer Institute-sponsored workshop on definitions and response in acute myeloid leukemia. J Clin Oncol 8: 813–819

    Google Scholar 

  • Creutzig U, Zimmermann M, Ritter J, et al. (1999) Definition of a standard-risk group in children with AML. Br J Hematol 104: 630–639

    Google Scholar 

  • Creutzig U, Ritter J, Zimmermann M, et al. (2001) Idarubicin improves blast cell clearance during induction therapy in children with AML: results of study AML-BFM 93. AML-BFM Study Group. Leukemia 15: 348–354

    Google Scholar 

  • Creutzig U, Reinhardt D, Diekamp S, et al. (2005) AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity. Leukemia 19: 1355–1360

    Google Scholar 

  • Creutzig U, Buchner T, Sauerland MC, et al. (2008) Significance of age in acute myeloid leukemia patients younger than 30 years. Cancer 112: 562–571

    Google Scholar 

  • Creutzig U, Zimmermann M, Bourquin JP, et al. (2011) Second induction with high-dose cytarabine and mitoxantrone: different impact on pediatric AML patients with t(8;21) and with inv(16). Blood 118: 5409–5415

    Google Scholar 

  • Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. (2012a) Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood 120: 3187–3205

    Google Scholar 

  • Creutzig U, Zimmermann M, Bourquin JP, et al. (2012b) Favorable outcome in infants with AML after intensive first- and second-line treatment: an AML-BFM study group report. Leukemia 26: 654–661

    Google Scholar 

  • Creutzig U, Zimmermann M, Bourquin JP, et al. (2013) Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: results from Study AML-BFM 2004. Blood 122: 37–43

    Google Scholar 

  • Creutzig U, Zimmermann M, Dwoarzak M, et al. (2014) The prognostic significance of early treatment response in pediatric relapsed acute myeloid leukemia: reuslts of the international study Relapsed AML 2001/01. Haematologica 99: 1472–1478

    Google Scholar 

  • Creutzig U, Rössig C, Dworzak M, et al. (2016) Exchange transfusion and leukapheresis in pediatric patients with AML with high risk of early death by bleeding and leukostasis. Pediatr Blood Cancer 63: 640–645

    Google Scholar 

  • Dohner H, Estey EH, Amadori S, et al. (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115: 453–474

    Google Scholar 

  • Ehlers S, Herbst C, Zimmermann M, et al. (2010) Granulocyte colony-stimulating factor (G-CSF) treatment of childhood acute myeloid leukemias that overexpress the differentiation-defective G-CSF receptor isoform IV is associated with a higher incidence of relapse. J Clin Oncol 28: 2591–2597

    Google Scholar 

  • Fathi A, Levis M (2011) FLT3 inhibitors: a story of the old and the new. Curr Opin Hematol 18: 71–76

    Google Scholar 

  • Gadner H, Gaedicke G, Niemeyer C, Ritter J (Hrsg) (2006) Pädiatrische Hämatologie und Onkologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gibson BE, Wheatley K, Hann IM, et al. (2005) Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia 19: 2130–2138

    Google Scholar 

  • Giles FJ (2002) New drugs in acute myeloid leukemia. Curr Oncol Rep 4: 369–374

    Google Scholar 

  • Harrison CJ, Hills RK, Moorman AV (2010) Cytogenetics of childhood acute myeloid leukemia: United Kingdom Medical Research Council Treatment trials AML 10 and 12. J Clin Oncol 28: 2674–2681

    Google Scholar 

  • Hasle H, Abrahamsson J, Forestier E, et al. (2012) Gemtuzumab ozogamicin as postconsolidation therapy does not prevent relapse in children with AML: results from NOPHO-AML 2004. Blood 120: 978–984

    Google Scholar 

  • Henry E, Walker D, Wiedmeier SE, Christensen RD (2007) Hematological abnormalities during the first week of life among neonates with Down syndrome: data from a multihospital healthcare system. Am J Med Genet 143A: 42–50

    Google Scholar 

  • Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, et al. (2011) NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood 118: 3645–3656

    Google Scholar 

  • Horan JT, Alonzo TA, Lyman GH, et al. (2008) Impact of disease risk on efficacy of matched related bone marrow transplantation for pediatric acute myeloid leukemia: the Children’s Oncology Group. J Clin Oncol 26: 5797–5801

    Google Scholar 

  • Inaba H, Rubnitz JE, Coustan-Smith E, et al. (2011) Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J Clin Oncol 29: 3293–3300

    Google Scholar 

  • Johnston DL, AlonzoTA, Gerbing RB, et al. (2010) The presence of central nervous system disease at diagnosis in pediatric acute myeloid leukemia does not affect survival: a Children’s Oncology Group study. Pediatr Blood Cancer 55: 414–420

    Google Scholar 

  • Kaspers GJ, Zimmermann M, Reinhardt D, et al. (2013) Improved outcome in pediatric relapsed acute myeloid leukemia: results of a randomized trial on liposomal daunorubicin by the International BFM Study Group. J Clin Oncol 31: 599–607

    Google Scholar 

  • Klingebiel T, Reinhardt D, Bader P (2008) Place of HSCT in treatment of childhood AML. Bone Marrow Transplant, 42 (Suppl 2): S7–S9

    Google Scholar 

  • Klusmann JH, Creutzig U, Zimmermann M, et al. (2008) Treatment and prognostic impact of transient leukemia in neonates with Down’s syndrome. Blood 111: 2991–2998

    Google Scholar 

  • Kudo K, Kojima S, Tabuchi K, et al. (2007) Prospective study of a pirarubicin, intermediate-dose cytarabine, and etoposide regimen in children with Down syndrome and acute myeloid leukemia: the Japanese Childhood AML Cooperative Study Group. J Clin Oncol 25: 5442–5447

    Google Scholar 

  • Lie SO, Abrahamsson J, Clausen N, et al. (2003) Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down’s syndrome: results of NOPHO-AML trials. Br J Haematol 122: 217–225

    Google Scholar 

  • Lipshultz SE, Alvarez JA, Scully RE (2008) Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart 94: 525–533

    Google Scholar 

  • Lo-Coco F, Avvisati G, Vignetti M, et al. (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369: 111–121

    Google Scholar 

  • Lowenberg B, van Putten W, Theobald M, et al. (2003) Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med 349: 743–752

    Google Scholar 

  • Mayadev JS, Douglas JG, Storer BE, et al. (2011) Impact of cranial irradiation added to intrathecal conditioning in hematopoietic cell transplantation in adult acute myeloid leukemia with central nervous system involvement. Int J Radiat Oncol Biol Phys 80: 193–198

    Google Scholar 

  • Neuhoff C von, Reinhardt D, Sander A, et al. (2010) Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol 28: 2682–2689

    Google Scholar 

  • Niewerth D, Creutzig U, Bierings MB, Kaspers GJ (2010) A review on allogeneic stem cell transplantation for newly diagnosed pediatric acute myeloid leukemia. Blood 116: 2205–2214

    Google Scholar 

  • Pession A, Masetti R, Rizzari C, et al. (2013) Results of the AIEOP AML 2002/01 multicenter prospective trial for the treatment of children with acute myeloid leukemia. Blood 122: 170–178

    Google Scholar 

  • Pigazzi M, Manara E, Buldini B, et al. (2015) Minimal residual disease monitored after induction therapy by RQ-PCR can contribute to tailor treatment of patients with t(8;21) RUNX1-RUNX1T1 rearrangement. Haematologica 100: e99–101

    Google Scholar 

  • Pui CH, Howard SC (2008) Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol 9: 257–268

    Google Scholar 

  • Reinhardt D, von Neuhoff C, Sander A, Creutzig U (2012) Genetic Prognostic Factors in Childhood Acute Myeloid Leukemia. Klin.Padiatr 224: 372–376

    Google Scholar 

  • Roberts I, Izraeli S (2014) Haematopoietic development and leukaemia in Down syndrome. Br J Haematol 167: 587–599

    Google Scholar 

  • Roberts I, Alford K, Hall G, et al. (2013) GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood 122: 3908–3917

    Google Scholar 

  • Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, et al. (2010) Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol 11: 543–552

    Google Scholar 

  • Sander A, Zimmermann M, Dworzak M, et al. (2010) Consequent and intensified relapse therapy improved survival in pediatric AML: results of relapse treatment in 379 patients of three consecutive AML-BFM trials. Leukemia 24: 1422–1428

    Google Scholar 

  • Smith LA, Cornelius VR, Plummer CJ, et al. (2010) Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer: 10: 337

    Google Scholar 

  • Stevens RF, Hann IM, Wheatley K, Gray RG (1998) Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukemia: results of the United Kingdom Medical Research Council’s 10th AML trial. MRC Childhood Leukaemia Working Party. Br J Hematol 101: 130–140

    Google Scholar 

  • Tarlock K, Alonzo TA, Gerbing RB, et al. (2016) Gemtuzumab Ozogamicin Reduces Relapse Risk in FLT3/ITD Acute Myeloid Leukemia: A Report from the Children’s Oncology Group. Clin Cancer Res 22: 1951–1957

    Google Scholar 

  • Tsukimoto I, Tawa A, Horibe K, et al. (2009) Risk-stratified therapy and the intensive use of cytarabine improves the outcome in childhood acute myeloid leukemia: the AML99 trial from the Japanese Childhood AML Cooperative Study Group. J Clin Oncol 27: 4007–4013

    Google Scholar 

  • Yoshida K, Toki T, Okuno Y, et al. (2013) The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet 45: 1293–1299

    Google Scholar 

  • Zwaan CM Reinhardt D, Zimmerman M, et al. (2010) Salvage treatment for children with refractory first or second relapse of acute myeloid leukaemia with gemtuzumab ozogamicin: results of a phase II study. Br J Haematol 148: 768–776

    Google Scholar 

  • Zwaan CM, Kolb EA, Reinhardt D, et al. (2015) Collaborative efforts driving progress in pediatric acute myeloid leukemia. J Clin Oncol 33: 2949–2962

    Google Scholar 

Zu 22.3.1

  • Baccarani M, Deininger M, Rosti G, et al. (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 122: 872–884

    Google Scholar 

  • De la Fuente J, Baruchel A, Biondi A, et al. (2014) Managing children with chronic myeloid leukaemia (CML): recommendations for the management of CML in children and young people up to the age of 18 years. Br J Haematol 167: 33–47

    Google Scholar 

  • Deutsches Kinderkrebsregister, www.kinderkrebsregister.de/dkkr/ergebnisse/jahresbericht.html

  • Gurrea Salas D, Glauche I, Tauer JT, et al. (2015) Can prognostic scoring systems for chronic myeloid leukemia as established in adults be applied to pediatric patients? Ann Hematol 94: 1363–1371

    Google Scholar 

  • Hijiya N, Schultz KR, Metzler M, Millot F, Suttorp M (2016) Pediatric chronic myeloid leukemia is a unique disease that requires a different approach. Blood 127: 392–399

    Google Scholar 

  • Krumbholz M, Karl M, Tauer JT, et al. (2012) Genomic BCR-ABL1 breakpoints in pediatric chronic myeloid leukemia. Genes Chromosomes Cancer 51: 1045–1053

    Google Scholar 

  • Mahon FX, Réa D, Guilhot J, et al. (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11: 1029–1035

    Google Scholar 

  • Millot F, Baruchel A, Guilhot J, et al. (2011) Imatinib is effective in children with previously untreated chronic myelogenous leukemia in early chronic phase: results of the French national phase IV trial. J Clin Oncol 29: 2827–2832

    Google Scholar 

  • Millot F, Guilhot J, Baruchel A, et al. (2014) Growth deceleration in children treated with imatinib for chronic myeloid leukaemia. Eur J Cancer 50: 3206–3211

    Google Scholar 

  • Moser O, Krumbholz M, Thiede C, et al. (2014) Sustained molecular remission after imatinib discontinuation in children with chronic myeloid leukemia. Pediatr Blood Cancer 61: 2080–2082

    Google Scholar 

  • Suttorp M, Millot F (2010) Treatment of pediatric chronic myeloid leukemia in the year 2010: use of tyrosine kinase inhibitors and stem cell transplantation. Hematology Am Soc Hematol Educ Program 2010: 368–376

    Google Scholar 

  • Suttorp M, Yaniv I, Schultz K (2011) Controversies in the treatment of CML in children and adolescents: TKI versus BMT? Biol Blood Marrow Transplant 17: S115–S122

    Google Scholar 

  • Ulmer A, Tauer JT, Glauche I, et al. (2013) Tyrosine kinase inhibitor dependent disruption of the growth hormone axis: clinical observations in children with chronic myeloid leukemia and experimental data from a juvenile rat model. Klin Pädiatr 225: 129–126

    Google Scholar 

Zu 22.3.2

  • Bergstraesser E, Hasle H, Rogge T, et al. (2007) Non-hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: a retrospective analysis and definition of response criteria. Pediatr Blood Cancer 49: 629–633

    Google Scholar 

  • Calvo KR, Price S, Braylan RC, et al. (2015) JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities. Blood 125: 2753–2758

    Google Scholar 

  • Caye A, Strullu M, Guidez F, et al. (2015) Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet 47: 1334–1340

    Google Scholar 

  • Cseh AM, Niemeyer CM, Yoshimi A, et al. (2015) Bridging to transplant with azacitidine in juvenile myelomonocytic leukemia: a retrospective analysis of the EWOG-MDS study group. Blood 125: 2311–2313

    Google Scholar 

  • European Working Group of MDS in Childhood (2016) http://www.ewog-mds.org

  • Flex E, Jaiswal M, Pantaleoni F, et al. (2014) Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Hum Mol Genet 23: 4315–4327

    Google Scholar 

  • Furlan I, Batz C, Flotho C, et al. (2009) Intriguing response to azacitidine in a patient with juvenile myelomonocytic leukemia and monosomy 7. Blood 113: 2867–2868

    Google Scholar 

  • Kratz CP, Franke L, Peters H, et al. (2015) Cancer spectrum and frequency among children with Noonan, Costello, and cardio-facio-cutaneous syndromes. Br J Cancer 112: 1392–1327

    Google Scholar 

  • Locatelli F, Nöllke P, Zecca M, et al. (2005) Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood 105: 410–419

    Google Scholar 

  • Locatelli F, Niemeyer CM (2015) How I treat juvenile myelomonocytic leukemia. Blood 125:1083–1090

    Google Scholar 

  • Olk-Batz C, Poetsch AR, Nöllke P, et al. (2011) Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood 117: 4871–4880

    Google Scholar 

  • Niemeyer CM, Arico M, Basso G, et al. (1997) Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood 89: 3534–3543

    Google Scholar 

  • Niemeyer CM, Kang MW, Shin DH, et al. (2010) Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 42: 794–800

    Google Scholar 

  • Niemeyer CM (2014) RAS diseases in children. Haematologica. 99: 1653–1662

    Google Scholar 

  • Sakaguchi H, Okuno Y, Muramatsu H, et al. (2013) Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat Genet. 45: 937–941

    Google Scholar 

Zu 22.3.3

  • An W, Wan Y, Guo Y, et al. (2014) CALR mutation screening in pediatric primary myelofibrosis. Pediatr Blood Cancer 61: 2256–2262

    Google Scholar 

  • Arber DA, Orazi A, Hasserjian R, et al. (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood127: 2391–2405

    Google Scholar 

  • Camps C, Petousi N, Bento C (2016) Gene panel sequencing improves the diagnostic work-up of patients with idiopathic erythrocytosis and identifies new mutations. Haematologica 101: 1306–1318

    Google Scholar 

  • Cario H, McMullin MF, Bento C, et al. (2013) Erythrocytosis in children and adolescents-classification, characterization, and consensus recommendations for the diagnostic approach. Pediatr Blood Cancer 60: 1734– 1738

    Google Scholar 

  • Carter MC, Metcalfe DD, Clark AS, et al. (2014) Abnormal bone marrow histopathology in paediatric mastocytosis. Br J Haematol 168: 865–873

    Google Scholar 

  • DeLario MR, Sheehan AM, Ataya R (2012) Clinical, histopathologic, and genetic features of pediatric primary myelofibrosis - an entity different from adults. Am J Hematol 87: 461–464

    Google Scholar 

  • Giona F, Teofili L, Moleti ML, et al. (2012) Thrombocythemia and polycythemia in patients younger than 20 years at diagnosis: clinical and biologic features, treatment, and long-term outcome. Blood 119: 2219–2227

    Google Scholar 

  • Giona F, Teofili L, Capodimonti S, et al. (2014) CALR mutations in patients with essential thrombocythemia diagnosed in childhood and adolescence. Blood 123: 3677–2679

    Google Scholar 

  • Karow A, Nienhold R, Lundberg P, et al. (2015) Mutational profile of childhood myeloproliferative neoplasms. Leukemia 29: 2407–2409

    Google Scholar 

  • Lange M, Niedoszytko M, Renke J, et al. (2013) Clinical aspects of paediatric mastocytosis: a review of 101 cases. J Eur Acad Dermatol Venereol 27: 97–102

    Google Scholar 

  • Leu T, Simon HU, Hebestreit H, Kunzmann S (2015) Die Hypereosinophilie-Syndrome (HES) im Kindesalter. Klin Padiatr 227: 308–313

    Google Scholar 

  • Metcalfe DD, Mekori YA (2017) Pathogenesis and Pathology of Mastocytosis. Annu Rev Pathol 12: 487–514

    Google Scholar 

  • Nakao T, Fukushima T, Shimizu T (2009) Transient myelofibrosis with autoimmune pancytopenia: a case report. Eur J Pediatr 168: 1003–1006

    Google Scholar 

  • Randi ML, Geranio G, Bertozzi I, et al. (2015) Are all cases of paediatric essential thrombocythaemia really myeloproliferative neoplasms? Analysis of a large cohort. Br J Haematol 169: 584–589

    Google Scholar 

  • Reiter A, Gotlib J (2017) Myeloid neoplasms with eosinophilia. Blood 129: 704–714

    Google Scholar 

  • Rumi E, Cazzola M (2017) Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood prepub

    Google Scholar 

  • Stepensky P, Simanovsky N, Averbuch D, et al. (2013) VPS 45-associated primary infantile myelofibrosis--successful treatment with hematopoietic stem cell transplantation. Pediatr Transplant 17: 820–825

    Google Scholar 

  • Tefferi A, Barbui T (2017) Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol 92: 94–108

    Google Scholar 

  • Uzzaman A, Maric I, Noel P, et al. (2009) Pediatric-onset mastocytosis: a long term clinical follow-up and correlation with bone marrow histopathology. Pediatr Blood Cancer 53: 629–634

    Google Scholar 

  • Valent P, Akin C, Metcalfe DD (2017). Mastocytosis 2016: Updated WHO Classification and Novel Emerging Treatment Concepts. Blood. 2016 Dec 28. [Epub ahead of print]

    Google Scholar 

  • Vainchenker W, Kralovics R (2016) Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 129: 667–679

    Google Scholar 

  • van Grotel M, de Hoog M, de Krijger RR, et al. (2012) Hypereosinophilic syndrome in children. Leuk Res 36: 1249–1254

    Google Scholar 

Zu 22.3.4

  • Neven B, et al. (2011) A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood 118: 4798–4807

    Google Scholar 

  • Rao VK, Oliveira JB (2011) How I treat autoimmune lymphoproliferative syndrome. Blood 118: 5741–5751

    Google Scholar 

  • Rensing-Ehl, et al. (2013) Sequential decisions on FAS sequencing guided by biomarkers in patients with lymphoproliferation and autoimmune cytopenia – Haematologica 98: 1948–1955

    Google Scholar 

Zu 22.3.5

  • Arber DA, Orazi A, Hasserjian R, et al. (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127: 2391–2405

    Google Scholar 

  • Baumann I, Führer M, Behrendt S, et al. (2012) Morphological differentiation of severe aplastic anaemia from hypocellular refractory cytopenia of childhood: reproducibility of histopathological diagnostic criteria. Histopathology 61: 10–17

    Google Scholar 

  • Chen D-H, Below JE Shimamura A, et al. (2015) Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. Am J Hum Genet 98: 1146–1158

    Google Scholar 

  • Cseh AM, Niemeyer CM, Yoshimi A, et al. (2016) Therapy with low-dose azacitidine for MDS in children and young adults: a retrospective analysis of the EWOG-MDS study group. Br J Haematol 172: 930–936

    Google Scholar 

  • Göhring G, Michalova K, Beverloo HB, et al. (2010) Complex karyotype newly defined: the strongest prognostic factor in advanced childhood myelodysplastic syndrome. Blood 116: 3766–3769

    Google Scholar 

  • Hasle H, Niemeyer CM, Chessells JM, et al. (2003) A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia 17: 277–282

    Google Scholar 

  • Hasle H, Niemeyer CM (2011) Advances in the prognostication and management of advanced MDS in children. Br J Haematol 154: 185–195

    Google Scholar 

  • Hirabayashi S, Flotho C, Moetter J, et al. (2012) Spliceosomal gene aberrations are rare, coexist with oncogenic mutations, and are unlikely to exert a driver effect in childhood MDS and JMML. Blood 119: e96–99

    Google Scholar 

  • Kardos G, Baumann I, Passmore SJ, et al. (2003) Refractory anemia in childhood: a retrospective analysis of 67 patients with particular reference to monosomy 7. Blood 102: 1997–2003

    Google Scholar 

  • Kojima S, Ohara A, Tsuchida M, et al. (2002) Risk factors for evolution of acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosuppressive therapy in children. Blood 100: 786–790

    Google Scholar 

  • Kozyra EJ, Hirabayashi S, Pastor Loyola VP, et al. (2015) Clonal Mutational Landscape of Childhood Myelodysplastic Syndromes Blood 126: 1662

    Google Scholar 

  • Narumi S, Amano N, Ishii T, et al. (2016) SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet 48: 792–797

    Google Scholar 

  • Niemeyer CM, Baumann I (2011) Classification of childhood aplastic anemia and myelodysplastic syndrome. Hematology Am Soc Hematol Educ Program 2011:84–89

    Google Scholar 

  • Pastor V, Hirabayashi S, Karow A, et al. (2016) Mutational landscape in children with myelodysplastic syndromes is distinct from adults: specific somatic drivers and novel germline variants. Leukemia doi:10.1038/leu.2016.354

    Google Scholar 

  • Strahm B, Locatelli F, Bader P, et al. (2007) Reduced intensity conditioning in unrelated donor transplantation for refractory cytopenia in childhood. Bone Marrow Transplant 40: 329–333

    Google Scholar 

  • Strahm B, Nöllke P, Zecca M, et al. (2011) Hematopoietic stem cell transplantation for advanced myelodysplastic syndrome in children: results of the EWOG-MDS 98 study. Leukemia 25: 455–462

    Google Scholar 

  • Strahm B, Wlodarski MW, Pastor VB (2016) Impact of Somatic Mutations on the Outcome of Children and Adolescents with Therapy-Related Myelodysplastic Syndrome. Blood 2016 128: 3162

    Google Scholar 

  • Yoshimi A, Niemeyer C, Baumann I, et al. (2013) High incidence of Fanconi anaemia in patients with a morphological picture consistent with refractory cytopenia of childhood. Br J Haematol 160: 109–111

    Google Scholar 

  • Yoshimi A, van den Heuvel-Eibrink MM, Baumann I, et al. (2014) Comparison of horse and rabbit antithymocyte globulin in immunosuppressive therapy for refractory cytopenia of childhood. Haematologica 99: 656–663

    Google Scholar 

  • Waespe N, van den Akker M, Klaassen R, et al. (2016) Response to treatment with azacitidine in children with advanced myelodysplastic syndrome prior to hematopoietic stem cell transplantation. Haematologica 101: 1508–1515

    Google Scholar 

  • Wlodarski MW, Hirabayashi S, Pastor V, et al. (2016) Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood 127: 1387–1397

    Google Scholar 

Zu 22.4

  • Ait-Tahar K, Damm-Welk C, Burkhardt B, et al. (2010) Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood 115: 3314–3319

    Google Scholar 

  • Attarbaschi A, Mann G, Rosolen A, et al. (2011) Limited stage I disease is not necessarily indicative of an excellent prognosis in childhood anaplastic large cell lymphoma. Blood 117: 5616–5619

    Google Scholar 

  • Attarbaschi A, Beishuizen A, Mann G, et al. (2013) Children and adolescents with follicular lymphoma have an excellent prognosis with either limited chemotherapy or with a »watch and wait« strategy after complete resection. Ann Hematol 1537–1541

    Google Scholar 

  • Balbach ST, Makarova O, Bonn BR, et al. (2015) Proposal of a genetic classifier for risk group stratification in pediatric T-cell lymphoblastic lymphoma reveals differences from adult T-cell lymphoblastic leukemia. Leukemia 30: 970–973

    Google Scholar 

  • Bonn BR, Rohde M, Zimmermann M, et al. (2013) Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood 121: 3153–3160

    Google Scholar 

  • Brugieres L, Le Deley MC, Rosolen A, et al. (2009) Impact of the methotrexate administration dose on the need for intrathecal treatment in children and adolescents with anaplastic large-cell lymphoma: results of a randomized trial of the EICNHL Group. J Clin Oncol 27: 897–903

    Google Scholar 

  • Brugieres L, Pacquement H, Le Deley MC, et al. (2009) Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J Clin Oncol 27: 5056–5061

    Google Scholar 

  • Burkhardt B, Zimmermann M, Oschlies I, et al. (2005) The impact of age and gender on biology, clinical features and treatment outcome of non-Hodgkin lymphoma in childhood and adolescence. Br J Haematol 131: 39–49

    Google Scholar 

  • Burkhardt B, Bruch J, Zimmermann M, et al. (2006a) Loss of heterozygosity on chromosome 6q14-q24 is associated with poor outcome in children and adolescents with T-cell lymphoblastic lymphoma. Leukemia 20: 1422–1429

    Google Scholar 

  • Burkhardt B, Woessmann W, Zimmermann M, et al. (2006b) Impact of cranial radiotherapy on central nervous system prophylaxis in children and adolescents with central nervous system-negative stage III or IV lymphoblastic lymphoma. J Clin Oncol 24: 491–499

    Google Scholar 

  • Burkhardt B, Reiter A, Landmann E, et al. (2009) Poor outcome for children and adolescents with progressive disease or relapse of lymphoblastic lymphoma: a report from the berlin-frankfurt-muenster group. J Clin Oncol 27: 3363–3369

    Google Scholar 

  • Burkhardt B, Oschlies I, Klapper W, et al. (2011) Non-Hodgkin’s lymphoma in adolescents: experiences in 378 adolescent NHL patients treated according to pediatric NHL-BFM protocols. Leukemia 25: 153–160

    Google Scholar 

  • Callens C, Baleydier F, Lengline E, et al. (2012) Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol 30: 1966–1973

    Google Scholar 

  • Campo E, Swerdlow SH, Harris NL, et al. (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117: 5019–5032

    Google Scholar 

  • Damm-Welk C, Busch K, Burkhardt B, et al. (2007) Prognostic significance of circulating tumor cells in bone marrow or peripheral blood as detected by qualitative and quantitative PCR in pediatric NPM-ALK-positive anaplastic large-cell lymphoma. Blood 2007; 110: 670–677

    Google Scholar 

  • Damm-Welk C, Klapper W, Oschlies I, et al. (2009) Distribution of NPM1-ALK and X-ALK fusion transcripts in paediatric anaplastic large cell lymphoma: a molecular-histological correlation. Br J Haematol 146: 306–309

    Google Scholar 

  • Damm-Welk C, Mussolin L, Zimmermann M, et al. (2014) Early assessment of minimal residual disease identifies patients at very high relapse risk in NPM-ALK-positive anaplastic large-cell lymphoma. Blood 123: 334–337

    Google Scholar 

  • Dunleavy K, Pittaluga S, Maeda LS, et al. (2013) Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med 368: 1408–1416

    Google Scholar 

  • Eberle FC, Salaverria I, Steidl C, et al. (2011) Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Modern Pathol 24: 1586–1597

    Google Scholar 

  • Goldman S, Smith L, Anderson JR, et al. (2012) Rituximab and FAB/LMB 96 chemotherapy in children with Stage III/IV B-cell non-Hodgkin lymphoma: a Children’s Oncology Group report. Leukemia 27: 1174–1177

    Google Scholar 

  • Klapper W, Szczepanowski M, Burkhardt B, et al. (2008) Molecular profiling of pediatric mature B-cell lymphoma treated in population-based prospective clinical trials. Blood 112: 1374–1381

    Google Scholar 

  • Klapper W, Kreuz M, Kohler CW, et al. (2012) Patient age at diagnosis is associated with the molecular characteristics of diffuse large B-cell lymphoma. Blood 119: 1882–1887

    Google Scholar 

  • Kontny U, Oschlies I, Woessmann W, et al. (2015) Non-anaplastic peripheral T-cell lymphoma in children and adolescents – a retrospective analysis of the NHL-BFM study group. Br J Haematol 168: 835–844

    Google Scholar 

  • Lamant L, McCarthy K, D’Amore E, et al. (2011) Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 Study. J Clin Oncol 29: 4669–4676

    Google Scholar 

  • Le Deley MC, Reiter A, Williams D, et al. (2008) Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood 111: 1560–1566

    Google Scholar 

  • Le Deley MC, Rosolen A, Williams DM, et al. (2010) Vinblastine in children and adolescents with high-risk anaplastic large-cell lymphoma: results of the randomized ALCL99-vinblastine trial. J Clin Oncol 28: 3987–3993

    Google Scholar 

  • Meinhardt A, Burkhardt B, Zimmermann M, et al. (2010) Phase II window study on rituximab in newly diagnosed pediatric mature B-cell non-Hodgkin’s lymphoma and Burkitt leukemia. J Clin Oncol 28: 3115–3121

    Google Scholar 

  • Muller-Weihrich S, Henze G, Jobke A, et al. (1982) [BFM study 1975/81 for treatment of non-Hodgkin lymphoma of high malignancy in children and adolescents]. Klin Padiatr 194: 219–225

    Google Scholar 

  • Muller-Weihrich S, Beck J, Henze G, et al. (1984) [BFM study 1981/83 of the treatment of highly malignant non-Hodgkin’s lymphoma in children: results of therapy stratified according to histologic immunological type and clinical stage]. Klin Padiatr 196: 135–142

    Google Scholar 

  • Murphy SB (1980) Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol 7: 332–339

    Google Scholar 

  • Mussolin L, Damm-Welk C, Pillon M, et al. (2013) Use of minimal disseminated disease and immunity to NPM-ALK antigen to stratify ALK-positive ALCL patients with different prognosis. Leukemia 27: 416–422

    Google Scholar 

  • Oschlies I, Burkhardt B, Chassagne-Clement C, et al. (2011a) Diagnosis and immunophenotype of 188 pediatric lymphoblastic lymphomas treated within a randomized prospective trial: experiences and preliminary recommendations from the European childhood lymphoma pathology panel. Am J Surg Pathol 35: 836–844

    Google Scholar 

  • Oschlies I, Burkhardt B, Salaverria I, et al. (2011b) Clinical, pathological and genetic features of primary mediastinal large B-cell lymphomas and mediastinal gray zone lymphomas in children. Haematologica 96: 262–268

    Google Scholar 

  • Oschlies I, Lisfeld J, Lamant L, et al. (2013) ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases – a report from the ALCL99 study. Haematologica 98: 50–56

    Google Scholar 

  • Patte C, Auperin A, Michon J, et al. (2001) The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood 97: 3370–3379

    Google Scholar 

  • Patte C, Auperin A, Gerrard M, et al. (2007) Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood 109: 2773–2780

    Google Scholar 

  • Pro B, Advani R, Brice P, et al. (2013) Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J Clin Oncol 30: 2190–2196

    Google Scholar 

  • Reiter A, Schrappe M, Parwaresch R, et al. (1995) Non-Hodgkin’s lymphomas of childhood and adolescence: results of a treatment stratified for biologic subtypes and stage– a report of the Berlin-Frankfurt-Munster Group. J Clin Oncol 13: 359–372

    Google Scholar 

  • Reiter A, Schrappe M, Tiemann M, et al. (1999) Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: A report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood 94: 3294–3306

    Google Scholar 

  • Reiter A, Schrappe M, Ludwig WD, et al. (2000) Intensive ALL-type therapy without local radiotherapy provides a 90 % event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood 95: 416–421

    Google Scholar 

  • Richter J, Schlesner M, Hoffmann S,, et al.. (2012) Recurrent mutation of the ID3 gene in Burkitt-Lymphoma identified by integrated genome, exome and transcriptome sequencing. Nature Genetics 44: 1316–20

    Google Scholar 

  • Rosolen A, Perkins SL, Pinkerton CR, et al. (2015) Revised International Pediatric Non-Hodgkin Lymphoma Staging System. J Clin Oncol 33: 2112–2118

    Google Scholar 

  • Salzburg J, Burkhardt B, Zimmermann M, et al. (2007) Prevalence, clinical pattern, and outcome of CNS involvement in childhood and adolescent non-Hodgkin’s lymphoma differ by non-Hodgkin’s lymphoma subtype: a Berlin-Frankfurt-Munster Group Report. J Clin Oncol 25: 3915–3922

    Google Scholar 

  • Seidemann K, Tiemann M, Schrappe M, et al. (2001) Short-pulse B-non-Hodgkin lymphoma-type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood 97: 3699–3706

    Google Scholar 

  • Uyttebroeck A, Suciu S, Laureys G, et al. (2008) Treatment of childhood T-cell lymphoblastic lymphoma according to the strategy for acute lymphoblastic leukaemia, without radiotherapy: long term results of the EORTC CLG 58881 trial. Eur J Cancer 44: 840–846

    Google Scholar 

  • Woessmann W, Seidemann K, Mann G, et al. (2005) The impact of the methotrexate administration schedule and dose in the treatment of children and adolescents with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. Blood 105: 948–958

    Google Scholar 

  • Woessmann W, Zimmermann M, Lenhard M, et al. (2011) Relapsed or refractory anaplastic large-cell lymphoma in children and adolescents after Berlin-Frankfurt-Muenster (BFM)-type first-line therapy: a BFM-group study. J Clin Oncol 29: 3065–3071

    Google Scholar 

  • Woessmann W, Lisfeld J, Burkhardt B (2013) Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N Engl J Med 369: 282

    Google Scholar 

  • Woessmann W (2013) How to treat children and adolescents with relapsed non-Hopdgkin lymphoma? Hematol Oncol 31: 64–68

    Google Scholar 

  • Wollner N, Exelby PR, Lieberman PH (1979) Non-Hodgkin’s lymphoma in children: a progress report on the original patients treated with the LSA2-L2 protocol. Cancer 44: 1990–1999

    Google Scholar 

  • Worch J, Rohde M, Burkhardt B (2013) Mature B-Cell lymphoma and leukemia in children and adolescents – review of standard chemotherapy regimen and perspectives. Pediatr Hematol Oncol 30: 465–483

    Google Scholar 

  • Ziegler JL (1977) Treatment results of 54 American patients with Burkitt’s lymphoma are similar to the African experience. New Engl J Med 297: 75–80

    Google Scholar 

Zu 22.5

  • Ansell SM, Lesokhin AM, Borrello I, et al. (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372: 311–319

    Google Scholar 

  • Banning U, Barthel H, Mauz-Körholz C, et al. (2006) Effect of drug-induced cytotoxicity on glucose uptake in Hodgkin’s lymphoma cells. Eur J Haematol 77: 102–108

    Google Scholar 

  • Bennett MH, MacLennanKA, Easterling Mu, et al. (1983) The prongostic signficiance of cellualr subtypes in nodular sclerosing Hodgin’s disease. An analysis of 271 non-laparotomized cases. Clin Radiol 32: 497–501

    Google Scholar 

  • Bhatia S, Yasui Y, Robison LL, Birch JM, Bogue MK, Diller L, DeLaat C, Fossati-Bellani F, Morgan E, Oberlin O, Reaman G, Ruymann FB, Tersak J, Meadows AT; Late Effects Study Group (2003) High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin’s lymphoma: report from the Late Effects Study Group. J Clin Oncol 21: 4386–4394

    Google Scholar 

  • Biggar RJ, Jaffe ES, Goedert JJ, et al. (2006) Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood 108: 3786–3791

    Google Scholar 

  • Caporaso NE, Goldin LR, Anderson WF, Landgren O. Current insight on trends, causes, and mechanisms of Hodgkin’s lymphoma. Cancer J 15: 117–123

    Google Scholar 

  • Devillier R, Coso D, Castagna L, et al. (2012) Positron emission tomography response at the time of autologous stem cell transplantation predicts outcome of patients with relapsed and/or refractory Hodgkin’s lymphoma responding to prior salvage therapy. Haematologica 97: 1073–1079

    Google Scholar 

  • Dinand V, Dawar R, Arya LS, et al. (2007) Hodgkin’s lymphoma in Indian children: prevalence and significance of Epstein-Barr virus detection in Hodgkin’s and Reed-Sternberg cells. Eur J Cancer 43: 161–168

    Google Scholar 

  • Dörffel W, Rühl U, Lüders H, et al. (2013) Treatment of Children and Adolescents With Hodgkin Lymphoma Without Radiotherapy for Patients in Complete Remission After Chemotherapy: Final Results of the Multinational Trial GPOH-HD95. J Clin Oncol 31: 1562–1568

    Google Scholar 

  • Dörffel W, Riepenhausenl M, Lüders H, et al. (2015) Secondary Malignancies Following Treatment for Hodgkin’s Lymphoma in Childhood and Adolescence. Dtsch Arztebl Int 112: 320–327

    Google Scholar 

  • Engert A, Plütschow A, Eich HT, et al. (2010) Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med 363: 640–652

    Google Scholar 

  • Engert A, Haverkamp H, Kobe C, Markova J, Renner C, Ho A, Zijlstra J, Král Z, Fuchs M, Hallek M, Kanz L, Döhner H, Dörken B, Engel N, Topp M, Klutmann S, Amthauer H, Bockisch A, Kluge R, Kratochwil C, Schober O, Greil R, Andreesen R, Kneba M, Pfreundschuh M, Stein H, Eich HT, Müller RP, Dietlein M, Borchmann P, Diehl V; German Hodgkin Study Group; Swiss Group for Clinical Cancer Research; Arbeitsgemeinschaft Medikamentöse Tumortherapie (2012) Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet 379: 1791–1799

    Google Scholar 

  • Furth C, Steffen IG, Amthauer H, et al. (2009) Early and late therapy response assessment with [18F]fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol 27: 4385–4391

    Google Scholar 

  • García-Sanz R, González-López TJ, Vázquez L, et al. (2010) The combination of thalidomide, cyclophosphamide and dexamethasone is potentially useful in highly resistant Hodgkin’s lymphoma.Eur J Haematol 84: 266–270

    Google Scholar 

  • Gerres L, Bramswig JH, Schlegel W, et al. (1998) The effects of etoposide on testicular function in boys treated for Hodgkin’s lymphoma. Cancer 83: 2217–2222

    Google Scholar 

  • Gutensohn N, Cole P (1981) Childhood social environment and Hodgkin’s disease. New Engl J Med 304: 135–140

    Google Scholar 

  • Hjalgrim H, Askling J, Sorensen P, et al. (2000) Risk of Hodgkin’s disease and other cancers after infectious mononucleosis. J Nat Cancer Inst 92: 1522–1528

    Google Scholar 

  • Harris NL, Jaffe ES, Stein H, et al. (1994) A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84: 1361–1392

    Google Scholar 

  • Hasenclever D (2002) The disappearance of prognostic factors in Hodgkin’s disease. Ann Oncol 13 (Suppl 1): 75–78

    Google Scholar 

  • Hasenclever D, Diehl V (1998) A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N Engl J Med 339: 1506–1514

    Google Scholar 

  • Hassel JU, Bramswig JH, Schlegel W, Schellong G (1991) Testicular function after OPA/COMP chemotherapy without Procarbazine in boys with Hodgkin’s lymphoma. Results in 25 patients of the DAL-HD-85 study. Klin Padiatr 203: 268–272

    Google Scholar 

  • Jaffe ES (2009) The 2008 WHO classification of lymphomas: implications for clinical practice and translational research. Hematology Am Soc Hematol Educ Program 2009: 523–531

    Google Scholar 

  • Jones RJ, Gocke CD, Kasamon YL, et al. (2009) Circulating clonotypic B cells in classic Hodgkin lymphoma. Blood 113: 5920–5926

    Google Scholar 

  • Küppers R (2012) New insights in the biology of Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program 2012: 328–334

    Google Scholar 

  • Klapper W, Oschlies I (2012) Specifics of histopathological and genetical diagnosis and classification of lymphomas in children and adolescents. Klin Padiatr 224: 183–190

    Google Scholar 

  • Laffon M, Giordana C, Almairac F, et al. (2012) Anti-Hu-associated paraneoplastic limbic encephalitis in Hodgkin lymphoma. Leuk Lymphoma 53: 1433–1434

    Google Scholar 

  • Krull KR, Sabin ND, Reddick WE, et al. (2012) Neurocognitive function and CNS integrity in adult survivors of childhood hodgkin lymphoma.J Clin Oncol 30: 3618–3624

    Google Scholar 

  • Lechner K, Chen YA (2010) Paraneoplastic autoimmune cytopenias in Hodgkin lymphoma.Leuk Lymphoma 51: 469–474

    Google Scholar 

  • Lister TA, Crowther D, Sutcliffe SB, et al. (1989) Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol 7: 1630–1636

    Google Scholar 

  • Mauz-Körholz C, Gorde-Grosjean S, Hasenclever D, et al. (2007) Resection alone in 58 children with limited stage, lymphocyte-predominant Hodgkin lymphoma-experience from the European network group on pediatric Hodgkin lymphoma. Cancer 110: 179–185

    Google Scholar 

  • Mauz-Körholz C, Hasenclever D, Dörffel W, et al. (2010) Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin’s lymphoma: the GPOH-HD-2002 study. J Clin Oncol 28: 3680–3686

    Google Scholar 

  • Mauz-Körholz C, Lange T, Hasenclever D, et al. (2015) Pediatric Nodular Lymphocyte-predominant Hodgkin Lymphoma: Treatment Recommendations of the GPOH-HD Study Group. Klin Padiatr 227: 314–321

    Google Scholar 

  • Mauz-Körholz C, Metzger ML, Kelly KM, et al. (2015) Pediatric Hodgkin Lymphoma. J Clin Oncol 33: 2975–2985

    Google Scholar 

  • Markova J, Kobe C, Skopalova M, et al. (2009) FDG-PET for assessment of early treatment response after four cycles of chemotherapy in patients with advanced-stage Hodgkin’s lymphoma has a high negative predictive value. Ann Oncol 20: 1270–1274

    Google Scholar 

  • Milano MT, Li H, Gail MH, Constine LS, Travis LB (2010) Long-term survival among patients with Hodgkin’s lymphoma who developed breast cancer: a population-based study. J Clin Oncol 28: 5088–5096

    Google Scholar 

  • Munker R, Stengel A, Stäbler A, et al. (1995) Diagnostic accuracy of ultrasound and computed tomography in the staging of Hodgkin’s disease. Verification by laparotomy in 100 cases. Cancer 76: 1460–1466

    Google Scholar 

  • Nachman JB, Sposto R, Herzog P, Gilchrist GS, Wolden SL, Thomson J, Kadin ME, Pattengale P, Davis PC, Hutchinson RJ, White K; Children’s Cancer Group (2002) Randomized comparison of low-dose involved-field radiotherapy and no radiotherapy for children with Hodgkin’s disease who achieve a complete response to chemotherapy. J Clin Oncol 20: 3765–3771

    Google Scholar 

  • Niehues T, Schellong G, Dörffel W, et al. (2003) Immunodeficiency and Hodgkin’s disease: treatment and outcome in the DAL HD78-90 and GPOH HD95 studies. Klin Pädiatr 215: 315–320

    Google Scholar 

  • Nogova L, Reineke T, Brillant C, Sieniawski M, Rudiger T, Josting A, Bredenfeld H, Skripnitchenko R, Muller RP, Muller-Hermelink HK, Diehl V, Engert A. German Hodgkin Study Group (2008) Lymphocyte-predominant and classical Hodgkin’s lymphoma: a comprehensive analysis from the German Hodgkin Study Group. J Clin Oncol 26: 434–439

    Google Scholar 

  • Oberlin O, Leverger G, Pacquement H, et al. (1992) Low-dose radiation therapy and reduced chemotherapy in childhood Hodgkin’s disease: the experience of the French Society of Pediatric Oncology. J Clin Oncol 10: 1602–1608

    Google Scholar 

  • Peggs KS, Kayani I, Edwards N, et al. (2011) Donor lymphocyte infusions modulate relapse risk in mixed chimeras and induce durable salvage in relapsed patients after T-cell-depleted allogeneic transplantation for Hodgkin’s lymphoma. J Clin Oncol 29: 971–978

    Google Scholar 

  • Pellegrino B, Terrier-Lacombe MJ, Oberlin O, Leblanc T, Perel Y, Bertrand Y, Beard C, Edan C, Schmitt C, Plantaz D, Pacquement H, Vannier JP, Lambilliote C, Couillault G, Babin-Boilletot A, Thuret I, Demeocq F, Leverger G, Delsol G, Landman-Parker J; Study of the French Society of Pediatric Oncology (2003) Lymphocyte-predominant Hodgkin’s lymphoma in children: therapeutic abstention after initial lymph node resection – a Study of the French Society of Pediatric Oncology.J Clin Oncol 21: 2948–2952

    Google Scholar 

  • Purz S, Mauz-Körholz C, Körholz D, et al. (2011) [18F]Fluorodeoxyglucose positron emission tomography for detection of bone marrow involvement in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol 29: 3523–3528

    Google Scholar 

  • O’Brien MM, Donaldson SS, Balise RR, et al. (2010) Second malignant neoplasms in survivors of pediatric Hodgkin’s lymphoma treated with low-dose radiation and chemotherapy. J Clin Oncol 28: 1232–1239

    Google Scholar 

  • Santoro A, Magagnoli M, Spina M, et al. (2007) Ifosfamide, gemcitabine, and vinorelbine: a new induction regimen for refractory and relapsed Hodgkin’s lymphoma. Haematologica 92: 35–41

    Google Scholar 

  • Satwani P, Ahn KW, Carreras J, et al. (2015a) A prognostic model predicting autologous transplantation outcomes in children, adolescents and young adults with Hodgkin lymphoma. Bone Marrow Transplant 50: 1416–1423

    Google Scholar 

  • Satwani P, Jin Z, Martin PL, et al. (2015b) Sequential myeloablative autologous stem cell transplantation and reduced intensity allogeneic hematopoietic cell transplantation is safe and feasible in children, adolescents and young adults with poor-risk refractory or recurrent Hodgkin and non-Hodgkin lymphoma. Leukemia 29: 448–455

    Google Scholar 

  • Schellong G, Waubke-Landwehr AK, et al. (1986a) Prediction of splenic involvement in children with Hodgkin’s disease. Significance of clinical and intraoperative findings. A retrospective statistical analysis of 154 patients in the German therapy study DAL-HD-78. Cancer 57: 2049–2056

    Google Scholar 

  • Schellong G, Brämswig J, Ludwig R, et al. (1986b) Kombinierte Behandlungsstrategie bei über 200 Kindern mit Morbus Hodgkin: Abgestufe Chemotherapie, Infolved-Field-Bestrahlung mit erniedrigen Dosen und selektive Splenektomie. Ein Bericht der kooperativen Therapiestudie DAL-HD-82. Klin Padiatr 198: 137–146

    Google Scholar 

  • Schellong G, Bramswig JH, Hornig-Franz I, et al. (1994) Hodgkin’s lymphoma in children: combined modality treatment for stages IA, IB, and IIA. Results in 356 patients of the German/Austrian Pediatric Study Group. Ann Oncol A5 (Suppl 2): 113–115

    Google Scholar 

  • Schellong G, Riepenhausen M, Creutzig U, et al. (1997) Low risk of secondary leukemias after chemotherapy without mechlorethamine in childhood Hodgkin’s lymphoma. German-Austrian Pediatric Hodgkin’s Disease Group. J Clin Oncol 15: 2247–2253

    Google Scholar 

  • Schellong G, Pötter R, Brämswig J, et al. (1999) High cure rates and reduced long-term toxicity in pediatric Hodgkin’s disease: the German-Austrian multicenter trial DAL-HD-90. The German-Austrian Pediatric Hodgkin’s Disease Study Group. J Clin Oncol 17: 3736–3744

    Google Scholar 

  • Schellong G, Riepenhausen M (2004) Late effects after therapy of Hodgkin’s disease: update 2003/04 on overwhelming post-splenectomy infections and secondary malignancies. Klin Padiatr 216: 364–369

    Google Scholar 

  • Schellong G, Dörffel W, Claviez A, Körholz D, Mann G, Scheel-Walter HG, Bökkerink JP, Riepenhausen M, Lüders H, Pötter R, Rühl U; DAL/GPOH (2005) Salvage therapy of progressive and recurrent Hodgkin’s disease: results from a multicenter study of the pediatric DAL/GPOH-HD study group. J Clin Oncol 23: 6181–6189

    Google Scholar 

  • Schellong G, Riepenhausen M, Bruch C, et al. (2010) Late valvular and other cardiac diseases after different doses of mediastinal radiotherapy for Hodgkin disease in children and adolescents: report from the longitudinal GPOH follow-up project of the German-Austrian DAL-HD studies. Pediatr Blood Cancer 55: 1145–1152

    Google Scholar 

  • Schmitz N, Pfistner B, Sextro M, Sieber M, Carella AM, Haenel M, Boissevain F, Zschaber R, Muller P, Kirchner H, Lohri A, Decker S, Koch B, Hasenclever D, Goldstone AH, Diehl V; German Hodgkin’s Lymphoma Study Group; Lymphoma Working Party of the European Group for Blood and Marrow Transplantation (2002) Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s lymphoma: a randomised trial. Lancet 359: 2065–2071

    Google Scholar 

  • Schwering I, Bräuninger A, Klein U, et al. (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101: 1505–1512

    Google Scholar 

  • Shankar A, Hall GW, Gorde-Grosjean S, et al. (2012) Treatment outcome after low intensity chemotherapy [CVP] in children and adolescents with early stage nodular lymphocyte predominant Hodgkin’s lymphoma – an Anglo-French collaborative report. Eur J Cancer 48: 1700–1706

    Google Scholar 

  • Shankar A1, Hayward J, Kirkwood A, et al. (2014) Treatment outcome in children and adolescents with relapsed Hodgkin lymphoma – results of the UK HD3 relapse treatment strategy. Br J Haematol 165: 534–544

    Google Scholar 

  • Shinohara T, Kojima H, Nakamura N, et al. (2005) Pathology of pure hippocampal sclerosis in a patient with dementia and Hodgkin’s disease: the Ophelia syndrome. Neuropathology 25: 353–360

    Google Scholar 

  • Stanelle J, Döring C, Hansmann ml, Küppers R (2010) Mechanisms of aberrant GATA3 expression in classical Hodgkin lymphoma and its consequences for the cytokine profile of Hodgkin and Reed/Sternberg cells. Blood 116: 4202–4211

    Google Scholar 

  • Swerdlow SH, Campo E, Pileri SA, et al. (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127: 2375–2390

    Google Scholar 

  • Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein-Barr virus and the origins of associated lymphomas. New Engl J Med 350: 1328–1337

    Google Scholar 

  • Wein F, Küppers R (2016) The role of T cells in the microenvironment of Hodgkin lymphoma. J Leukoc Biol 99: 45–50

    Google Scholar 

  • Wolden SL, Chen L, Kelly KM, et al. (2012) Long-term results of CCG 5942: a randomized comparison of chemotherapy with and without radiotherapy for children with Hodgkin’s lymphoma – a report from the Children’s Oncology Group. J Clin Oncol 30: 3174–3180

    Google Scholar 

  • Younes A, Romaguera J, Hagemeister F, et al. (2003) A pilot study of rituximab in patients with recurrent, classic Hodgkin disease. Cancer 98: 310–314

    Google Scholar 

  • Younes A, Bartlett NL, Leonard JP, et al. (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363: 1812–1821

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Schrappe , A. Möricke , A. Attarbaschi , A. von Stackelberg , U. Creutzig , D. Reinhardt , M. Suttorp , A. Rensing-Ehl , S. Ehl , B. Burkhardt , W. Klapper , W. Wößmann , D. Körholz , C. Mauz-Körholz , C. Niemeyer , M. Schrappe , A. Möricke , A. Attarbaschi , A. von Stackelberg , U. Creutzig , D. Reinhardt , M. Suttorp , C. Niemeyer , C. Niemeyer , A. Rensing-Ehl , S. Ehl , C. Niemeyer , B. Burkhardt , W. Klapper , W. Wößmann , C. Mauz-Körholz or C. Mauz-Körholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Schrappe, M. et al. (2018). Leukämien und Lymphome. In: Niemeyer, C., Eggert, A. (eds) Pädiatrische Hämatologie und Onkologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43686-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43686-8_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43685-1

  • Online ISBN: 978-3-662-43686-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics